SCHAUDER BASES AND FIXED POINTS OF NONEXPANSIVE MAPPINGS

PAOLO M. SOARDI

A fixed point theorem is proved for nonexpansive mappings in Banach spaces which are isomorphic to spaces with certain boundedly complete bases.

1. Introduction. Suppose X and Y are isomorphic Banach spaces with $h \|\cdot\|_{Y} \leq \|\cdot\|_{X} \leq k \|\cdot\|_{Y}$, where $\|\cdot\|_{Y}$ and $\|\cdot\|_{X}$ denote the norms in Y and X respectively. Let $t = kh^{-1}$ (this notation will be kept fixed throughout the paper). Suppose also that every convex weakly compact (weak* compact, when X is a dual Banach space) subset K of X has the fixed point property with respect to nonexpansive mappings (i.e., mappings $T: K \to K$ such that $\|Tx - Ty\|_{X} \leq \|x - y\|_{X}$, for all $x, y \in K$). It is not known in general whether, assuming t sufficiently close to 1, convex weakly compact (weak* compact) subsets of Y have the same property (but see Bynum [1]).

In this paper we answer in the affirmative this question when X has a Schauder basis (b_n) which satisfies a condition introduced by Gossez and Lami Dozo [2]. For every positive integer k and $x \in X$ set $U_k(x) = \sum_{n=1}^k f_n(x)b_n$, where (f_n) denotes the associated system of linear functionals. We shall always assume that there exists a strictly increasing sequence (k_n) with the following property:

for every c>0 there is $\rho>0$ such that whenever $x\in X$ and n satisfy

$$\| U_{k_n}(x) \|_{X} = 1$$

$$\| x - U_{k_n}(x) \|_{X} \ge c$$

then $||x||_x \geq 1 + \rho$.

It is easy to see (Lemma 1 below) that the above condition implies that the basis (b_n) is boundedly complete, so that X is a dual Banach space.

In the next sections it is proved that there exists $t_0 > 1$ such that for $t < t_0$ every weak^{*} compact convex subset of Y has the fixed point property with respect to nonexpansive mappings. For t = 1 this follows easily from the results of Karlovitz [3], while for t > 1 it can not be deduced from [3]. As a remarkable consequence we obtain that, in every Banach space Y isomorphic to l^1 with t < 2, weak^{*} compact convex subsets have the fixed point property with respect to nonexpansive mappings.

2. Properties of the space X.

LEMMA 1. Suppose X is a Banach space with a Schauder basis (b_n) satisfying the assumptions of the above section. Then the basis (b_n) is boundedly complete and X is isomorphic to the dual of the Banach space generated by the system of the linear functionals (f_n) .

Proof. Suppose that (a_n) is a sequence of scalars such that $\sup_N \|\sum_{n=1}^N a_n b_n\|_X < \infty$. Then, the same argument as in [6, p. 290-291] implies that, for some subsequence k_{nj} , $\sum_{n=1}^{k_{nj}} a_n b_n$ converges to a point $x \in X$. Then, of course, $f_n(x) = a_n$ for every n, so that $\sum_{n=1}^{\infty} a_n b_n = x$. The second assertion is proved in [6, Th. II 6.2, 3)].

For every positive integer n and every real c > 0 we set $r_n(c) = \inf ||x||_x - 1$, where the infimum is taken over all $x \in X$ such that $||U_{k_n}(x)||_x = 1$, $||x - U_{k_n}(x)||_x \ge c$. We set also $r(c) = \inf_n r_n(c)$. Clearly r(c) > 0 for all positive c. We complete the definition of r(c) by letting r(0) = 0. In the following we set $V_{k_n}(x) = x - U_{k_n}(x)$.

LEMMA 2. r(c) is a nondecreasing continuous function of c.

Proof. Let $\varepsilon > 0$ be arbitrarily small and $c_2 > c_1 \ge 0$. There exist n > 0 and $x \in X$ such that $|| U_{k_n}(x) ||_x = 1$, $|| V_{k_n}(x) ||_x \ge c_2$ and $1 + r(c_2) + \varepsilon > ||x||_x \ge 1 + r(c_1)$. Hence $r(c_2) \ge r(c_1) \ge 0 = r(0)$ and r(c) is nondecreasing.

Observe now that there exist a sequence of points $x_j \in X$ and a sequence of positive integers n_j such that

$$\| U_{k_{n_j}}(x_j) \|_{x} = 1$$
, $\| V_{k_{n_j}}(x_j) \|_{x} \ge c_1$ and $1 + r(c_1) + j^{-1} > \| x_j \|_{x}$.

We set $v_j = \|V_{k_{n_j}}(x_j)\|_X$. After extracting a subsequence if necessary, we may suppose that $v = \lim_j v_j$ exists. If $v > c_2$, then, for large values of j, $1 + r(c_1) + j^{-1} > \|x_j\|_X \ge 1 + r(c_2)$, so that, by what has been already proved, $r(c_1) = r(c_2)$, and we are done. Thus we may assume $c_1 \le v \le c_2$. Let $y_j = x_j + s_j V_{k_{n_j}}(x_j)$, where s_j is a scalar such that $(1 + s_j)v_j = c_2$. Clearly we must have $\|y_j\|_X \ge 1 + r(c_2)$ and $\|x_j - y_j\|_X = |s_j|v_j$. Hence

$$egin{aligned} 1 + r(c_1) + j^{-1} &> \|x_j\|_{x} \geq \|y_j\|_{x} - |s_j|v_j|_{x} \ &\geq 1 + r(c_2) - |s_j|v_j \end{aligned}$$

that is,

$$r(c_{_2}) - r(c_{_1}) \leq |s_j|v_j + j^{-1}$$
 .

Now, if $v < c_2$, then $|s_j| = s_j = (c_2 - v_j)v_j^{-1} \leq (c_2 - c_1)v_j^{-1}$ for j large enough. If $v = c_2$ then s_j tends to 0, so that, if j is large, $|s_j| < c_2$

 $(c_2 - c_1)v_j^{-1}$. In any case, for large values of j, we obtain $r(c_2) - r(c_1) \leq (c_2 - c_1) + j^{-1}$, and the proof is ended.

LEMMA 3. Suppose that $(x_n) \subseteq X$ is a sequence of points converging in the weak* topology to a point $z \in X$. Let $\gamma = \limsup_n \|x_n - z\|_x$. Then, for every $y \in X$, $y \neq z$

$$\limsup \|x_n - y\|_{x} \ge \{1 + r(\gamma \|y - z\|_{x}^{-1})\} \|y - z\|_{x}.$$

Proof. Let $\varepsilon > 0$ be arbitrarily small. There exists $j = j(\varepsilon)$ such that $||V_{k_j}(y-z)||_x < \varepsilon$. Since $x_n - z$ converges weak* to 0 and the associated functionals f_n are weak* continuous (Lemma 1), for every fixed j we can find n_0 such that $||U_{k_j}(x_n - z)||_x < \varepsilon$ for n greater than n_0 . Therefore, for $n > n_0$, we have by Lemma 2

$$egin{aligned} \|y-x_n\|_{X} \ &\geq -2arepsilon+\|U_{kj}(y-z)+V_{kj}(z-x_n)\|_{X} \ &\geq -2arepsilon+\|U_{kj}(y-z)\|_{X}\{1+r(\|V_{kj}(z-x_n)\|_{X}\cdot\|U_{kj}(y-z)\|_{X}^{-1})\} \ &\geq -2arepsilon+(\|y-z\|_{X}-arepsilon)\{1+r((\|z-x_n\|_{X}-arepsilon)(\|y-z\|_{X}+arepsilon)^{-1})\}\,. \end{aligned}$$

By Lemma 2 again

$$\limsup_{n} \|y - x_n\|_{x}$$

$$\geq (\|y - z\|_{x} - \varepsilon)\{1 + r((\gamma - \varepsilon)(\|y - z\|_{x} + \varepsilon)^{-1})\} - 2\varepsilon.$$

Since ε is arbitrary and r is continuous, the lemma follows.

3. Main results. The following lemma is a variant of a result of [5].

LEMMA 4. Suppose Y is a dual Banach space, $K \subseteq Y$ is a convex weak^{*} compact subset, $T: K \rightarrow K$ is a nonexpansive mapping. Then, for every $x \in K$ there is a closed convex 'subset $H(x) \subseteq K$ which is invariant under T and satisfies

- (a) diam $H(x) \leq \sup_n ||x T^n x||_r$
- (b) $\sup_{y \in H(x)} ||x y||_{Y} \leq 2 \sup_{x} ||x T^{n}x||_{Y}$.

Proof. For $x \in K$, set $d(x) = \sup_n ||x - T^n x||_r$ and denote by O(x) the orbit of x (i.e., $O(x) = \{x, Tx, T^2x, \dots, T^nx, \dots\}$). Set also

$$A_0 = cl^* co O(x)$$
 $A_{n+1} = cl^* co T(A_n)$, $n = 0, 1, 2, \cdots$

where cl^{*} co denotes the weak^{*} closure of the convex hull. Clearly $A_n \subseteq K$, $O(T^{n+1}x) \subseteq T(A_n) \subseteq A_{n+1}$, diam $A_n \leq d(x)$. Since K is weak^{*} compact, $B_k = \bigcap_{n \geq k} A_n$ is nonvoid for every $k = 0, 1, 2, \cdots$. Moreover B_k is closed and convex, diam $B_k \leq d(x)$, $B_k \subseteq B_{k+1}$, $T(B_k) \subseteq B_{k+1}$.

PAOLO M. SOARDI

It follows that $H(x) = \overline{\bigcup_{k=0}^{\infty} B_k}$ satisfies (a). Property (b) follows from the fact that H(x) contains the set $\overline{\bigcap_{n=0}^{\infty} \operatorname{cl}^* O(T^n x)}$. It is also clear that H(x) is invariant.

The following theorem is our main result announced in §1.

THEOREM. Suppose X is a Banach space with a Schauder basis satisfying the assumptions of §1. Let Y denote an isomorphic Banach space with t < 1 + r(1). Then, every convex weak^{*} compact subset K of Y has the fixed point property with respect to nonexpansive mappings.

Proof. Suppose $T: K \to K$ is a nonexpansive mapping. There is a sequence $(x_n^0) \subseteq K$ such that $\lim_n ||x_n^0 - Tx_n^0||_F = 0$. After passing to a subsequence if necessary, we may assume that x_n^0 is weak* convergent to a point $z^0 \in K$, and that $\alpha_0 = \lim_n ||x_n^0 - z^0||_F$ exists. By nonexpansiveness, for every positive integer k we have $||z^0 - T^k z^0||_F \leq$ $\lim \sup_n ||x_n^0 - T^k z^0||_F \leq \alpha_0$. Thus $d(z^0) \leq \alpha_0$. By Lemma 4 there is a closed convex invariant subset $H(z^0) \subseteq K$ such that diam $H(z^0) \leq \alpha_0$. Then there exists a sequence (x_n^1) contained in $H(z^0)$ such that $||x_n^1 - Tx_n^1||_F$ tends to 0, x_n^1 converges weak* to $z^1 \in K$, $\alpha_1 = \lim_n ||x_n^1 - z^1||_F$ exists and also $\gamma_1 = \lim_n ||x_n^1 - z^1||_F$ exists. We then have (recall the notation introduced in § 1) for every m

$$lpha_{_{0}} \ge \limsup_{_{n}} \|x_{_{m}}^{_{1}} - x_{_{n}}^{^{1}}\|_{_{Y}} \ge k^{_{-1}}\limsup_{_{n}} \|x_{_{m}}^{^{1}} - x_{_{n}}^{^{1}}\|_{_{X}} \ \ge k^{_{-1}}\|x_{_{m}}^{^{1}} - z^{^{1}}\|_{_{X}}\{1 + r(\gamma_{_{1}}\|x_{_{m}}^{^{1}} - z^{^{1}}\|_{_{X}}^{^{-1}})\} \ \ge k^{_{-1}}h\|x_{_{m}}^{^{1}} - z^{^{1}}\|_{_{Y}}\{1 + r(\gamma_{_{1}}\|x_{_{m}}^{^{1}} - z^{^{1}}\|_{_{X}}^{^{-1}})\}$$

by Lemma 3. Letting m tend to infinity we get

$$\alpha_{0} \geq \limsup_{m} (\limsup_{n} \|x_{m}^{1} - x_{n}^{1}\|_{Y})$$
$$\geq t^{-1}\alpha_{1}(1 + r(1))$$

that is,

$$\alpha_{1} \leq t(1 + r(1))^{-1} \alpha_{0}$$
.

Moreover, since z^1 belongs to the weak* closure $H(z^0)$, Lemma 4, (b) implies $||z^0 - z^1||_F \leq 2\alpha_0$.

Carrying on this process we produce a sequence of nonnegative numbers α_n such that $\alpha_{n+1} \leq t(1+r(1))^{-1}\alpha_n \leq \{t(1+r(1))^{-1}\}^{n+1}\alpha_0$, and a sequence of points $z^n \in K$ such that $||z^{n+1} - z^n||_F \leq 2\alpha_n$, $||z^n - Tz^n||_F \leq \alpha_n$. Hence z^n is strongly convergent to a fixed point of T.

If $X = l^p$, it is easy to see that $1 + r(1) = 2^{1/p}$. Therefore we have the following remarkable corollary.

SCHAUDER BASES AND FIXED POINTS OF NONEXPANSIVE MAPPINGS 197

COROLLARY. Suppose Y is isomorphic to l^1 with t < 2. Then every weak^{*} compact convex subset of Y has the fixed point property with respect to nonexpansive mappings.

This corollary generalizes a result of Karlovitz ([3, Corollary]). In [4] an example was given of a space isomorphic to l^1 with t = 2, whose unit ball has not the fixed property with respect to nonexpansive mappings. Hence our corollary is the best result possible.

4. Concluding remarks and comparison with previous results. If X is reflexive, then the above theorem can be proved in a much simpler way. This case however is not new, because it is easily seen that, under our assumption on Y, every convex weakly compact subset of Y has normal structure. If X is not reflexive, we were not able to decide whether every weak* compact convex subset of Y has normal structure (of course when t < 1 + r(1)). Recall that a weak* closed convex subset $C \subseteq Y$ has normal structure if every weak* compact convex subset $K \subseteq C$ (containing more than one point) has a nondiametral point (see ([4])). A sufficient condition for C to admit normal structure was also given in [4]. The condition is as follows.

Suppose there exists a functions $\delta: (R^+)^2 \rightarrow R^+$ such that

- (i) for each fixed s, $\delta(r, s)$ is continuous and strictly increasing
- (ii) $\delta(s, s) > s$ for all s

(iii) if x_n tends to 0 weak* and $||x_n||_{Y}$ tends to s, then, for all $y \in K$, $||y - x_n||_{Y}$ tends to $\delta(||y||_{Y}, s)$.

It is easy to see that this condition is not satisfied in the space Y obtained by renorming l^1 with the norm $||y||_r = \max(||y||_l \infty, t^{-1}||y||_{l^1})$, where 1 < t < 2. Indeed, if (b_n) is the natural basis of l^1 , take $y = b_1$. Assume that the condition of [4] is satisfied, say, for the unit ball of Y. We have $||y||_r = 1$. Set $x_n = (t-1)b_n$. Then $||x_n||_r = t - 1$, $||y - x_n||_r = 1$, so that, by (iii), $\delta(1, (t-1)) = 1$. On the other hand, if we choose $z = b_1 + (t-1)b_2$, we have $||z||_r = 1$ and $||z - x_n||_r = t^{-1}||z - x_n||_{l^1} = t^{-1}(2t-1)$. Hence, by (iii) we should have $\delta(1, t-1) = 2 - t^{-1}$, a contradiction.

Analogous arguments show also that the relation \perp is not approximately uniformly symmetric in Y (in the sense of [3]) and our result cannot be deduced from [3].

For other examples concerning spaces X satisfying our assmuptions, we refer to [2] and [6].

References

1. W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math., 86 (1980), 427-436.

PAOLO M. SOARDI

2. P. Gossez and E. Lami Dozo, Sructure normale et base de Scauder, Bull. Cl. Sc. Ac. R. Belgique, 55 (1969), 673-681.

3. L. A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc., 55 (1969), 321-325.

4. T. C. Lim, Asymptotic centers and nonexpansive mappings in some conjugate spaces, preprint.

5. D. Roux and Paolo M. Soardi, Alcune generalizzazoni del teorema di Browder-Göhde-Kirk, Atti Accad. Naz. Lincei, Rend. Cl. Sc. Mat. Fis. Nat., **52** (1972), 424-430.

6. I. Singer, Bases in Banach Spaces I, Springer Verlag, Berlin, Heidelberg, New York, 1970.

Received August 17, 1980.

Universita di Milano "Federigo Enriques" Via c Saldini, 50 20133 Milano, Italy