
PACIFIC JOURNAL OF MATHEMATICS
Vol. 100, No. 2, 1982

THE SATURATION OF ^-ANALYTIC RINGS AND
TOPOLOGICAL EQUIVALENCE OF ASSOCIATED

ANALYTIC SET GERMS

ULRICH DAEPP

The objective of this paper is to adapt the theory of
saturation as developed by Oscar Zariski to the case of
/̂ -analytic rings. For the most part k is an algebraically
closed field of positive characteristic. We think that satu-
ration can be helpful in the definition of equisingularity.
The results beneath show that some necessary conditions
for such a task are fulfilled in this particular case. We
do however not go so far as to actually define equisingu-
larity.

In § 1 we give definitions and some results concerning ^-analytic
rings and their associated analytic set germs. In § 2 we apply the
concept of saturation as defined in [18]. In particular, we show
that under certain conditions—which can be met in our framework—
the saturation of a &-analytic ring is defined and is again A -analytic.
In § 3 we show the topological relation between the analytic set
germs associated with a ^-analytic ring and its saturation, respec-
tively. This generalizes the results of a paper by A. Seidenberg
[17]. There the same theory is developed in the case Jc = C. In
the last section we get some partial results of showing that the
multiplicity of a ^-analytic ring and its saturation are the same.
However, some restrictive conditions have to be put on the ring.

Concepts and notations not defined explicitly follow those used
by Zariski and Samuel [20] and [21].

This paper contains part of my thesis. I wish to thank Pro-
fessor W. E. Kuan for suggesting the topic and for his continued
encouragement.

I wish to thank the referee for his or her helpful suggestions
which lead in particular to a better proof of Lemma 2.4.

1* Preliminaries* If k is a field with a nontrivial complete
valuation, then k[[Xlf - —, Xn]] denotes the ring of formal power
series over k in n variables, k[{XX' , XJ] denotes the subring consist-
ing of all convergent power series, see [1] p. 7. By an analytic ring
over k we mean a fc-algebra which is the fc-homomorphic image of
some convergent power series ring with coefficients in k. A local
ring A is called /^-analytic if it contains a subring B such that B is
an analytic ring over k and A is a finite 5-module. If k is alge-
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braically closed—as will mostly be the case in this paper- then a
ring A is /c-analytic if and only if it is an analytic ring over k,
Corollary 1.5, p. 30 of [2],

We will need the following, later on:

LEMMA 1.1. Let k be an algebraically closed, complete valued
field. Let A be an integral domain containing k[{xlf •••,#</}] as
subring where the x/s are analytically independent. If A is a
finite module over k[{xu •••#«*}], then A is an analytic ring over k.

Proof. In view of the above remark it is enough to show that
A is local. By HenseΓs lemma as stated in 12.2, p. 95 of [1],
k[{xu , xd}] is Henselian. Theorem 43.12, p. 183 of [12] gives now
the required conclusion.

We will need the normalization theorem for convergent power
series rings in the following form. (Compare e.g., Theorem 45.5, on
p. 193 of [12].)

LEMMA 1.2. Let k be an algebraically closed, complete and non-
trivially valued field and A a local ring of dimension d.

If A is an analytic ring over k and xl9 , xd is any system
of parameters of A then k[{xy, , xd}] £ Af k[{xly , xd}] is h-iso-
morphic to a convergent power series ring in d variables and, A is
a finite k[{xu , xd}]-module.

Conversely, if k[{xl7 , xd}] £ A, A is a finite k[{xh , xd}]-
module and άim(k[{xl9 , xd}'\) = d, then A is an analytic ring over
k and xl9 , xd is a system of parameters of A.

Whenever we have a complete and nontrivially valued field k
which is algebraically closed and a ring A which is fc-analytic then
Lemma 1.2 allows us to write A = k[{xlf , xd}] \yh , y8]. Here
xlf - - , xd is any system of parameters of A.

We denote by V an analytic set germ at the origin of fc\ Two
germs Vλ and V2 are topologically equivalent if there are represen-
tatives (Fi, Ux) and (F«, Z72) and continuous maps φ: V1--> V* and
ψ: V2 -+ Vx such that ψφ and φφ are the identity maps on V1 and
V2 respectively. If in addition φ and ψ extend to the open sets
Ut and U2 respectively and are analytic on them then V± and V2

are said to be analytically equivalent. For more details compare
[7], where these concepts are developed in the case k ~ C.

If A is a ^-analytic ring with representation A = k[{Xly , Xn}]βί
where Fu , Fs generate 9( then we can associate an analytic set
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germ of kn with A as follows: Let U be a neighborhood of 0 in
kn on which Flf '--,FS converge. Let W be the set of common
zeros of Flf , Fs in £/. The analytic set germ associated with
A is the class containing the representative (W, U). We denote it
by VA. It does not depend on the particular set of generators we
took. Also, the radical of 31 gives rise to the same set germ. The
analytic set germ does not depend on the particular representation
of A:

LEMMA 1.3. Let k be an algebraically closed, complete and non-
trίvίally valued field. If k[{Xlf - -, Xn}]/21 and k[{Yl9 ••-, YJ]β$
are k-isomorphic then their associated analytic set germs are ana-
lytically equivalent.

The proof is left to the reader.

The following well known result and its corollary give some
information about the dimension of the ambient space of an analytic
set germ associated with a given analytic ring over k.

LEMMA 1.4. Let k be a complete, nontrivially valued and alge-
braically closed field. Let A be an analytic ring over k and yu -, ys

a set of generators for the maximal ideal in A. Then A = k[{yu , ys}].

COROLLARY 1.5. Let k be a complete, nontrivially valued and
algebraically closed field. Let A be an analytic ring over k of
embedding dimension n. We have associated analytic set germs in
kι for all I }> n.

2. Strongly separating systems of parameters* In this section
we will show that a saturation in the sense of Zariski [18] pp. 961-
693 of a ^-analytic ring can be constructed. However, certain con-
ditions which will be specified later have to be satisfied. Also, we
will have to choose a suitable field K with respect to which to de-
fine the saturation. The saturated ring is then again ^-analytic.

We will need the following lemma:

LEMMA 2.1. Let k be a valued field which is perfect and let A
be a reduced analytic ring over k. The integral closure A of A in
its total ring of quotients Φ(A) is a finite A-module.

Φ(A) is the direct sum of fields Φ(A) = F 1 0 © ί τ

ί and if et

is the identity of Ft as an element in Φ{A), then A is the direct
sum of the integral closures of the Aε/s in the Fz's.
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Proof. Since A is a finite module over a convergent power
series ring we have by [12], 45.6 on p. 194 that A is a Weierstrass
ring and hence is in particular pseudo-geometric. That is, if p e
Spec(A) then the integral closure of A/p in its field of quotients is
a finite A/p-module. The lemma follows now from 19.23, p. 167 of

The total ring of quotients of a Noetherian ring, and hence of
a ring A which is reduced and analytic over k can be described
more precisely. Namely Φ(A) = Φ(A/pί) φ φ Φ(A/ps) where pl9 -—, p8

denote the minimal primes of A.

We introduce the following definition:

DEFINITION 2.2. Suppose A = k[{xl9 , xd}][yu , ym] where
xl9 , xd is a system of parameters for A and the yl9 , ym are
integral over k[{xu , #d}]. The system of parameters xl9 , ccd is
said to be strongly separating if there exist m monic polynomials
Pt(Z) in k[{xl9 , ̂ d}][^] such that Ply,) = 0 for 1 ^ i ^ m and
which are separable considered as polynomials over the field
k({xl9 •••, x d } ) .

An analytic ring over k which has a strongly separating system
of parameters is called strongly separable.

LEMMA 2.3. Let k be an algebraically closed, complete and non-
trivially valued field. Let A be a reduced and equidimensional
k-analytic ring and Φ(A) ̂ ί Ί φ φ F s its total ring of quotients.
et denotes the unit of Fi in Φ(A). If xl9 , xd is a strongly separ-
ating system of parameters of A then Fi is a finite algebraic and
separable extension of 6jk({xl9 , xd}) for 1 S i ^ s.

Proof We first consider the case where A is a domain. We
have then the following commutative diagram where all maps are
the obvious inclusions.

/ \
A?({α?lf , xd}) k[{xlf , xd}][Vif

Clearly k({xl9 , xd))(ylf •••,»•) =
The monic irreducible polynomial of ^ over the field k({xl9
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divides P* which is separable. Hence, η is separable.
We can now look at the general case and denote the minimal

primes of A by pu , ps. We claim that k[{xu , xd}] Π Pi = (0)
for 1 <; i <Ξ s. To see this we notice that for each pt we have a
chain of prime ideals piczqιd' cg^ of length d + 1 in A. Con-
tracting this chain to k[{xlf , α̂ }] we get another proper chain in
this ring of length d + 1, hence pΛ Π Λ[{̂ i, , xd}] = (0). This es-
tablishes the claim.

Consider the following diagram:

Φ(A)

H[χ\)

x stands for xlf , xd and y for ylf , ym. y denotes y + pim

We define the maps in the diagram above as follows:

Since &[{#!, , xd}] Π p t = (0) this is an isomorphism. /2 is defined
analogously. g±(a) = (a + plf -, a + pa). g2 is defined in the same
way. e and h are the natural embeddings. It is clear that all sub-
diagrams commute, except for diagram D.

If Pt(Z) is an integral relation for yt over k[{xu , xd}] then
it is also one for yt over the same ring. The special case treated
first shows now that 2^ is a finite separable algebraic extension of
k({xu - --, xd}). The lemma will be proven if we show that
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hf2e(k({x})) = εΐSr2(fe({aj})). But hf2e(a) = h(a + p«) = (0, , α.+ p,, •,
0) = ε,(α + pl9 , a + pβ) = ε^2(α).

Our next goal is to show that all fc-analytic rings are strongly
separable.

LEMMA 2.4. Let k be an algebraically closed, complete and non-
trivially valued field. Let A = k[{xl9 , xn}] be a reduced and equi-
dimensional k-analytίc ring of dimension d. pu — ,ps denote its
minimal primes. There is a k-linear transformation

n

2Λ = Σ a>ij%j, 1 ^ i ^ d, aiό e k
7 = 1

such that ylf , yd is a system of parameters of A and the quoti-
entfields Φ(A/Pi) are finite algebraic and separable over Sik{{yu , yd})
for all i, 1 <J i ^ s.

Proof. This lemma is a generalization of 24.5 in [1], p. 201.
The proof given there can be changed to our situation. Therefore,
we will only sketch the proof and indicate the changes. See [1]
for more details.

For each minimal prime pt we set £έ\ = Φ(A/pt). We can then
construct 0 Φ Pι(B) = P,( , Bί3, •) e £?ϊ[E\. Here p = char(/b) and
B = , Bijf —',lSi^d,l^j^n are indeterminants. For each
l , l ^ l ^ s one can find 0 Φ Qι(B) e k[B] such that Qiia^) Φ 0 implies
P,(a < i) ^ 0 where ati e fc. Set Q(B) - Q^Q^B) Q.(J5). Then
0 ^ Q(J5)e Λ[̂ 5] According to 23.5 of [1] there is a Minear trans-
formation yt = Σ*=i Λ^ ίCy, 1 ^ i ^ d, such that ^ , , yd is a system
of parameters for all A/pt and hence for A, and also Q(α^) ^ 0.
Hence Pι(aiS) Φ 0 for all I. It can be shown that Sfi = «5^p(&({l/i, ,
2/d})). Hence, by Theorem 8 of [20] p. 69, we get that <S?X is se-
parable over k{{yu , yd}) for all Z, 1 ^ Z ̂  5.

THEOREM 2.5. Let k be an algebraically closed and nontrivially
valued field. A reduced and equidimensional k-analytic ring is
strongly separable.

Proof. Write A = k[{yu •-, yd}][xlf , xm] where yu -- ,yd is
a system of parameters as constructed in Lemma 2.4. For p e Ass^(0)
we have I r r ^ f o , ek({yl9 , yd})) = Zn + av,-1Z

n~1 + the irreduci-
ble polynomial of xx of A/p over sfc({#!, , yd}). Let αέ in
ti({Vu , 2/d}) be the unique preimage of αi and set PP(Z) - Zn +
α ^ - ^ " " 1 + . Let ί be the number of minimal primes containing
xx. Set
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P e AssΛ(O)
P

FX2(Z), , FXm(Z) are constructed analogously. One checks that those
are the required separable polynomials for xu , xm.

The central Lemma 2.4 can also be obtained using some theorems
of Scheja and Storch, [16], instead. On the other hand, our Lem-
mas 2.3 and 2.4 show that their seemingly weaker definition of se-
parability and our strong separability are equivalent for the consi-
dered type of rings. Therefore, their result 4.2 in [16] follows
from our Theorem 2.5.

The following example serves two purposes. First, it shows
that not every system of parameters is strongly separating. Second,
it makes apparent that separating with respect to a prime, as used
in [16], and strongly separating are different requirements for a
system of parameters.

EXAMPLE 2.6. Let k be an algebraically closed, complete and
nontrivially valued field of characteristic p > 2. XI — X and
X? — X2 are two prime elements of R = k[{Xlf X2}]. Set P =
(X{ - X2)R, Q = (X* - X2)R and I = P Π Q. The example we want
to consider is A = k[{Xu X2}]/I. Setting p = P/I and <? = Q/I we
have Asŝ (O) — {p, g}. Clearly A is a reduced ^-analytic ring, equi-
dimensional of dimension 1. We denote by xx and x2 the images of
X± and X2 respectively under the natural projection. An easy check
shows that xx is a strongly separating parameter. x2 on the other
hand projects to a separating parameter in A/p but to a non-
separating one in A/q.

We come now to the main result of this section. We will use
the notation of saturation as in [18], p. 963.

THEOREM 2.7. Let k be an algebraically closed, complete and
nontrivially valued field. Let A be an equidimensional and reduc-
ed k-analytic ring. Then there exists a system of parameters
#i, , %d of A such that the saturation of A with respect to
k({xl9 ••*, Xd\) is defined. We will denote it by A[Xlt...iXd). For each
system of parameters for which the saturation exists it is again a
k-analytic ring of dimension d.

Proof. We first have to check conditions (a) through (e) as
stated in [18] p. 962: (a) is part of the assumptions; (b) follows
from Lemma 2.1; for (c): here K = k({xu , xd}) and obviously left.
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According to Lemma 2.3 it is enough to choose a strongly separat-
ing system of parameters in order to satisfy (d). That we can find
such a system follows from Theorem 2.6. For (e): k[{xlf , xd}] £
A Π k({xl9 , %d}) = R and that A is integral over R follows from
Lemma 1.2.

Now suppose that xl9 , xd is a system of parameters for
which the saturation is defined. We denote it by Ax and A stands
for the integral closure of A in Φ{A). From Lemma 2.1 and the
fact that A is Noetherian we conclude that Ax is a finite A-module.
From Lemma 1.2 it follows that Ax is finite over k[{xl9 •••, #<*}].
Since k[{xίf , xd}] is integrally closed in its quotient field we have
R = A n &({«!, •••, xd}) and it follows from [18], 4.1, p. 997 that
Spec(AJ —• Spec(A) is radicial. Hence Άx is a local ring and
dim(AJ = dim(A) = d. By the second part of Lemma 1.2 we get
that Ax is a A-analytic ring.

COROLLARY 2.8. Let k and A be as in Theorem 2.7. //
#i, •••,#(£ is a system of parameters for which the saturation exists
then it is strongly separating.

Proof. The proof of Theorem 2.5 shows that Zariski's condition
(d) implies that the system of parameters is strongly separating.

3* Topological equivalence* As we just have shown the sa-
turation of a /^-analytic ring is again ^-analytic, provided one takes
a strongly separating system of parameters. As explained in § 1,
one can associate analytic set germs with both rings. The purpose
of this section is to show that these germs are topologically equi-
valent.

Suppose we have two analytic rings over k, A and A', Aζ= Ar

and A' is finite over A, say A! = A[ylf , ym]. If A = k[{xl9 , xn}]
then there is an associated analytic set germ VA in kn. A! =
k[{xl9 - , xn, yl9 -—, yj] gives then rise to a set germ VA> in kn+m.
In this situation we say that VA> lies over VA.

If D e A then we will write D(xl9 •••,»«) for a representation of
D in k[{xlf , »»}]. i)(Xi, , X J is then the power series which
has the same coefficients as D(xl9 •••, xn) but has the ring elements
xt replaced by the indeterminates Xt. If a = (αly •, α J 6 fc* then
Z)(α) simply means D ^ , , Xn) evaluated at Xt = at.

LEMMA 3.1. Let k be an algebraically closed, complete and non-
trivially valued field of characteristic p > 0. Let AQ A' be two
k-analytic rings such that Af is a finite A-module. Further assume
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that there are DeA,Dφθ and aeN such that Dap<xe A for all
a 6 Ar. Then the analytic set germs VΛ and VA>, where VA> lies
over VA, have representatives (VA, U) and (VA>9 U

f) such that above
every aeVA with D(a)Φθ there lies one and only one point of VA>.

Proof. We first prove the uniqueness: If A' = A[yu , ym]
then we have Dyf = ^ e i for 1 ^ i <; m. We take a set of de-
fining functions for VA> and include among them the m functions
D(X)Y?a — gάX). D{X) and gt{X) are defined as explained previous
to the statement of the theorem. Let a = (au "-9an)eVA with
D(a) Φ 0. Let δ and c be two different points above a in VA>, b =
(alf , αΛ, 6x, , δ j and c = (al9 , an, cl9 , c j . Since δ and c
are in V̂ , we have D{a)bf - 0,(α) = 0 or δf - gla)ID{a) = 0 for
1 ^ i <; m. In the same way cf — gi(a)/D(a) = 0 for 1 ^ i <; m.
Hence &, and ct are both solutions of the equation Zpa — r = 0.
Since fc is algebraically closed there is s e k such that s2>α = r and
therefore Z ^ — r = (Z — s)pCX = 0. Hence the equation has only one
solution and we conclude that δ< = c, for 1 <£ i ^ m, which shows
that b — c.

It remains to show the existence. If A! — k[{Xlt , XΛ, Fx, ,
Γm}]/93 let FX(X, Y), •• , J F 8 (I , Γ) be a set of generators for S3.
Since A' is a finite A-module we may assume that Ft(X, Y) e
k[{X}][Y]. Take p big enough such that

, [gi(X)/D(X)]p-a, , [fl

- Gt(X) 6 A;[{X}] for 1 ^ i ^

We let U: = {fo, , 6w+m) 6 fc + HδJ < e}. We choose ε small enough
such that all Ft(Xf Y)f 1 ^ i ^ s converge on Uε

f and consider
(VAΊ U.'). Now let ω > 0 such that ω ^ ε, [firi(α)/Z)(α)]p"α < ε for all
ifl^i^m whenever aeUω = {(α^ , α j 6 fc%|| α, | < ω} and such
that all Gt(X)9 1 5* i ^ s and D(X) are convergent on ί7ω. We can
now include the Gt(X) among the generators for an analytic set
(VA9 Um). If a e VA and D(a) Φ 0 then we let δ - (α, [̂ (flO/jDία)]*"", - ,
[ff,(α)/2?(α)]'"β). δ e Uε and [^(δ)]^ - G^/D^y = 0 for 1 ^ i £ s.
Hence jPt(6) = 0 which implies that be{VA>9 Uβ).

We now state two lemmas which are well known in the complex
case. We will point out at the end of this section why the usual
short proofs will not work in this case (see Theorem 3.6).

LEMMA 3.2. Let k be an algebraically closed and valued field.
Let 1 <* m ^ n and alf - , anek ordered such that |αj ^ ^ | α j .
Then there is a nonnegative real valued function φm on (R+)m such
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that the following two conditions are satisfied:
(1) \am\ ^ φjtu , O where U = I S ^ - H ^ , , α j | and s,

denotes the jth elementary symmetric polynomial.
( 2 ) φjxu - , xk) -> 0 as a?! -> 0, , % -> 0.

A proof can be found in [10], pp. 102-104. Kneser proved the
lemma there only for k = C. But the reader checks easily that the
proof works for any algebraically closed and valued field.

COROLLARY 3.3. Let k be an algebraically closed and valued
field, Ux) - x* + a^x"-1 + . . . + a0 and fix) = xn + K-^'1 + + b0,
a^b^ek. Denote the roots of f2 by xlf -—,xn and suppose c is a
root of f of multiplicity m. Then for every ε > 0 there is a d > 0
such that if \ at — &< | < d, 0 ^ i ^ n — 1, then \ x1 — c \ < ε, ,
l#» " c\ < ε after appropriate enumeration of the roots of f2.

This follows from the lemma above. A detailed proof is in [4],
pp. 33/34.

We are now equipped to prove the following theorem.

THEOREM 3.4. Let A = k[{xl9 , xj] and A' = k[{xl9 , xn,
Vi, - "f Vm}] where k is an algebraically closed complete and non-
trivially valued field. Suppose that

(1) A! is a finite A-module and i £ A ' .
( 2 ) A! is reduced.
( 3) A! is a radicίal extension of A.

Let VA and VA> be associated analytic set germs in kn and kn+m

respectively. Then there are representatives (VA, U) and (VA>, Ur)
such that the projection π: kn+m —> kn induces a homeomorphism on
the analytic sets.

Proof. If char(ά) = 0 then k = C and the theorem is identical
to Theorem 9 of [17], p. 429. Hence we assume throughout the
proof that char(fc) > 0.

Let Pu , Ps be the minimal primes of A!. Since A! is reduced
Pi Π Π Ps = (0) is an irredundant primary decomposition. Let
p. = P^A, then (0) = p xn Γ)ps. Suppose we could leave out one
of the primes, say px. Then p{^p2C\ * dp$ and we have pλ 2 Pi for
some i, 2 ^ i <> sf say ^ 2 ^ By the going up theorem, [3], 5.11,
p. 62, there is a prime Q in A' such that P2QQ and Q Π A = pt.
Since the extension is radicial we have Q = P1 and hence P2 £ Pι

which is a contradiction. This shows that pu "-,ps are exactly
the minimal primes of A and A is therefore also reduced. We have
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now Φ(A) = Φ(A/pJ® 0Φ(A/p.) and Φ(A') = ΦiA'/PJψ- • 0Φ(A7Pβ).
The map (a + p<)/(6 + p<) -> (α + P<)/(δ + PJ determines a natural
embedding of Φ(A) in Φ(A').

Next we show that there are analytic sets (VA, U) and (yA*f U')
such that above every point of VA there lies exactly one point of
VA>. Hence the projection is a bijection between (VA, U) and
(VA,n(Uxkn), U'Π(Uxkn)). We will show this by induction on the
dimension d of A. Suppose d = 0, then (VA, U) and (VA>, U') both
contain only the origin and the statement follows trivially. Let us
now assume that d > 0 and that the existence of two sets lying
above each other in the required way is established for all smaller
dimensions. Since A £j A! £ Φ(Af) we can write A! = ΣJ Aα* where
at 6 Φ(A'). Since the extension is radicial, each Φ{AfjPi) is purely
inseparable over Φ(A/pt) and hence there is an aeN such that
af = rjs, 6 Φ(A), r,, s, e A, for all i, 1 ^ i ^ f. Let D = Πί si e A.
Then D ^ 0 and Z)apa e A for all a e A'. By Lemma 3.1 we can find
(VA, U) and (F^/, Z7') such that there is exactly one element in VA>
above each element ae VA if D{a) Φ 0. We consider the analytic
subset of VA on which D vanishes. Let Γ = rad(D A'), I — Γ {\ A,
A = A/I and A' = A'//'. Clearly, (1), A! is a finite A-module and,
(2), A! is reduced. But also (3) holds, the extension AQ A' is
radicial. For suppose peSpec(A), then it corresponds to some ^6
Spec(A) with iQp. If P and Q are primes in A\ Pd A = Q(Ί A = ̂>
then consider the corresponding primes P and Q in A'. Now PΠ
A = QΠ A = p. This contradicts the radiciality of A' over A, hence
there is at most one prime above p in A'. Further we have A/p =
A/p and Af/p = A'/P. Since A/p —> A'/P is purely inseparable so is
A/p —> A'/P. In conclusion we have that Spec(A') —> Spec(A) is
radicial. Since D is not a zero divisor in A! we have dim A' <
dim A'. By the induction hypothesis we have two sets (Vj, W)
and (Vj', W) which lie above each other in the required way and
therefore do the sets (VA, UΠ W) and (VΛ,, Uf Π W).

It remains to show that the projection restricted to the ana-
lytic sets and its inverse are topological maps. For the projection
this is clear and for (xlf , xn) -> (xlf , xn, ylf , ym) this follows
fairly easily from Corollary 3.3. For details see [4], pp. 37/38.

The main theorem of this section follows now easily.

THEOREM 3.5. Let k be an algebraically closed, complete and
nontrivίally valued field. Let A be an equidimensional and reduced
k-analytίc ring. Let xu — ,xd be a strongly separating system of
parameters of A and Ax the saturation with respect to this system.
Then the two associated analytic set germs are topologically equi-
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valent.
In fact, the homeomorphism can be induced by the natural 'pro-

jection of the ambient spaces if the representations of the rings are
chosen so that the associated set germs lie above each other.

Proof. By Theorem 2.7, Ax is ^-analytic and hence a finite
k[{x}]-modxύe. This shows that Άx is finite over A. Since ΆXQΦ(A)
and A is reduced, we conclude that Ax is reduced. The fact that Άx

is radicial is proven in Theorem 4.1, [18], p. 997. We can now apply
Theorem 3.4 and get the second half of our theorem. Lemma 1.3
shows that the particular representation of the ring does not mat-
ter and therefore finishes up the proof.

Lemma 3.2 and the part in the proof to Theorem 3.4 which es-
tablishes the continuity of the map can be proven much more easily
in the case when k = C. The shorter proofs are based on the fact
that every bounded sequence in C has a convergent subsequence.
The following theorem shows that we do not have this fact avail-
able in our situation and that we can therefore not hope to adapt
the usual proofs.

Recall that a space is called sequentially compact if and only if
every sequence has a convergent subsequence.

THEOREM 3.6. Let k be an algebraically closed, nontrivially
valued field of positive characteristic and let Aa = {xe k\\x\ <̂  a},
where a e R+. Then Aa is not sequentially compact.

Proof. Since Aa is metric it is paracompact; see [5], p. 186,
Theorem 5.3. By [9], p. 162, E), part (d), Aa is sequentially compact
if and only if -it is countably compact. The latter is the case if
and only if Aa is compact, [5], p. 230, Corollary 3.4.

Now suppose Aa is sequentially compact and hence compact.
Then k is locally compact, since addition is continuous. Since
char(&) > 0 the valuation is nonarchimedean and from Theorem 1 of
[14], p. 245, it follows that the valuation is discrete, that is \k — {0}|
is a cyclic subgroup of the positive real numbers. Say \x\ is a
generator of this group. We can assume that |CG| > 1. It is easy
to see that \x\ = min{|τ/| > l|τ/e&}. Since k is algebraically closed
there is a e k such that α2 = x and therefore 1 < | a | < | x |. This
contradiction shows that Aa cannot be sequentially compact.

4* Multiplicities* Another necessary condition for equisingu-
larity, an algebraic one, is that the local rings have the same mul-
tiplicity. This requirement is discussed in this section.
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Recall that 9ί and & are two ideals and SI £ & then SI is said
to be a reduction of & provided we can find a positive integer r
such that ^ S Γ = SΓ+1.

THEOREM 4.1. Suppose k is an algebraically closed, complete
and nontrivially valued field. Let A be an equidimensional and
reduced k-analytic ring. Suppose xl9 **',xd is a strongly separat-
ing system of parameters and the ideal it generates is a reduction
of the maximal ideal of A. Denote by Ff the least Galois extension
of k({xlf - , xd}) which contains Φ(A/pj), where {pl9 , p8} = Ass^(O).
Further assume that char(&) and [Ff:k({xu •••,#<*})] are relatively
prime for all j , 1 <̂  j ^ s. Then A and Άx have the same multi-
plicity.

One can adapt the proof of Theorem 4.1 of [19], pp. 455-460.
In our case one has to use Theorem 1 of [13] to show the validity
for nondomains directly. The possibility for that is already remark-
ed on p. 460 of [19]. Some other small changes are necessary but
they do not justify the reproduction of this long proof here. For
a completely written out proof in our case, see [4], pp. 42-48.

Recall that the system of parameters xu , xd of a local ring
(A, m) is said to be transversal if e((xl9 , xd)A) = β(m).

COROLLARY 4.2. Let k be as in Theorem 4.1. Let A be a
k-analytic integral domain. Let xl9 •• ,α?d be a (strongly) separat-
ing and transversal system of parameters. Denote by F* the least
Galois extension of k({xlf •• ,ccd}) which contains Φ(A). Suppose
that char(fc) and [F*: k({xly , xd})] are relatively prime. Then
e(A) - e(Ax).

Proof. The statement follows from Theorem 4.1 if we can show
that (xlf "-,xd)A is a reduction of the maximal ideal in A. This
follows from [15], p. 16, Theorem 3.2, if we can show that all mini-
mal primes in the completion of A are of dimension d = dim(A).
Theorem 44.1 of [12], p. 188 shows that A is analytically irreducible,
that is, the completion is even a domain.

It is not known to me if anything can be said about the multi-
plicity if the parameters do not generate a reduction of the maxi-
mal ideal. The same question was raised in [19], p. 460 for the
characteristic zero algebroid case. However, there are nontrivial
cases to which the above theorem applies. To show this, is the
purpose of the following example.
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EXAMPLE 4.3. This is a ring satisfying all conditions of Corol-
lary 4.2 and having nontrivial saturation. Let k be an algebraically
closed, nontrivially valued field with char(fc) > 3. We consider A —
k[{X, Y}]/(Y5 + Y2 + X2 + 2XY). It is easy to check that A is a
domain and dim(A) = 1. We write x and y for X and Y modulo
the relation, m — (x, y) is the maximal ideal and x is a system of
parameters since m2Q(x), Hence A — k[{x\\[y] where yz + y2 + 2xy +
x2 ~ 0. (a;) is a reduction of m since m2(x) = m3. One also checks
that it is (strongly) separating. f(Z) = Z3 -\- Z2 + 2xZ + x2 is irre-
ducible in k[{x)][Z] and hence in k({x})[Z]. Therefore [Φ(A): k({x})] =
[k({x})(y): k({x})] = deg(/(Z)) - 3. F * is the splitting field of f(Z)
over k({x}), hence char(&) and [i*7*: &({$})] are relatively prime. That
A is not saturated can be seen as follows: If it were saturated
then A were an Arf ring since dim(A) = 1 and A is Cohen-Maea-
ulay, [11], p. 682, Corollary 5.3. Then we would have άimA/m(m/m2) =
e(A), by [11], p. 661, Theorem 2.2. Since (Γ 3 + Y2 + 2XY + X2) £
(X, Yf and k[{X, Y}] is a regular local ring of dimension 2, we
have dim^/w(m/m2) = 2. To calculate the multiplicity of A we use
[21], p. 299, Corollary 1 and get e{xA) = 3. Since (x) is a reduction
of m = (#, i/) we have e(A) — 3. This contradiction shows that A is
not saturated.
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