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ON THE MAXIMUM DIFFERENCE BETWEEN
THE EMPIRICAL AND EXPECTED

HISTOGRAMS FOR SUMS

PERSI DIACONIS AND DAVID FREEDMAN

Suppose Sn is a sum of n independent and identically
distributed random variables with E\Xl\<oom If n is large,
Sn is approximately normal. A histogram of k copies of Sn

will be close to the normal curve if k is large relative to
^ n log n. This paper derives the joint distribution of the
location and size of the maximum deviation between this
histogram and the probability histogram for Sn. When k
is large relative to V% (log n)3, the maximum deviation is
taken on at a unique location. The location is normally
distributed and independent of the size of the maximum
deviation, which has a double-exponential distribution. We
construct an example, involving Edgeworth-like expansions,
to show the behavior changes if E{X\)<o° but E\X\\=oo.

1* Introduction* The central limit theorem is often used
heuristically to justify the approximation of histograms for data by
the normal curve. This argument can be made precise through the
following model. There is some basic random variable X. Take
the sum of n independent copies of X, and then take k independent
copies of these sums. Provided X is well-behaved, n is large, and
k is large in relation to n, the histogram for the sums will be
close to the normal curve. In this way, the model rigorously justi-
fies the use of the normal curve to approximate the data.

In more detail, let Xl9 X2, be independent, identically distri-
buted random variables. Suppose the Xt are integer-valued and
have span 1:

(1.1) g.c.d {j - k: j, k e S > 0} = 1, where j e S iff P{Xί = j} > 0 .

Suppose too

(1.2) E\XΪ\< - .

Let Sn = Xλ + + Xn. Take k independent copies of Sn, and let
Nj be the number of these sums which are equal to j: the notation
hides the dependence of Nά on n and k. Up to scaling, the counts
Nj correspond to the empirical histogram for the k sums. Of course,

(1.3) E(Ns) = kpJf where Pj = P(Sn = j) .

Up to scaling, the numbers pd correspond to the probability histo-
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gram for the k sums. When n is large, the local central limit
theorem implies that the ps are uniformly close to an appropriately
scaled normal curve. In this paper, we study the random variable

(1.4) Mnk - max (Nd - kp/)

Up to scaling, this is the maximum difference between the empirical
histogram of the k sums and the probability histogram of the sum.
This random variable is the key to understanding the maximum
difference between the histogram and the normal curve, as will be
shown in a future paper.

We suppose

(1.5) n • co and kjV n (log nf > °o .

Assumption (1.5) is discussed at the end of this section. Let

(1.6) μ = E(Xt) and σ2 = Var X, .

In Freedman [5] it is shown that if (1.1-1.6) hold, then

(1.7) MJJ }L=s^\0%n , i i n probability.
/ λ σv2πn

Our main object in this paper is to prove the following result,
which sharpens (1.7).

THEOREM 1.8. Assume (1.1-1.6). With probability approaching
one, Mnk — max,- (Nά — kp/) is taken on at a unique index Lnk.
Moreover, Lnk and Mnk are asymptotically independent, Lnk being
asymptotically normal and Mnk being asymptotically double-exponen-
tial. To be more precise, let

r¥)du'
(1.10) zn(x) - J L , . i/log n - 2 log log n + x .

v σv 2πn

Then, the probability that

Lnk — nμ < yσV/2n/log n and Mnk < zn(x)

converges to

As usual, exp (x) = ex.

This theorem is illustrated in Table 1 and Figure 1, which report
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TABLE 1

Computer simulation illustrating Theorem (1.8).

n

25

50

100

k

10,

100

500

000

k/[V n ι

0.

1.

10.

(log w

6

2

2

lower

) ]
Link

83

169

341

quartile

Mnk

3.0

6.2

24.9

upper

Lnt

92

181

358

quartile

Mnk

4.9

9.5

36.8

observed

97

185

358

value

MHk

2.5

8.3

26.9

three computer simulations. In all three, the basic random variable
X1 took the six values 1 through 6 with equal probability 1/6. The
table shows the values chosen for n and k, the lower and upper
quartiles for the asymptotic distributions of Lnk and Mnk, as com-
puted from the theorem, and the values observed in the simulation.

In the first line of Table 1, the location Lnk is reported as 97:
so N3 — kpj is largest when j = 97. From the figure, the mode of
the empirical histogram is at 82: so N3- is largest when j = 82. In
general, the location of the maximum deviation and the mode are

25 Sumroands, 1OO Repetitions

50 Summancls, 500 Repetition'

140 15O 16O 170 190 200 210

100 Summands, 10O0O Repetitions

30O

FIGURE 1

Computer simulation: the empirical histogram converges to the normal curve.
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very different. Compare Theorem (1.8) with [2].
The figure shows the histograms themselves. The horizontal

scale shows j , but the three axes are arranged so that the means
nμ line up? and the standard deviations oVU cover the same
physical distance. The vertical scale shows (σ\/~n) x (JVJ /Λ)xl00%:
that is, Ns is converted to a percent (relative to k), and the histo-
grams are rescaled vertically by σ\/~n to have the same physical
area. For a discussion of this convention, see pp. 29 ff and 275 ff
of Freedman, Pisani? Purves [6]. Thus? the maximum difference
between the rescaled empirical and theoretical histograms is

k

In the third line of Table 1, for instance, that is about 5%.
In § 2, we argue heuristically that our problem can be reduced

to finding the location and size of the maximum of a sequence Z$
of independent, normal variables having mean 0, but variances
1 ~ (f/2σ2n) as n -> oo. This problem is solved in Proposition (2.2).
In §4, we prove Theorem (1.8). Section 3 gives some technical
lemmas, including bounds for the probability of an intersection of
events, and approximations for binomial tail probabilities.

In this paper and in Freedman [5] the condition E\X}\ < oo
was assumed. In fact Lemmas (4.1) and (4.3) of this paper replace
Lemma (15) in Freedman [5], and hence prove Theorem (5) of that
paper assuming only E(Xl) < oo.

The main use of the third-moment assumption in this paper is
to justify the bound on the error in the local central limit theorem
in equation (3.27). In § 5, we construct an example to show that
new limiting behavior can occur when E\X?\ — oo. The argument
involves Edgeworth-like corrections to sums of random variables
without third moments, and may be of independent interest.

Concerning condition (1.5), if fc> Vnlogn but fc =
0[V n (log nf], the form of the norming constants in equation (1.10)
changes radically, because the large deviations corrections in the
normal approximation to the binomial distribution must be accounted
for. This is worked out in detail for the closely related problem
of the mode of the histogram, in §4 of Diaconis and Freedman [2].
If k — Q(\/ nlogn), then Freedman [5] shows that the maximum
deviation does not converge to zero in probability.

2* A heuristic argument* It is convenient to discuss the
behavior of JV3 — kφά separately for four zones. The zones are
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described in terms of constants δ and A, where δ is small but
positive, A is large but finite. For definiteness, we will assume
0 < δ < 1/10. The zones are:

(2.1a) zone I: | j — nμ\ < δσv/'n

(2.1b) zone II: δσV~n <> \j — nμ\ <̂  AσVn

(2.1c) zone III: AσV^n < \j — nμ\ ^ σn3/i

(2.1d) z o n e I V : σnm <\j - nμ\ .

As will be shown below, zones II, III, and IV make no contribution
to the maximum. In zone I, the N3 — kp3- are approximately inde-
pendent and normal, with mean 0 and

Var (ΛΓ,- - *,,) = ^,-(1 - Pl) ± kPί

Thus, Lnk — nμ and V σ \/2πn/k Mnk should be distributed like the
Ln and Mn of the following proposition.

PROPOSITION 2.2. Let Uά he independent normal random vari-
ables, with mean 0 and Var (Us) = 1 — j2/2σ2n, for \j\ < δσV n. Let
Mn = max,- Uj9 and let Ln be the index at which the maximum is
achieved. Then, as n tends to ©o, the probability that

Ln < yσv/2n/\og n and Mn < i/log n — 2 log log n + x

converges to

Φ(y) exp[-σ\/~2e-χ/2] .

As in (1.9), Φ is the standard normal distribution function.

Proof. For — oo <ς a ^ b <; oo, let Iah be the set of j with
I j I < δσλ/Ίίi and

aσv/2n/log n ^ i < bσ]/2n/\og n .

Thus, JΓβ6 is always finite. Let Mab be the max of Us for jeloh.
Clearly, if a < b < c < d, then ikfα6 and Λfβd are independent. Abbre-
viate

(2.3) wn{x) = l/log n — 2loglogn + x and 7 = aV 2 .

We will show that

(2.4) P{Mah<wn(x)} >exv{-Ύ[Φ(b)-Φ(a)]e~{ί/2)*} for ~
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lim sup P{M^a < wn(x)}
(2.5)

^ exp {-ΎΦ(a)e~a/2)x} for -co < a < 0 .

lim sup P{Mbco < wn{x)}
(2.6)

^ exp{-τLl - Φ(b)]e-[l;-)x} for 0 < b < co .

Granting (2.4-6), the proposition can be derived by an ele-
mentary argument as follows. First, (2.4) holds even for infinite
a or 6, in view of (2.5-6). Now let Yλ and Y2 be independent
double-exponential random variables:

where

7, = ΎΦ(y) and 72 = 7[1 - Φ(y)\

so

7X + 72 = 7 .

The function wn(-) defined by (2.3) is continuous and strictly increas-
ing; so is its inverse, w~ι. Equation (2.4) implies that the joint
distribution of ^~1(lί_oay) and w~\Myoo) converges in distribution to
the joint distribution of Yλ and Y2. Now P(Y1 = x) = P(Yλ = Γ2) =
0. So

P{Ln < yσ\ 2n/logn and Mn

— P{M^ooy < wn(x) and ikf_CO2/ > Λfyco}

= P{w~\M_ooy) < x and /w;~1(M_M2/) >

( 2 7 ) > PfF, < x and F, > FJ

The last displayed expression equals

Thus, (2.4-6) imply (2.2).
We turn now to the proof of (2.4). We will write v3- for

Var (Uj) = 1 — fi2σ~n. Fix an x, and abbreviate w — wn{x). In
essence, the proof of (2.4) is the follwing computation:
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logP{Mai < w) = Σ logPiU,- < w)

(2.8) "

= Σ VViβπ -- i exp {--i-t

by (3.15). The symbol == means "approximately equal" and is only
used in heuristic argument. For our purposes

(2.9) V Vj/w = 1/l/log n .

In the exponent, 1/vj = 1 + f/2σ2n. So

(2.10) ^w2/vd = l log n - log log n + \x + λf/(2σ2

nβog n) .

Thus, logP{ikfα6 < w} is approximately i/^c7β~(1/2)£C times

(2.11) - L X Σ exp j--Lj7(2Λ/log n)} .
1/27Γ 1/2cr2^/lθg W ieiα 6 ( 2 )

This last is a Riemann sum for

J L Γ exp (- — u2)du = Φ(b) - Φ(a) .
V2πi* V 2 /

We now indicate the details required to justify (2.8). All " 0 "
and "o" error terms are uniform over j e Jα&. Note that a and 6
are finite, so ffn — O(lβogn). In (2.9), then, the ratio of the two
sides converges to one as n—> oo, uniformly over jelab. In (2.10),

2 vό 2 V 2σ2n

2σ2n

= o(l)

So the difference between the two sides of (2.10) is

2 2σ2w 2

= i-(w

2 - log n) ζ
2 2σ2ίt

= O(log log n) • O(l/log ») + o(l)
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Thus, the ratio of P(U5 > w) to \ZΎσe-{m)x times the jth term in
(2.11) goes to one as n goes to infinity, uniformly over j£lab. As
a result,

(2.12) P(Uj> w) =

and

(2.13) _ Σ P(Uό > w) > }/Ίϊσe-{1/2]x[Φ(b) - Φ(a)] .

Now (2.12-13) imply that

h ^ w) = Σ [ ίW; > w) + o(P(Ud > w))]

also converges to the right side of (2.13).
This completes the proof of (2.4). The proof of (2.5) is very

similar. In place of (2.9), we use the estimate

To modify (2.10), we use the fact that

l/v3- ̂  1 + f/2σ2n

so

—w2/vj ^ — log n — log log n + — x H w2j2/2σ2n

and Σie/_TOαί>{^ > w} is bounded above, to within o(l), by

\/ 2 σe~{m)x times w~~2 log n times

Now w~*logn-+l, and the last display is at most

Φ{fl) + o(l)

because the normal density is monotone increasing on (— <*>, 0).
The oil) corresponds to the term in j at the edge of J L ^ . This
completes our discussion of (2.5), and (2.6) is symmetric. •

3. Probability approximations* The random variables ΛΓ3

introduced in § 1 have a joint multinomial distribution. We will
approximate this distribution by getting upper and lower bounds
in terms of independent binomial random variables. The binomial
variables are then approximated by an appropriate normal distribu-
tion. This section contains the basic bounds and approximations.
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The main results are (3.2), (3.16), and (3.17).
The first lemma is an upper bound for multinomial probabilities

due to Mallows [9].

LEMMA 3.1. Let Mu M2, *' ,Mj have a joint multinomial
distribution. Then, for any real numbers aίf a2, , aJ9

P(MS ^ a,- for 1 ^ j ^ J) ^ Π P(MS ^ aό) .
5 = 1

The second lemma will be used to get a lower bound for multi-
nomial probabilities.

PROPOSITION 3.2. Let (Ω, g, P) be a probability triple, and let
%Qd%ιci''' be sub-σ-fields of g. Let Aά and Gά be events in %$.
Let λy, λ*, and εά be nonnegative numbers. Suppose P{G3) ^ 1 — εd

and

&^^Xf on G^.

Then P(Πy=ι A$) is bounded between

Π λ, - Σ ^ and Π λ? + Σ e, .
i-i i=o ./=i j=o

Proof. Induction on J. •

Let iV be binomial with parameters k and p, where 0 < p < 1.
The next set of results give approximations for the distribution of
N which are uniform as k and p vary over a wide range. Readers
may be surprised to find us proving versions of the central limit
theorem for coin-tossing, at this late date. However, we need
bounds which are uniform as p gets small; to stay in the realm of
the central limit theorem, we will require kp to be large. Our
results involve the function

(3.3) g{x) = (1 + x) log (1 + x) - x for - 1 < x < oo .

The function g is strictly convex, strictly decreasing on ( — 1,0),
strictly increasing on (0, oo). It satisfies

(3.4) g(x) = —x2 + O(x3) as x > 0 .
Δ

More precisely,

(3.5) — x2/l + x < g(x) < —x2 for x > 0 ,
Li ui
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with the inequalities reversed for x < 0. The function g(x) is closely
connected to a function which arises in the theory of large devia-
tions theory. See, for example, pp. 100-101 of Kolchin, Sevastyanov,
and Chistyakov [8].

We begin with a special case of Theorem (4b) in Freedman
[4], restated here for ease of reference.

LEMMA 3.6. Let u > 0. Then

P{N > kpil + u)} ̂  exp {-g(u)kp} .

Combining (3.5) and (3.6) gives a version of Bernstein's inequality:

(3.7) P{N > kp + m} ̂  exp \-±-m

2/(kp + m) \ for m > 0 .
{ Δ >

Parenthetically, Theorem (4a) in Freedman [4] implies

(3.8) P{N <kp - m} £ exp \-l-m2/kp \ for m > 0
^ Δ '

The next result is a variation on Lemma (7) of Freedman [5],
and is proved the same way. (The condition b > 1/δ in that lemma
is superfluous.)

LEMMA 3.9. Fix ε > 0. There is a positive δ such that the
ratio P(N = a + b)/P(N = a) is bounded between (1 ± ε) times

JL_V

for all integers a, b and & satisfying

a > 1/δ, a + b > 1/δ, k > 1/δ, a + b < δk, \b\ < δVk ~ a .

The next result gives a bound for binomial probabilities P(N — v)
in terms of the function g. Informally: for small values of p, large
values of kp, and v'$ not too far from kp, P(N — v) is asymptotic
to

g[(v — kp)lkp]kp) .
v2πkp

This is a combination local central limit—large deviation result, hold-
ing uniformly in small p.

LEMMA 3.10. Fix ε>0. There is a positive δ such that P(N=v)
is bounded between
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for all k, p and v satisfying

p < δ, kp> 1/δ, I v - kp | < 3kp, \ v - kp | < δVk .

Proof. First, suppose v is the integer part of kp, so v — kp — θ
with 0 ̂  θ < 1. Abbreviate p = 1 —p, so k — v = kp + θ. By Stirling's
formula, P(N = v) is asymptotic to

k k
V2πk v v k — v

times

+
kp/

The first expression is asymptotic to l/\/2πkp. The second is asymp-
totic to

By taking logs and expanding, the last is seen to be nearly 1. Thus,

(3.11) P(N= [kp])*

More explicitly, the ratio of the two sides of (3.11) converges to 1
as δ —> 0, uniformly in k and p satisfying our conditions, namely,
p < δ and kp > 1/δ.

We now apply (3.9), with a = [kp] and b — v — a to see

(3.12) P(N = v)/P(N = [kp]) ** exp [-g(b/a)a] .

First, as easily verified, the conditions of (3.9) hold. Second,

(3.13)
a +

indeed a = kp + 0(1) and b = v — kp + 0(1) is small relative to kp,
by assumption. (The "0(1)" terms are bounded as δ —> 0, uniformly
in k, p and v satisfying our conditions.) Likewise,

(3.14) Γ(fc - a)pΎ ^ 1

Lα(l — p) -I

indeed, this expression is

θ , ;, ,
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and b — v — a — v ~ kp -Y 0(1) is small relative to kp and to kp.
This completes the proof of (3.12).

Recall that a = [kp] and b = v — a. The final step in proving
(3.10) is to show that

a

is uniformly small. This tedious piece of calculus is omitted. •

We now recall a bound on the tail probabilities of a normal
random variable:

Suppose U is a normal random variable with mean 0 and
variance 1. Let w > 0. Then P{U > w) is bounded between

(3.15)
, exp ( ——w 2 ) a n d — 7 = — e x p ( ——w2

\/2π w + 1/w V 2 / |/2ττ w V 2 )
The following result is a generalization, as one sees by taking
f(x) = x2/2.

PROPOSITION 3.16. (a) Let f be convex, and suppose /(°°) — c°.

/ ( ^ ) l ^ ^
J'(x)

(b) Suppose Ijf is convex. Then

S CO -J

exp Γ— f(u)]du > exp Γ— f(x)] .
. ~~ f(χ) + f"(χ)lf'(χ)

Proof. Claim (a). Let ί τ = e x p ( - / ) . Then ^(00)^0 and
Fr = —f'F. Now / ' is monotone so

Claim (b). Let F = (1//') exp ( - / ) . Then F(oo) - 0 and Ff

2 ( - / ) So

- ^~F\u)du = F(x) .

Note. If / is convex and / ' is concave, then 1//' is convex.
This is the case for our function g. The concept of complete mono-
tonicity is relevant here: see § XIII. 4 of Feller [3].

The next lemma extends Corollary (8) of Freedman [5]. It
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provides a bound for binomial tail probabilities, in terms of g,
analogous to (3.15).

PROPOSITION 3.17, Fix ε > G. There is a δ > 0 such that
P(N > kp + m) is bounded between

(1 ± 6 ) 1 ί ^ L exp\-g(mfkp)kp\
v2π m

for all k, p and m satisfying

p < δ, kp > lfδ, V kp/ό < m < okpf m < δι/ k .

Proof. We break the tail probability up into two parts:

P{N > kp + m) - P, + P2 ,

where

Px - P{kp + m < N^kp + 2m} and P2 = P{N > &p + 2m} .

Later, we will show that P2 is negligible, but that

(3.18) P, ̂  - 1 J ^ 2 - exp [-flf(m/fcp)fcp] .
V2π m

First, some preliminaries. To simplify the notation, let

G(u) •=

Clearly?

(3.19) _ J L = G(m) is small relative to
\/2k

J G(m) is small relative to G(m) ,
\/2πkp v 2π m

because m is small relative to kp, by assumption. Likewise, in view
of (3.5)

(3.20) G(2m) is small relative to - L ! M
V 2π
- G ( m ) ,
V 2π m

because m is small relative to /bp, but large relative to Vkp. Next,
we claim

(3.21) Σ G(i) is bounded above by (1 + ex) ^-
ί=i»-M m

Indeed, G is monotone decreasing, so

Σ G(i) < \"G(u)du < _ _ 1 — Γ G ( m )
<-»t-i Jm g(m/kp)

b y (3.16). B u t
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kp/ kp

because m is small relative to kp, by assumption. This proves
(3.21).

We are now ready to prove part of (3.18), by estimating* P,
from above. Let v range from [kp] + m + 1 to [kp] + 2m, so Px =

= v). As (3.10) implies, Px is bounded above by

(3.22) (1 + ti-J~ Σ G(v - kp) .
V2πkp »

Because G is decreasing, the expression (3.22) is bounded above by

1 2m—1

In view of (3.19) and (3.21),

Pλ is bounded above by

( 3 2 3 ) ^ ^ exp {-g(m/kp)kp} .

We are now ready to prove the rest of (3.18), by estimating P2

from below. Indeed, as (3.10) implies P2 is bounded below by
(1 — ε4) times

(3.24) — L = , Σ G(p - kp) ̂  -yJ^ Σ G(i) .

The right side of (3.24) is T1-Ti — Γ3> where:

V/2πkp

-L\UgLG(m) by (3.16),

7\ = -jl-Gdm) = o \Y^-G{m) 1 by (3.19)
V2πk L TO J

^ (1 + 6ι)-ίvl!w.G(2m) by (3.21)
l/2π 2m

by (3.20) ,
L m
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on recollecting that Vkpjm is small by assumption. This completes
the proof of (3.18).

Our last job is to show that P2 is negligible by comparison
with Plm But

P2 = P(N >kp + 2m) ̂  G(2m)

by (3.6); now (3.18) and (3.20) can be used to complete the argu-
ment. Π

REMARK 3.25. Under the conditions of (3.17), P(N < kp — m)
can be bounded by the same expression. The argument is almost
identical, because (3.10) is symmetric around kp. The only difference
comes at the end:

P2 = P(N <kp- 2m) exp (~2m2/kp) by (3.8)

< G(2m) by (3.5) .

Many of our arguments use the local central limit theorem. We
state two versions for ease of reference. For the first version,
assuming only a finite second moment, see page 517 of Feller [3].
For the second version, assuming a finite third moment, see page
197 of Petrov [10].

Suppose (1.1), and E(Xl) < oo, and (1.6). Then uniformly in j,

( 3 ' 2 6 ) P(Sn = j) = — - * exp U . [(j - nμ)\σVΊι ]2} +
σv2πn 12 )

Suppose (1.1), (1.2), and (1.6). Then uniformly in j

(3.27) P Λ Q ., 1 _ ί 1P(Sn = j) - \ exp ~ [ ( i ~ nμ)lσVnY
σv2πn y 2

4* Proof of Theorem (1.8)* The first step in the proof is to
show that, with probability approaching one, the maximum does
not occur in zones II, III, or IV as defined in (2.1). This part of
the argument does not require third moments nor the full force of
(1.5). Thus, for Lemmas (4.1), (4.3), and (4.5), we assume (1.1)-(1.6)
with (1.2) replaced by E(Xl) < oo and (1.5) replaced by n —> °o and
k\Vn log%->oo. We begin with zone IV.

LEMMA 4.1. Let y be any positive number. Let M± be the
maximum of N3 — kp5 over zone IV, namely the set of j's satisfying
\j — nμ\ > σnm. Let θnk be the probability that M± > y(k log n)m/
nm. Then θnk —> 0 as n —> °°.

Proof. To begin with, θnk is bounded by the sum over j in
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zone IV of

- kpj > y(k log n)1/2/n1/%} .

By Chebychev's inequality, the last displayed probability is at most

y~2n1/2Pj/log n .

Summing over j in zone IV shows

Θnk <; (y~2ninβogn)'P(\Sn — nμ\ > σnVi) .

Using Chebyshev's inequality again,

P(\Sn-nμ\ > σnm) <z n~ι/ί.

So

θnk ^ y~2/log n . Π

We turn now to zone III. It will be convenient to abbreviate

(4.2) m =

This m appears in (1.7) and is the leading term in (1.10); it will
have some connection with the variable m in § 3.

LEMMA 4.3. Let 0 < A < ©o. Let MΛ be the maximum of Nά —
kpj over j in zone III, namely the set SΛ of j with AσnV2<\j — nμ\^
σnz/\ Fix any e with 0 < ε < 1. Then there is an A = A(ε) so
large that

P{MΛ > (1 - ε)m} • 0

as n and k tend to infinity, satisfying the growth condition
k/v/ n log n —• ©o.

Proof Let θ satisfy 0 < θ < (1/4)(1 - ε)2. Recall that py = P(STC - i).
In view of the local central limit Theorem (3.26), there is an A > 0
and a finite nγ such that j>,. < d\σV2πn for all j in SA provided
n > nx. From inequality (3.7),

(4.4) P{Nά > kpό + (1 - e)m) £ exp [ - 1 ( 1 ~ ε)2- — ^ — Ί .
L 2 fcpy + (1 — ε)mJ

We must now bound m"l[kpό + (1 — ε)m] from below. The
choice of A forces kpά S kθjσλ/Zπn. The g r o w t h condition on n and
k forces (1 — ε)m ^ kθ/σv/2πn eventually. Then,

m 2 ^ m 2 __ log n

+ (1 - ε)m 2kθ/σV2πn 2Θ
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and the right side of (4.4) is smaller than 1/n. Finally, P{MA >
(1 — ε)m} is bounded above by the sum over j e SΛ of

P{Nό > kpά + (1 - ε)m} .

This sum comprises at most 2σnm terms, each bounded by 1/n. This
proves (4.3). •

We turn now to zone II.

LEMMA 4.5. Fix A > δ > 0. Let M2 be the maximum of Nj —
kpj for j in zone II, namely the set S2 of j with δσV ni^\j—nμ\^ί
Aσ\/n . Let m be defined by (4.2). Then, for ε > 0 sufficiently
small,

P{M2 > (1 - e)m} > 0

as n and k tend to infinity satisfying the growth condition
k/\// n log n —> °°.

Proof. In view of the local central limit Theorem (3.26), there
is a o1 > 0 and a finite nx such that for n > nu

(4.6) Pj < (1 — d1)/σ\/2πn for all j satisfying \j — nμ\ > hσV n .

Choose ε positive with (1 — ε)2/(l — SL) > 1. Inequalities (3.7) and
(4.6) imply, after some algebra:

(4.7) PiN, > kPj + (1 - ε)m} < exp Γ-l-,9 J°£2L
L Δ 1 ~r (s7

where β = (1 — ε)2/(l — δ j > 1 by our choice of ε, and

g )/ > 0

by the growth condition on ^ and A;.

Choose β' with 1 < β' < β. For large w, the right side of (4.7)
is at most n~β'/2. Sum (4.7) over j in S2, comprising at most
2Aav' n terms, to see that

P{M2 > (1 - ε)m} < 2A<7V/5Γw-/s'/2 > 0 . Π

We now proceed to zone I. Fix δ with 1 < δ < 1/10. For
- c o <; a <: & <ς oo, let Jαδ be the set of j with | j — nμ\<δσV n and

(4.8) aσ\/2nllog n ^ j — nμ < bσ}/2n log w .
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These intervals are all finite and nonrandom; I_OQOO corresponds to all
of zone I. Let

Wab be the max of Ns — kpj for j in Iab .

To state the main result concerning zone I, recall zn(x) from
(1.10). As in (1.9), let Φ be the standard normal distribution func-
tion. We will now need finite third moments and the growth
condition (1.5).

PROPOSITION 4.9. Assume (1.1)-(1.6). Let —^ <* a <*b <. c<^
d ^ °°. Then

^zn(x) and Wcd^

converges to exp { — σ]/ 2 Q}, where

Q = [φφ) - Φ(a)]e~x2 + [Φ(d) - Φ(c)}e~y/2 .

The proof of (4.9) is a bit complicated. Here are some prelimi-
nary estimates.

LEMMA 4.10. The bounds given below apply uniformly to je
I-oooof and the "o" errors are uniform in j e I^ooco as w—>co.

(a) (i - nμ)2/σ2n < δ2 < 1/100.
(b) pj is bounded between

λ ( 1 ± α ) ί l ^i ( 1 ± α i ) ^ T i + o(
σv2πn L 2 σ2n JL V log n

where aδ = (l/2)δ2.
(c) 1/[1 — (1/2)(1 ± aδ)(j — nμ)2/σ2n] is bounded between

1 + I ( 1 ± bl)(J
22

where bδ is a function of δ only and bδ — O(δ2) as δ —> 0.

Note. The notation in (b), although not standard, is convenient
for our purposes and will be used throughout. To spell (b) out,
there is a sequence εn > 0 with εnlogn—>0, such that for all n,
and all j in JLoooo, the probability pά is bounded above by

σv2πn\- 2 σ~n

and below by

4 L 2
—4—Γl | d + a β ^
σv2πnL 2 σ~n
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Proof. Part (a) is trivial, and then (b) follows from the local
central limit Theorem (3.26), using the estimate

l~x<e~x<l-x-\- —x° .

Here, x = (j - nμ)2/2σ2n < (l/2)<52, so

x - -la;2 = (l - —x)x > (1 - — δ2 )x .
2 V 2 / V 4 /

Part (c) follows from the identity

i _ x - * + * + 1 _ x u

The probability in (4.9) will now be estimated from above and
below. An upper bound derives from Mallows' inequality given in
(3.1):

(4.11) The probability that Wab ̂  zn(x) and Wcd <; zn(y) is at most

. Π λ ^ ^ Π Xj(y)

where

\ (x) = P{N3- ̂  kPj + zn(x)} .

The rest of the upper-bounding is very similar to the lower-
bounding, so details are omitted.

The lower bound will be derived from Lemma (3.2). In that
lemma take

Aj = {Nj ̂  kpj + zn(x)} for j e Iab

= {Nj ^ kpj + zn(y)} for i e Icd .

To define Gjf let

(4.13a) if̂  be the set of i with nμ — δαl/ n < ί ^ j ,

(4.13b) #. = VΣ
(4.13c) G, = { Σ JV« > Λflrj - M} ,

ί e K j

where

(4.13d) M= (klogn)1''2 .

Since I_0OOO includes at most 23σnm indices, (4.10b) shows

(4.14) gj < 0.85 for all j e/_O0OO, for all large n .
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Lemma (3.2) also involves σ-fields $3J defined as follows:

(4.15) %3 is the σ-fleld spanned by the Nt as i ranges over K3 .

To apply Lemma (3.2), we must estimate P{G3).

LEMMA 4.16. Define G3 by (4.13). Then the sum of 1 - P(G3)
over all j e I^^ tends to 0 as n and k tend to infinity satisfying
(1.5).

Proof. Clearly, ^ieKjNi is binomial: the number of trials is k,
and the success probability is g3. From (3.8),

1 - P(G3) £

Replace g3 by the upper bound (4.14): eventually,

1 - P(G3) ^ e x p ( - — Mr/kδ) = n~1/2δ

for all ie/^co. But /„«,«, only comprises O(n]/2) terms. Π

We are now ready to establish the basic lower bound.

LEMMA 4.17. Define g0 and M by (4.13), and zn(x) by (1.10).
Let Nj be binomial, with success probability p5 — Pj/(1 — g3-^ and
the number of trials k'jf the integer part of fc(l ~ g3_x) + M. Let

X3{x) - P{N- ̂  kp3 + zn(x)} .

Then P{Wah ^ zn(x) and Wcd ̂  zn(y)} is bounded below by

Π λΛaO II Uv)~ Σ \ι-P{Gό)}.
i t lab ΐ e J c d ί 6 i _ M O O

Proof. Given g ^ , as defined in (4.15), the conditional distribu-
tion of N3 is still binomial; the conditional success probability is
p], as defined above; the number of trials T3 is an g^-measurable
random variable:

T, = k - Σ Nx .

On G3_19 however, T3 ^ k'3. So

P{N3 ^ kp3 + zn(x)\dj-ι] ^ λ^αj) on Gy_1 :

heuristically, the more you toss the coin, the more heads you get.
Lemma (3.2) completes the proof. Π

We must now estimate λ̂ . Here are some preliminaries.
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LEMMA 4.18. Define Xβ as in (4.17). So,

Xj(x) = P{Nf

j rg k)p'5 + h}

where

h = zn(x) + kpj - k'jp'j .

The bounds and error terms given below are uniform over j e J_oooo;
the "0" and α o" are as k and n approach infinity, satisfying con-
dition (1.5) that k\V n (log ^) 3 -^oo.

(a) k'jp'j is bounded between

2σv2πn L 2 <rw JL V log n >A

with aδ of (4.10b).

(b) h = zn(x)[l + O(^"1/4)]
(c) h^oik^f
(d) h2lk'3Pj is bounded between

log Ti, - 2 log log n + x + — ( ^ ' nμ)*
2

(1 ± 26g)2 σ2^/log n

with the bδ of (4.10c).
(e) Recall the definition of g{x) at (3.3).
Then gih/k'j p'^k'jp'j is bounded between

i - log n - log log ̂  + l χ + -1(1 ± 2ba)(j~nμ)2 + o(l) .
2 2 4 cr2w/logw

Proof. Part (a). From the definitions of p) and fcy given in
(4.17),

(4.19) k'jV = fcpίl + , Π

M ~ ^
L k(l - g,-̂ )

where 0 ^ 61 ̂  1. By (4.13d) and condition (1.5), (M - θ)/k = o(l/
logπ); and ^ < δ eventually, by (4.14). Then (4.10b) completes the
argument for part (a).

Part (b). Recall h as defined in the statement of the lemma.
Continuing from (4.19),

_ A _ _ i ^ _(M-Θ) _ Pj = 0 ( ^_ 1 / 4 )

as in (a), using the Definition (1.10) of zn(%).
Part (c). This is immediate from (a), (b), and condition (1.5).

This is the first time that the full force of (1.5) has been used.
Part (d). Using (a), (b), and (4.10c), /r/%> is bounded be-

tween
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(log n - 2 log log n + xίl + ~(1 ± bδfi ~*μ)2Jl + o(—i-)Ί .
L 2 σ2n JL Wogn/J

(
Wog

Of course, (2 log log n — x)/log n <bδ eventually, proving (d).
Part (e). This follows from (c) and (d), by using inequality

(3.4). •

The proof of Proposition (4.9). We pick up the argument from
(4.17). The problem is to put a lower bound on Πiezα6^ί(^)> "the
other factor being similar. Defining h as in (4.18),

1 - Xj(x) = PIN; > npά + zn(x)}

= P{N} > ftjpi + M .

Fix an ε > 0. Then Proposition (3.17) implies that eventually, for
all j e I_oooo, 1 — λ/x) is bounded between

(4.20) (1 ± ε)(/b>;/2τr)1/2-i exp [-jF(Λ/fcJP/)^i] •
rί

"Eventually" means for all k and n, with n and h\Vnλogn suffici-
ently large.

We pause to verify the conditions of the lemma being appealed
to: p) = pάl(l — gό_^ is small by (4.10b) and (4.14); k)pr

ό is large by
(4.18d); h%)k)p) is large by (4.18d); fc/fcjpj is small by (4.18c); and
hjkm is small by (4.18b). Thus, the bound (4.20) is established.

The exponent in (4.20) was estimated in (4.18e); the factor
k)p) in (4.18a); and the factor h in (4.18b). We conclude that even-
tually, for all j in -L^α,, 1 — \3 {x) is bounded between

(1 ± 6)(1 ±

times

- n&2 \
}/2σ2nβogn

e X Ώ ί JLπ + 26
y\ 4V ~ δ

where cδ is a function of δ only and eδ = O(d2) as δ ~> 0.
Arguing as in Proposition (2.2), we get a lower bound for the

probability in (4.9), of the form (1 — 3ε)(l — dδ) exp ( — Qδ), where

Qδ = αi/Te-^IΦίΛδ) - Φ(fδa)]

/Ύ - Φ(fδc)]

with dδ = O(δ2) and / a = 1 + O(δ2). It is at this point that the
uniformity in j was critical.

An upper bound of similar form can be obtained by essentially
the same argument, starting from (4.11) instead of (4.17). Then
the proof can be completed as in (2.2). Π
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Our last main job in proving (1.8) is showing that max (Nά — kpό)
is assumed at a unique index j , with probability approaching one
as n and k\V n (log rif tend to oo. The following heuristic discus-
sion may make the argument easier to follow. Inspection of (1.8)
suggests that the maximum is likely to occur only for j's within
O(nβogn)1/2 of nμ. Call these the critical j'a.

(4.21) There are O(n/\og n)1/2 critical j'a .

Recall m from (4.2). The range of likely values for the maximum
is from

Λ _ 2 log log n _ _±_γ±J1 _ 2 log log n
V l l ' V 2 l

γJ1
log n log n ' V 2 log n 2 log n 1

to

Λ _ 2 log log n + _ l _ V ^ m Λ _ 2 log log n + _ b _ \
\ log n log n / \ 2 log n 2 log n /

Call these the critical values. In what follows we write an ~ bn if

\im ajbn > 0 and ίίϊnαjδn < oo.

There are the order of m/log n ~ kmn~lfi([og n)~m critical
values for the maximum.

Each of these critical values for the maximum corresponds to some
value i for an Ns of around

kp. + J ι _ 2 log log

= kpj + (fcPi)1/2(log n — 2 log log n)1/2 .

Now Nj — Up,- is essentially normal with mean 0 and variance kp^
k\V n , so

P(N. = i) = 1 exp Γ - A <*

~ fc~1/2w1/4 exp log n + log log n

= fc"1/8Λ-1/4 log n .

Furthermore, the N$ are nearly independent. The chance that the
maximum occurs at two different indices is bounded by the sum,
over the critical j , f, i and V satisfying

(4.23) i - kpj = V - kpr

of
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P(N3 = i and Nr - i') ~ λr%-1/2(log nf .

The number of critical ί's was estimated in (4.22): to each, there
corresponds at most one V by (4.23), "at most" because V has to be
an integer. The number of pairs jf f is O(n/logn) by (4.21). So
the chance that the maximum occurs at two different indices is of
order

n)'1 fc1/2^~1/4(log n)~m AT1**-1/2(log ™)2

This last quantity tends to zero because of the growth condition
(1.5).

Returning to rigorous argument, recall zn(x) defined in (1.10)
and Iab defined by (4.8). The main estimate is the following.

LEMMA 4.24. Assume (1.1)-(1.6). Fix positive finite numbers a
and δ. Then, uniformly over pairs of indices j Φ j ' in I_aa, and
pairs of integers i, V satisfying

(4.25) zn(~b) ^ i - kpά - V - kpr ^ zn(b)

we have

(4.26) P(N3 = i) = O(k-1/2n-iμ log n)

and

(4.27) P(JVy, = VI Nj = i) = 0{k-mn~m log n) .

Proof. The first assertion (4.26) follows from Lemma (3.10), the
requisite estimates for pό being given by (4.10). To make this
valid, the conditions of (3.10) must be verified. Then, one argues
from (4.25) and (1.5) that (i - kpβf = o(kp,)\ so

(i k

But, using (4.22) again,

(i - kpsγ = ^ — [ l o g n - 2 log log n + 0(1)] .

And by (4.10),

kPj= i + 0 (
5 σV2πn L Vlog

So

g[(i — kpj)lkpύ]kpύ = —logn — log log n + 0(1) .
Li
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We omit the other details in the proof of (4.26).
For the second assertion (4.27), given N3 = i, the conditional

distribution of Nό> is binomial with success probability p = pyj
(1 — pQ>) and number of trials k — k — i. Some preliminary estimates
are needed before appealing to Lemma (3.10). All " 0 " and "o"
estimates are uniform over j Φ jf in I_aa and i, ίf satisfying (4.25),
as n and k\V n (log nf tend to infinity. We will show that

(4.28) kp = kpjf[l + o(l/log n)]

(4.29) (i' - kpfjίcp = log n - 2 log log n + 0(1) .

Assume these bounds for the moment. Another application of
Lemma (3.10) shows that P(Nr = ϊ\N3 = i) is of order

- — (if - kp)2/kp~] .

Now use (4.28) and (4.29) as before to complete the proof.
We now prove (4.28) and (4.29). Let

θ = ίcp - kpr = (kp, - i)Pj'/(l - p3) .

Abbreviate h — i' — kpy — % — kp5. Then (b) of Lemma (4.10) implies
θjh = —Pi'Kl — Pi) = 0(\lV~n). Condition (4.25) makes h of order
k1/2n-m(logn)m, and then θ = O(k1/2n-*''\logn)1/2). Finally kpr is of
order k\V n , again by (b) of Lemma (4.10). To summarize:

(4.30) θ - 0[kmn-z 4(log ^) 1 / 2], Λ « kmn~ι/\\og n)υ\ kpr

Now we can prove (4.28):

kp — kpjr + θ

= kpjt[l + o(l/log n)] .

To prove (4.29), note that V - kp = h - θ. Now

(if — kpfjkp = (h2 — 2θh + Θ2)jkp — h2jkp + o(

From (4.25)

^2 = σJ?2π% [log w - 2 log log n + 0(1)] .

In view of (4.10),

kp = k [1 + O(l/log w)] .
σi/2τr^

So
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h2/ίcp = log n - 2 log log n + 0(1) . Π

We can now prove the uniqueness assertion in (1.8).

PROPOSITION 4.31. Assume (1.1-1-6). Then max,- (Ns - kp3) is
assumed at a unique index j , with probability approaching one.

Proof. We first establish:

Given ε > 0, there are large, finite numbers a and 6, such
(4 32) t h a t e v e n t u a l l y > except for probability ε, max,- (Nf — kps) is

assumed only for indices in J_αα, and is between zn{—b) and

"Eventually" means for sufficiently large values of n and k/n1/2(\og nf.
Indeed, for any δ, except for probability less than ε/5, the maxi-
mum over zone IV is eventually smaller than zn(—b) by (4.1).
Likewise for zone III by (4.3), and zone II by (4.5). As a matter
of notation, zone I is I..*,*, and can be dealt with by (4.9). There
are a and b so large that eventually, except for probability ε/5,

s»(-&) < m a x {Nj - kps for j in !_«,«,} < zn(b) .

Finally, choose a so large that eventually, except for probability
ε/5, Nj — kpj < zn{ — b) for all j e I_OOΰO\I_aa. This completes the proof
of (4.32).

The next two estimates are easily checked.

(4.33) The number of pairs (j, f) with f Φ j in I_aa is O(n/logn).

The number of integers i with zn( — b) <; i — kpά < zjjb) is at

(4.34) m o s t

KΦ) - zn(-b) = O[kmn~u\\og n)~1/2] .

Now, Lemma (4.24) and relations (4.33-34) enable us to estimate the
chance of finding two distinct indices f Φ j in I_aa with N3- — kps =
Nj' — kpj> in the critical range from zn( — b) to zn(b). Take the
number of pairs j Φ f in I_ββ, and multiply by the number of
integers ί with ί — kpό in the critical range. Each i is a possible
value for Njt and associated with it is at most one possible value V
for JVy> satisfying i — kpά — if — kpQ>. Then, we multiply by

i'lN^i). The result is O[k-1/2n~m{logn)1/2]-*0. Π

The proof of Theorem (1.8) can now be given.

Proof of Theorem (1.8). As Proposition (4.31) implies, Mnk is
assumed at a unique location Lnk, with probability approaching one.
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Lemmas (4.1), (4.3), and (4.5) imply that with probability approaching
one, Lnk is in zone I. Now, Proposition (4.9) implies (1.8) by the
same argument which showed that equation (2.4) implies Proposition
(2.2). •

5* Moment assumptions* We have been assuming (1.2) that
E\Xl\ < oo. An argument sketched later in this section will prove
Theorem (1.8) under the weaker hypothesis

(5.1) JSKfPog (1 + |Xχ|)]2+ί} < oo for some δ > 0 .

However, if only

(5.2) EUX^WogQ. + \Xί\)Y) < oo for some δ with 0 < δ < 1 ,

the conclusions of the main Theorem (1.8) become false. This is
demonstrated by Theorem (5.4) below, which gives the correct asymp-
totic formulae for a particular random variable satisfying (5.2) but
not (5.1). The present discussion leaves unresolved the case
jE{|JEί|2[log(l + I-ΣΊI)]1"} < oo for some δ with 0 ^ δ ^ 1.

Theorem (5.4) uses an Edgeworth-like correction in the local
central limit theorem for a random variable without third moments,
given in (5.23). The techniques used are similar to those in Pitman
[11]. Some related work can be found in Cramer [1] or Takeuchi
and Akahira [12, 13].

We now define a class of probability distributions on the integers.
Let a > 1 be given. Let q = qa be the symmetric probability on
the integers with

(5.3) ) = δ/[j3(log \J\)a] for j = ±2, ± 3,

6 is chosen so that Σ Q(j) = 1
3

As for Theorem (1.8), let σ2 be the variance of q. Let Xl9 X2,
be independent with common distribution (5.3), and write Sn = J5LΊ +

• + Xn. Take k independent copies of <Sn. Let Ns be the number
of these sums which are equal to j . Let Mnk = m3.xi[Ni—kP(Sn = j)].

THEOREM 5.4. Let Xl9 X2, be independent, having common
distribution (5.3), with 1.5 < a ^ 2. Let c = b2a~1/(a — 1). Define

(5.5) zn(x,a)= J—^—l/log n + c(log nf-a - 2 log log n + x .γ σv 2πn

Then, with probability approaching one, Mnk is taken on at a
unique location Lnk, and the probability that
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Lnh < yσ}/2n/log n and Mnk < zn(x, a)
converges to

Φ(y)exp[-σv/Ye-χ/2]

as n and k tend to infinity satisfying the growth condition (1.5).

Note that q in (5.3) has a second moment, but just barely. In
particular

is finite provided δ < a — 1, but infinite for δ ^ a — 1. Note too
that zn(xf a) defined in (5.5) is different from zn(x) of (1.10). When
a = 2, the difference is not so dramatic—a constant under the square
root sign. But when a < 2, there is an extra term going to infinity,
namely c(logn)2~a.

To prove (5.4), sharp estimates of P(Sn = j) are needed. This
is done by approximating the characteristic function of Xx. We
begin with some preliminary estimates. The first lemma is implicit
in Pitman [11].

LEMMA 5.6. Suppose the real numbers un are nonnegative,
nonincreasing and (weakly) convex:

un ^ 0, un ^ un+1, un - un+1 ^ un+1 - un+2 .

Suppose too that un-+0 as n —> <*>. Let S be the (conditionally con-
vergent) sum u0 — ut + u2 — u3 + . Then

—u0 ^ S <*u0 — —uL .
Δ Δ

Proof. Clearly,

S = (u0 — ux) + (u2 — Us) + •

^ (ux — u2) + (u3 — u4) + by convexity

= uo-S.

This proves the first inequality. For the second,

S = u0 — (ux — u2 + u3 — ) <; u0 — —%! ,
Δ

because uγ — u2 + uz — ^ (1/2)^ by the first inequality applied
to the sequence ul9 u2, - — . Π

The next lemma is at the heart of the approximations in this
section. It is abstracted from Theorem 2 of Pitman [11]. We work
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with conditionally convergent Riemann integrals. Such integrals
are denoted by using an arrow over the integral sign.

LEMMA 5.7. Let H(x) be a convex function on [0, oo) which
decreases to 0. Then, for any t > 0,

(5.8) — Io ^ tΓ°° H(x) sin (tx)dx ^ Io - — I,
2 Jo 2

where

(5.9) Io = I H(x/t) sin xdx and Ix = I H[(x + π)/ί] sin xdx .
Jo lo

Proof. By changing variables, it is enough to do the case t = l.
Abbreviate hά(x) = H(x + jπ). Split at multiples of π to see that
the integral to be estimated equals the conditionally convergent sum

oo Γ(j+l)π oo rπ

Σ \ H(x) sin xdx = Σ \ ( —lyA/a?) sin α ώα; .
3=0 Jjπ 3=0 Jo

Group the terms as (uQ — ux) + (u2 — us) + to get

fc=0 JO

Because £Γ is monotone decreasing, h2k ̂  h2k+1: so the last sum is
absolutely convergent, and we can take Σ inside the integral by
Fubihi's theorem. As a result,

S -+OO Γπ oo

H(x) sin xdx = I Σ [Ktfa) — ̂ 2fc+i(̂ )] sin xdx .
o Jo fc=o

Now H is convex, so for each x the sequence hQ(x)f hλ(x), is
convex. By (5.6),

jUx) ^ Σ [h*k(x) - λ2*+i(«)] ̂  Ao(») ~ \Ux) .

This completes the proof. •

We will now apply this result to H's of order l/(log#)α, at
infinity, and evaluate the corresponding integrals Io and li in (5.7).
A calculus estimate will be needed.

LEMMA 5.11. Let a be a positive number and x a real number.
Then,

(a) 1/(1 + x)a > 1 - ax for x > - 1 .
(b) 1/(1 + x)a < I-ax + 2a+'a(a + l)x2 for x ^ -1/2.
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(c) 1/(1 — x)a < 1 + kx for 0 ^ x 5j 1/2, with k finite but depend-
ing on a.

Proof. Expand 1/(1 + x)a in a Taylor series with remainder. •

LEMMA 5.12. Let a be a positive number. Then, as ί—>0+,

and

L(los '-ΨF sin xdx

are both equal to

Proof We will only do the first integral, the second being
similar. Write the first integrand as

Now x ^ V t, so (log x)/(\og 1/ί) ^ —1/2, and (5.11a~b) can be used
to estimate the middle factor in the display. The integrals which
result are evaluated as follows:

Γ sin xdx = 2 + O(ΐ)

sin^llogxl^α; < co for j = 1 or 2 . •
0

The following calculus facts are needed to estimate the tails of
the distribution (5.3).

LEMMA 5.13. Let a > 0 and β > 1.

(a) Define

/(α, β9 u) = J ^ -

f(a, βf u) is bounded below by

Oί . . - S + l / 1 y\-a~l

Likewise, f(a, β, u) is bounded above by
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Proof. Claim (a). Clearly,

/(α, β, u) = - l - w - ^ ^ o g )̂-« - j 3 ^ / ( « + lι A w) .

In particular,

(5.14) /(α, A w) ^ -L-y-fi+Xlog u)~« .

Using (5.14) with a + 1 in place of α,

A u) ^ ^ ( l o g u) 1

/3 — 1 {β — 1)

Claim (b). Clearly, ^"^(log x)~α is monotone. So, the sum in
(b) is bounded between /(α, βf n) and /(α, β, n) + ^"^(log w)~α.

Claim (c). This is clear. •

Of course, the estimates in (5.13a-b) can be developed into
asymptotic series.

We now begin to investigate the probability density q defined
by (5.3). The following repeated integrals of the tail of q will be
useful.

LEMMA 5.15. Define q(j) and b by (5.3). For x > 0, set

F{x) - Σ
\j\

Then, as x —* °°,

(a) F(x) = bx~\\og x)-a + O[χ-\log xY"1]

(b) G(x) = bx~\log x)-a + O[χ-\log x)-a~ι]

(c) H(x) = — h — (log x)-"+1 + O[(\og x)-°] .
a — 1
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Proof. This is immediate from (5.13). •

Note. Claims (b) and (c) follow from (a). In fact, Theorem
(5.9) and the supporting results (5.17-20-23) hold provided the X's
are symmetric, interger-valued, aperiodic and satisfy (5.15a), namely,

P(\X\ >x) = bχ-2(logx)-a + O[αr2(log x)-*'1]

as x-^oo, It is the precise bound on the remainder, namely
O[αr2(log#)-α~1], which enables us to push the calculations through.
In this generality, there is no connection between a and δ, or σ2 =
VarX; the latter is finite by our condition on P(\X\ > x).

Let θ(t) be the characteristic function of q. Since ,q is sym-
metric,

(5.16) θ(t) = Σ cos (jt)q(j)
3

The next lemma gives an approximation for θ. Recall that σ2 is

the variance of q: namely, σ2 = Σ i J2Q(J)-

LEMMA 5.17. Fix a > 1. As t tends to 0,

0(ί)= 1 -i-<72£2 + r ( ί )
Δ

where

and b is defined in (5.3).

Proof. By symmetry, it is enough to do the case where t—>0+.
Integrating by parts three times gives

(5.18) θ(t) = l-±-σΨ + r(t)

where

r(ί) = fV°° sin (tx)H(x)dx ,
JO

and H is defined in (5.15). Clearly, H is convex and H(0) <
because σ2 < oo. Now (5.7) shows that

(K iq\ f2—T < τ(tλ <

with Jo and ^ defined as in (5.9). To approximate Jo, break the



THE MAXIMUM DIFFERENCE BETWEEN 319

range of integration into two zones [0, VΎ\ and [l^Ί^π]. For the
first zone,

0 ^ [VtH(x/t) sin xdx < H(0) [V*xdx = —H(0)t .
Jo Jo 2

For the second zone, use the approximation (5.15c) for H{xjt), along
with (5.12). Combining the two zones we have:

The same estimate for Iλ can be obtained by the same argument.
Substituting into (5.19) completes the proof. •

We will use Lemma (5.17) in the following form:

LEMMA 5.20. Define q and b by (5.3). Let θ(t) be the character-
istic function of q defined in (5.16). Let σ2 be the variance of q.
Then, as t —> 0,

exp(-i-<72£2)0(£) = 1 + 7(ί) + p(t)

where

t l 0 g

a — 1 \ \t\
and

The next two facts are well known, but are recorded here for
ease of reference.

LEMMA 5.21. Let zό and z) be complex numbers of absolute
value at most A. Then

i i
£An£\zs-z's

LEMMA 5.22. Let n be a positive integer, and z a complex
number. Then

- l - nz\ ^ l

We are now ready to give an approximation for the probability
density of Sn. We will abbreviate the normal density with mean 0
and variance σ2 by φσ:
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Also, we introduce the Her mite polynomial:

KM = (xlσf - 1 .

PROPOSITION 5.23. Fix a > 1. Let Xlt X2, be independent
with common distribution (5.3). Let Sn — Xι

J

Γ + Xn. Then, as
n —> c o ,

(5.23) i / ¥ P(Sn - i) -

σ2 - Var X, ,
jL // U-l

sn = ίlogV/ n ) with b as in (5.3) ,

α — 1/ \ /

and

d = min (α, 2α — 2) > α — 1

riTO = O(log w)~d uniformly in j .

. Similar techniques would give more terms in an Edgeworth-
like expansion.

Proof. Our argument is adapted from § 16.2 of Feller [3]. By
the Fourier inversion formula,

(5.24) φσ(x) = — Γ exp (-itx) exv(-—σψ)dt .
2τrJ-- V 2 /

Differentiate twice with respect to x:

(5.25) hσ{x)φa(x) = - — Γ exp {-itx)t2 exp ί-l-σψ)dt .

Likewise,

P(Sn = i) - J - Γ exp (-Uj)θ(tydt .
27Γ J - *

Changing variables,

(5.26) i / ¥ P ( S n = i) = - ^ ί ^ * exp(-iίi/ι/ϋ)Θ{tlVlί)ndt .

Combining (5.24-25-26), we have

n = i) - φσ(j/v/'n) + 6nφσ(j/\/Ίt)hβU/v/'n)
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where

with

(5.27) ψn(t) - ΘWVUY - (1 + enf)

and

J2 = - - M exp(-iti/i/^)(l + εnt
2)exv(-~—σψ)dt .

2Tϋ J\t\>πVn \ 2 /

Clearly,

\J*\ £-2

so J2 is negligible.
Likewise,

(5.28) l / j ^ - L p \ψn(t)\dt.

We split the interval of integration in (5.28) into three sub-intervals:

Blf the set of t with | ί | ^ nm

R 2 y t h e s e t o f t w i t h nm <\t\^ 8n1/2

R8, the set of t with δn1/2 < 11 \ ̂  ττ^1/2 .

We will choose 3 > 0 later.
Consider R3. The distribution q(j) of (5.3) is aperiodic, so

supι t |>a |0(t)| = λ < 1. Of course

T + (1 + e n ί 2 )exp(—| α2

So the contribution from iϋ3 to the integral in (5.28) is at most

XnV~n +\ (1 + enί
2)exp (~-~σψ)dt .

This is negligible.
Next consider iϋ2. Using (5.17), we may choose 3 > 0 so small

that

< 1 - —σV < exp (-±-σW)
4 \ 4 /

σV < exp (
4 \ 4

for |w| < δ. This fixes the δ defining R2. In particular,
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\θ(t/v/n)\n<ex'p(~σ2t'

for all t in R2. As a result, the contribution from R2 to the integral
in (5.28) is negligible.

We now show that the contribution from Rx to the integral in
(5.28) is O(log nYa + O(log n)2~2a. Let

βn(t) = exp (±-σΨln)θ{tl\/Ίϊ) - 1 .

Recall the definition of ψn from (5.27). Clearly

(5.29) ψn{t) = {[1 + βn(t)Y ~ 1 ~ 6n

Recall 7 and p from (5.20). As that result shows,

(5.30) βn(t) -

Use (5.20) again: there are positive, finite constants Kt such that
for all t in Rλ

(5.31) I np{tl\/~n)\ ^ Kjb*/(log n)a

and then

(5.32) \nβn(t)\ <̂  K2f/(lognY'1

so

(5.33) \nβn(t)\ ^ — σΨ for all large n .
4

We are estimating

Using (5.29), (5.30), and the triangle inequality, we have

t/i* ^Ja + Jb + Jc

where

Λ = if-ί I np(t/vΊi)\ exp (-i-σ2

2ττ JΛI \ 2

= -^-t l[l + /3«(ί)]n - 11 + nβn(t)] I
2ττ JΛ

V 2

We estimate Jα, using (5.31):

I nΊ(t\Vn ) - εnf | exp f ^
2π JΛI V 2
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J. ^ —(log n)- (ί2exp (~—σψ)dt
2π i \ 2 /2π

= O(log n)'a.

We estimate Jh, using (5.22):

III + β»<ί)] - 1 - nβn(t)\ ^ \
Δ

In view of (5.32-33), this bound is at most

— Ki(log nf-'Ψ exp (—σΨ

So

= O(log

4 exp (-±-σ
\ 4

Finally, we estimate Jc. This is more delicate, and it is con-
venient to treat two zones separately. Let

Rt be the set of t with 1 < | ί | ̂  nm

Rϊ be the set of t with | ί | ^ 1 .

So Rx = Λί U Rϊ. Using the definition of 7 in (5.20), and the defi-
nition of εn in (5.33), the contribution to Jc from Rt is

(5.34)
2π a - 1 (log K w

times

(5.35) [

The integrand in (5.35) can be estimated by (5.11c), because |<| <
nm in R19 so log |ί |/logi/"¥< 1/2 in Rx. Hence (5.35) is at most

K
\ (log\t\)t2exv(-l-σψ)dt.
Jiίi>i \ 2 /log v n •

This is O(log n)~\ Thus, the contribution to Jc from Ri is at most
O(logw)~Λ Likewise, the contribution to Jc from Rϊ is the factor
(5.34) times

?-
log V n J

By (5.lib), this is at most

f exp (-—<τ2ί2)ώί .
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This too is O(log n)~\ Thus, the contribution to Jc from Rr is also
O(logn)-a. •

We are now in position to finish the proof of (5.4). The argu-
ment is very similar to the proof of Theorem (1.8) and we just
indicate the changes.

Proof of 5.4. The bounds on the maximum deviation in zones
IV, III, and II, as given in (4.1), (4.3), and (4.5) go through without
change. The estimates used in (4.10) are valid as stated, except
that (4.10b) becomes:

Pi = P(Sn = j) = — J L — ^ , where
σv2πn

(5.36) πjn = i __ [i + O(δ2)]j2/(2σ2n) + —— (log VΊiT*
a — 1

uniformly in j e zone I; the "O(δ2)" is uniform in j and n. This
follows from (5.23). Indeed, since j is confined to zone I, f/n2 =
O(δ2), and

)] = 1 - [1 + O(W/(2σ2n) .

We must now multiply by

l - -5—(log VHγ~«(-JL- - I ) .
a — 1 V 2σ2n 1

We get

where

- [1 + 0{82)]fj2σ2n + — — (log l / ^ ) ^ 1 + T
a — 1

-J

because α > 1; and T can be merged into the lead term of πin.
Since α ̂  2,
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d = min (α, 2a - 2) = 2a - 2 ,

accounting for the error term O(log n)2~~2a in πjn. Instead of (4.10c),
we must estimate

l/πΛi = 1 + [1 + O(δ>)]f /(2σ2n)

b •(log V n Y~a + O(log n)2~'2a ,
a — 1

the higher powers of the lead term merging into the O(<52), because

for jezone I,

r/2σ2n) — O(dή-j2/2σ2n .

Lemmas (4.16-17) go through as stated, with 2Λ(#) replaced by
«Λ(a?, α). In (4.18a), the bound on fc^ is

a - 1 (log

In (4.18b), «n(α;) should be replaced by zn(x, a). There is no problem
with (4.18c). Remarkably enough, the bound on h*lk)p's in (4.18d)
goes through unchanged, with μ = 0, and some different bδ — 0(S2).
It is here that we use the condition a > 1.5, as well as the defini-
tion of the constant e in (5.4). In essence, k2 and k)p) have the
same lead factor k/σv/2πn, which cancels in h2fk'3 p'3 , leaving the
product UVW, where

U = log n + c(log nf'a — 2 log log n + x

v = l + [l + o(S2)]-il- - - ± - . — 1 _ + o(iog Λ)8-8-

2σ% α — 1 (log i/ w )

W=l + o(l/log w) .
The factor W can be ignored. In multiplying out UV, the term

logn—ϊ— i = — - -2-1-A-7(logτzΓα

α — 1 (log v n Y 1 a — 1
cancels the term

because c was chosen to be 2a~1bj{a — 1). Furthermore,

CΛO(log^Γ2α = o(l) ,

because we imposed the condition a > 1.5, so 3~2α < 0.
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The remaining arguments used in (1.8) go through with only
minor changes. •

Finally, we indicate why Theorem (1.8) continues to hold when
the third-moment condition (1.2) is replaced by the log-moment

condition (5.1). Let

Fix) = P{Xι > x) for x ^ 0

= P(Xί <x) for x < 0 .

By Chebychev's inequality,

(5.37) F(x) = O[x\log I x I)"2"5] as x > ± oo .

Let

G(x) = \°°F(u)du for x ^ 0

= Γ F(u)du for x < 0 .
J_oo

Using (5.13),

(5.38) G(x) = Ofl^l-^log |x|Γ2-δ] as a? > ±oo .

Let

H(x) = ^G{u)du for α? > 0
Jx

S x

G(u)du for x < 0 .

Using (5.13) again,

(5.39) fί(α?) = O[(log | xIΓ1"5] as α? • ± oo .

Now, if Θ{t) is the characteristic function of Xu and μ = E(Xύ, we
can argue as in (5.17) to show that

θ(t) = 1 + iμt - i-JS?(JCί)t8 + r(ί)

where as t —> 0,

Consequently, by an argument like the one used for (5.23) but
without the Hermite polynomial,

(5.40) VϋP{Sn = j) = φ.[j - nμ] + O(log n)'1-5 ,
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where σ2 = Var Xt. The approximation (5.40) can be used in place
of the local central limit Theorem (3.27) in proving (1.8). An
approximation similar to (5.40) based on fractional moments (rather
than log-moments) is given by Ibragimov [7].
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