# ON THE TRANSFORMATION OF FOURIER COEFFICIENTS OF CERTAIN CLASSES OF FUNCTIONS 

Kenneth F. Andersen


#### Abstract

Suppose $f(x) \in L^{1}(0, \pi)$ and let $a=\left\{a_{\nu}\right\}\left(b=\left\{b_{\nu}\right\}\right)$ denote the Fourier cosine (sine) coefficients of $f$ extended to $(-\pi, \pi)$ as an even (odd) function, that is


$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x, \quad a_{\nu}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos \nu x d x, \\
& b_{\nu}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin \nu x d x .
\end{aligned}
$$

The sequence transformations $T$ and $T^{\prime}$ are defined by

$$
(T a)_{0}=a_{0}, \quad(T a)_{\nu}=\frac{1}{\nu} \sum_{j=1}^{\nu} a_{j}, \quad\left(T^{\prime} a\right)_{\nu}=\sum_{j=\nu}^{\infty}\left(a_{j} / j\right), \quad \nu=1,2, \cdots
$$

The purpose of this note is to characterize those rearrangement invariant function spaces $L^{\sigma}(0, \pi)$ which are left invariant by the operators $T$ and $T^{\prime}$ acting on Fourier coefficients of functions in these spaces. Our results include and improve some results of Hardy, Bellman and Alshynbaeva.
G. H. Hardy [5] proved that if $f \in L^{p}(0, \pi)$ for some $p, 1 \leqq p<$ $\infty$, then $T a=\left\{(T a)_{v}\right\}$ is the sequence of Fourier cosine coefficients of a function also in $L^{p}(0, \pi)$; R. Bellman [2] proved the analogous theorem for $T^{\prime}$ except that now $1<p \leqq \infty$. Recently E. Alshynbaeva [1] gave necessary and sufficient conditions on an Orlicz space $L_{\mu \phi}$ in order that $L_{\mu \phi}$ may replace the $L^{p}$ space in the results of Hardy and Bellman, thus answering a question of P. L. Ul'yanov. The analogues for the sequences $\left\{b_{y}\right\}$ were also studied.

We denote by $f^{*}$ the nonnegative, nonincreasing function on $(0, \pi)$ which is equi-measurable with $f$, that is, for all $\lambda>0$

$$
|\{x \in(0, \pi):|f(x)|>\lambda\}|=\left|\left\{x \in(0, \pi): f^{*}(x)>\lambda\right\}\right| .
$$

We suppose throughout that $\sigma$ is a function norm defined on the measurable functions on $(0, \pi)$ which is rearrangement invariant in the sense that $\sigma(f)=\sigma\left(f^{*}\right)$. The associate of $\sigma$, denoted $\sigma^{\prime}$, is then also rearrangement invariant and is given by

$$
\begin{align*}
\sigma^{\prime}(f) & =\sup \left\{\left|\int_{0}^{\pi} f(x) g(x) d x\right|: \sigma(g) \leqq 1\right\} \\
& =\sup \left\{\int_{0}^{\pi} f^{*}(x) g^{*}(x) d x: \sigma(g) \leqq 1\right\} . \tag{1}
\end{align*}
$$

The upper and lower Boyd indices $\alpha, \beta$ of the Banach space $L^{\sigma}(0, \pi)=$ $\{f: \sigma(f)<\infty\}$ are defined in [4] and satisfy $0 \leqq \beta \leqq \alpha \leqq 1$. For the Lorentz spaces $L^{p, q}(0, \pi)$ and in particular for the Lebesgue spaces $L^{p}(0, \pi)$, the indices $\alpha, \beta$ are both equal to $p^{-1}$. Indices for the Orlicz spaces are computed in [3]. It is well known that $L^{\infty}(0, \pi) \subseteq L^{\sigma}(0, \pi) \subseteq L^{1}(0, \pi)$ for every $\sigma$ and it is not difficult to see that $L^{p}(0, \pi) \cong L^{o}(0, \pi) \cong L^{q}(0, \pi)$ whenever $p^{-1}<\beta, \alpha<q^{-1}$.

We shall state and prove our theorems only for the case of cosine coefficients $a$; for the case of sine coefficients $b$ the statements of the theorems are the same with $b$ replacing $a$ and sine, replacing cosine throughout while the proofs are similar.

Concerning the sequence $\left\{a_{\nu}\right\}$ and the transformations $T$ and $T^{\prime}$ we have the following theorems.

Theorem 1. The following statements are equivalent.
(a) For every $f \in L^{\sigma}(0, \pi)$ with Fourier cosine coefficients $a=$ $\left\{a_{\imath}\right\}$, Ta is the sequence of Fourier cosine coefficients of a function in $L^{\sigma}(0, \pi)$.
(b) The lower index $\beta$ of $L^{\sigma}(0, \pi)$ satisfies $\beta>0$.

Theorem 2. The following statements are equivalent.
(a) For every $f \in L^{\sigma}(0, \pi)$ with Fourier cosine coefficients $a=$ $\left\{a_{\star}\right\}, T^{\prime} a$ is the sequence of Fourier cosine coefficients of a function in $L^{\sigma}(0, \pi)$.
(b) The upper index $\alpha$ of $L^{\sigma}(0, \pi)$ satisfies $\alpha<1$.

Since $\alpha=\beta=p^{-1}$ for the space $L^{p}$, Theorems 1 and 2 yield the results of Hardy and Bellman cited above. It is well known, and in any event follows easily from the formulae for $\alpha, \beta$ in [3], that for the Orlicz space $L_{M \phi}$, the lower index $\beta$ satisfies $\beta>0$ if and only if $\Phi$ satisfies the $\Delta_{2}$ condition, i.e., $\Phi(2 t) \leqq M \Phi(t), t \geqq t_{0}$; the upper index $\alpha$ satisfies $\alpha<1$ if and only if the Young's function $\Psi$ complementary to $\Phi$ satisfies the $\Delta_{2}$ condition. Hence Theorems 1 and 2 yield Alshynbaeva's Theorems 1 and 2 with a sharpening of the necessity part of his Theorem 2 in that we do not have to assume $|t \log t| \leqq c \Phi(t), t \geqq t_{0}>0$.

We shall require the following lemma relating to the operators $P$ and $P^{\prime}$ defined for $0<x<\pi$ by

$$
(P f)(x)=\cot (x / 2) \int_{0}^{x} f(t) d t,\left(P^{\prime} f\right)(x)=\int_{x}^{\pi} f(t) \cot (t / 2) d t
$$

Lemma 1. The following are equivalent.
(a) $\operatorname{Pf} \in L^{\sigma}(0, \pi)$ for every $f \in L^{\sigma}(0, \pi)$.
(b) There is a constant c such that $\sigma(P f) \leqq c \sigma(f)$, for all $f \in$ $L^{\sigma}(0, \pi)$.
(c) The upper index $\alpha$ of $L^{\sigma}(0, \pi)$ satisfies $\alpha<1$.
(d) The lower index $\beta^{\prime}$ of $L^{\sigma^{\prime}}(0, \pi)$ satisfies $\beta^{\prime}>0$.
(e) There is a constant $c$ such that $\sigma^{\prime}\left(P^{\prime} f\right) \leqq c \sigma^{\prime}(f)$, for all $f \in L^{\sigma^{\prime}}(0, \pi)$.
(f) $P^{\prime} f \in L^{\sigma^{\prime}}(0, \pi)$ for every $f \in L^{\sigma^{\prime}}(0, \pi)$.

Proof of Lemma 1. Let $\left(P_{1} f\right)(x)=\left(\int_{0}^{x} f(t) d t\right) / x$. There are positive constants $c, c_{1}, c_{2}$ such that for all $f \geqq 0$

$$
c_{1}(P f)(x) \leqq\left(P_{1} f\right)(x) \leqq c_{2}\left((P f)(x)+\int_{0}^{\bar{\pi}} f(t) d t\right) \leqq c_{2}((P f)(x)+c \sigma(f))
$$

and since $f \in L^{\sigma}(0, \pi)$ if and only if $|f| \in L^{\sigma}(0, \pi)$ it follows that (a) is equivalent to the corresponding statement with $P$ replaced by $P_{1}$; similarly $P_{1}$ may replace $P$ in (b). Analogously, $\left(P_{1}^{\prime} f\right)(x)=$ $\int_{x}^{\pi}(f(t) / t) d t$ may replace $P^{\prime}$ in statements (e) and (f). Thus, it suffices to prove the lemma with $P$ replaced by $P_{1}$ and $P^{\prime}$ replaced by $P_{1}^{\prime}$ throughout. For this, the chain of implications $(a) \Rightarrow(b) \Rightarrow$ $(\mathrm{c}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{e})$ follows in turn from Lorentz [7, p. 486], Boyd [4, p. 1253], Boyd [4, Lemma 5] and Boyd [4, p. 1253]; (e) clearly implies (f), while if (f) holds and $f \in L^{\sigma}(0, \pi), g \in L^{\sigma^{\prime}}(0, \pi)$ with $f \geqq 0, g \geqq 0$ then Fubini's theorem shows that

$$
\int_{0}^{\pi} g(x)\left(P_{1} f\right)(x) d x=\int_{0}^{\pi} f(t)\left(P_{1}^{\prime} g\right)(t) d t \leqq \sigma(f) \sigma\left(P_{1}^{\prime} g\right)<\infty
$$

so $P_{1} f \in L^{\sigma}$ (see Lorentz [7, p. 484|) and (a) holds. This proves the lemma.

Lemma 2. If $a=\left\{a_{\nu}\right\}$ is the sequence of Fourier cosine coefficients of $f \in L^{\sigma}(0, \pi)$ then $c=\left\{c_{\nu}\right\}, c_{0}=0, c_{\nu}=a_{\nu} / \nu, \nu=1,2, \cdots$ is the sequence of Fourier cosine coefficients of a function $F \in L^{\sigma}(0, \pi)$.

Proof of Lemma 2. Let $K(t)=-\log |2 \sin (t / 2)|,|t|<\pi$. According to [8, p. 180], $c$ is the sequence of Fourier cosine coefficients of

$$
F(x)=\frac{1}{\pi} \int_{-=}^{\pi} f(x+t) K(t) d t, \quad 0<x<\pi
$$

Now for any $t,|t|<\pi$ we set $f_{t}(x)=f(x+t)$ and observe that since $f$ is even on $(-\pi, \pi)$, for all $\lambda>0$

$$
\begin{aligned}
|\{x \in(0, \pi):|f(x)|>\lambda\}| & =\frac{1}{2}|\{x \in(-\pi, \pi):|f(x)|>\lambda\}| \\
& =\frac{1}{2}\left|\left\{x \in(-\pi, \pi):\left|f_{t}(x)\right|>\lambda\right\}\right| \\
& \geqq \frac{1}{2}\left|\left\{x \in(0, \pi):\left|f_{t}(x)\right|>\lambda\right\}\right|
\end{aligned}
$$

so that $f_{t}(x)$ considered as a function on $0<x<\pi$ satisfies $\left(f_{t}\right)^{*}(x) \leqq$ $f^{*}(x / 2)$ and it then follows from (1) that $\sigma\left(f_{t}\right) \leqq 2 \sigma(f)$. Hence, if $g \in L^{o^{\prime}}(0, \pi)$ with $g \geqq 0$

$$
\begin{aligned}
& \int_{0}^{\pi}|F(x)| g(x) d x \leqq \int_{-\pi}^{\pi}|K(t)| d t \int_{0}^{\pi}|f(x+t)| g(x) d x \\
& \quad \leqq \int_{-\pi}^{\pi}|K(t)| \sigma\left(f_{t}\right) \sigma^{\prime}(g) d t \leqq 2 \sigma(f) \sigma^{\prime}(g) \int_{-\pi}^{\pi}|K(t)| d t
\end{aligned}
$$

so that upon taking the supremum over $g \in L^{o^{\prime}}(0, \pi)$ with $g(x) \geqq 0$, $\sigma^{\prime}(g) \leqq 1$ it follows that $\sigma(F) \leqq 2 \sigma(f) \int_{-\pi}^{\pi}|K(t)| d t<\infty$. Thus $F \in$ $L^{\sigma}(0, \pi)$ and the lemma is proved.

Since $L^{\sigma}(0, \pi)$ contains all the constant functions, we may assume without loss of generality that $a_{0}=0$ in the proofs of Theorem 1 and 2.

Proof of Theorem 1. As Hardy [5] has shown, Ta is the sequence of Fourier cosine coefficients of $g(x)=\left(P^{\prime} f(x)+F(x)\right) / 2$, where $F$ is given by Lemma 2. Thus, if (a) holds, Lemma 2 shows that we must have $P^{\prime} f \in L^{o}(0, \pi)$ whenever $f \in L^{o}(0, \pi)$ and then Lemma 1 shows that $\beta>0$ so (b) holds. Conversely, if (b) holds, Lemma 1 shows that $P^{\prime} f \in L^{o}(0, \pi)$ while Lemma 2 shows that $F \in$ $L^{g}(0, \pi)$ so that $g \in L^{o}(0, \pi)$ and (a) holds. This proves the theorem.

Proof of Theorem 2. Suppose first that (a) holds and $f \in L^{\circ}(0, \pi)$. Let $\delta$ be such that $\int_{0}^{\delta} f^{*}(x) d x=\frac{1}{2} \int_{0}^{\pi}|f(x)| d x, 0<\delta<\pi$, and set

$$
g(x)=\left\{\begin{array}{rcc}
f^{*}(x) & \text { if } & 0<x<\delta \\
-f^{*}(x) & \text { if } & \delta<x<\pi
\end{array}\right.
$$

Clearly $g \in L^{o}(0, \pi), g(x)$ is nonnegative, nonincreasing on ( $0, \delta$ ), and $\int_{0}^{*} g(x) d x=0$. Let $a^{*}=\left\{a_{i}^{*}\right\}$ denote the Fourier cosine coefficients of $g(x)$. Since $g \in L^{o}(0, \pi)$ and (a) holds, it follows that $\left(T^{\prime} a^{\sharp}\right)_{1}=\sum_{j=1}^{\infty}\left(a_{j}^{\sharp}\right) / j$ converges, and according to Loo [6, p. 273]

$$
\left(T^{\prime} a^{\sharp}\right)_{1}=\lim _{N \rightarrow \infty} \frac{1}{\pi} \int_{0}^{\pi}(1-\cos N x)(P g)(x) d x .
$$

But then since $(\operatorname{Pg})(x)$ is integrable on $(\delta, \pi)$ the Riemann Lebesgue
lemma guarantees the existence of

$$
\lim _{N \rightarrow \infty} \int_{0}^{\delta}(1-\cos N x)(P g)(x) d x
$$

Now, $(P g)(x)$ nonincreasing on $(0, \delta)$ shows

$$
\begin{aligned}
\lim _{v \rightarrow \infty} \int_{0}^{\dot{o}}(1-\cos N x)(P g)(x) d x & \geqq \lim _{N \rightarrow \infty} \sum_{k=1}^{\left[\frac{N \bar{\delta}}{2 \pi}\right]}(P g)\left(\frac{2 k \pi}{N}\right) \frac{1}{\pi} \int_{2(k-1) \pi / N}^{2 k \pi / N}(1-\cos N x) d x \\
& =\frac{1}{\pi} \lim _{N \rightarrow \infty} \frac{2 \pi}{N} \sum_{k=1}^{\left[\frac{N \delta}{2 \pi}\right]}(P g)\left(\frac{2 k \pi}{N}\right) \\
& =\frac{1}{\pi} \int_{0}^{\dot{o}}(P g)(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\dot{o}} g(t) \log \left|\frac{\sin (\delta / 2)}{\sin (t / 2)}\right| d t
\end{aligned}
$$

It follows that $|g(t)| \log ^{+}(1 / t)$ is integrable on $(0, \pi)$ and hence $[6, \mathrm{p}$. 273] $T^{\prime} a^{\#}$ is the sequence of Fourier cosine coefficients of $H(x)=$ $((P g)(x)+G(x)) / 2$ where $G$ is the function associated by Lemma 2 to the sequence $a^{\ddagger}$. Since $G \in L^{\sigma}(0, \pi)$ for any $\sigma$, and $H \in L^{\sigma}(0, \pi)$ by hypothesis, it follows that $P g \in L^{\sigma}(0, \pi)$. Now, since $|(P f)(x)| \leqq$ $(P|g|)(x)$ it follows that $P f \in L^{\sigma}(0, \pi)$ whenever $f \in L^{\sigma}(0, \pi)$ so then Lemma 1 shows $\alpha<1$. Thus (a) implies (b).

Conversely, suppose (b) holds. There is a number $p>1$ such that $\alpha<p^{-1}$ so $L^{\sigma}(0, \pi) \subset L^{p}(0, \pi)$ and hence if $f \in L^{\sigma}(0, \pi)$ Hölder's inequality shows $\int_{0}^{\pi}|f(t)| \log ^{+}(1 / t) d t<\infty$. According to Loo [6, p. 273-274] $T^{\prime} a$ is then the sequence of Fourier cosine coefficients of $h(x)=(\operatorname{Pf}(x)+F(x)) / 2$ where $F$ is the function of Lemma 2. Now Lemma 1 shows that $\operatorname{Pf} \in L^{\sigma}(0, \pi)$ and hence $h \in L^{\sigma}(0, \pi)$ so (a) holds. The theorem is proved.

## References

1. E. Alshynbaeva, Transformations of Fourier coefficients of certain classes of functions, Math. Notes, 25 (1979), 332-335.
2. R. Bellman, A note on a theorem of Hardy on Fourier coefficients, Bull. Amer. Math. Soc., 50 (1944), 741-744.
3. D. W. Boyd, Indices for the Orlicz spaces, Pacific J. Math., 38 (1971), 315-323.
4. -, Indices of function spaces and their relationship to interpolation, Canad.
J. Math., 21 (1969), 1245-1254.
5. G. H. Hardy, Notes on some points in the integral calculus LXVI, Messenger Math. 58 (1928), 50-52.
6. C.-T. Loo, Notes on the properties of Fourier coefficients, Amer. J. Math., 71 (1949), 269-282.
7. G. G. Lorentz, Majorants in spaces of integrable functions, Amer. J. Math., 77 (1955), 484-492.
8. A. Zygmund, Trigonometric Series, Vol I and II combined, Cambridge Univ. Press, 1968.

Received May 21, 1980. Research supported in part by NSERC grant \#A-8185.
University of Alberta
Edmonton, Alberta, Canada

