EMBEDDING HOMOLOGY 3-SPHERES IN S^{5}

Steven Plotnick

Abstract

The purpose of this note is to give a proof independent of high-dimensional surgery theory of the following embedding result:

Theorem. Let Σ^{3} be the homology 3 -sphere resulting from a Dehn surgery of type $1 / 2 a$ on a knot in S^{3}. Then Σ^{3} smoothly embeds in S^{5} with complement a homotopy circle.

This theorem illustrates the connection between two major areas of ignorance in low-dimensional topology. For instance, if the homology sphere Σ^{3} bounds a contractible 4 -manifold V^{4}, then, using the 5-dimensional Poincaré conjecture, we see that $\Sigma^{3} \times 0 \hookrightarrow \Sigma^{3} \times D^{2} U$ $V^{4} \times S^{1}$ is a smooth embedding of Σ into S^{5} with complement homotopy equivalent to a circle. Conversely, if Σ smoothly embeds in S^{5} with $S^{5}-\Sigma \simeq S^{1}$, and if the Browder-Levine fibering theorem [1] holds in dimension 5 , then $S^{5}-\Sigma^{3} \times \grave{D}^{2}$ fibers over S^{1}, and the fiber is necessarily contractible.

High dimensional surgery theory can be used to completely solve this problem. Given Σ^{3}, convert $\Sigma^{3} \times T^{2}$ to $K \simeq S^{3} \times T^{2}$ via surgery, with $\Sigma^{3} \subset K$ (see [6]). By work of Kirby-Siebenmann, K is homeomorphic to $S^{3} \times T^{2}$. Lifting to the universal cover, we get $\Sigma \subset S^{3} \times$ $R^{2} \subset S^{5}$, and we see that every homology 3 -sphere topologically embeds in S^{5} with complement a homotopy circle. However, if Σ has nontrivial Rochlin invariant, a standard argument shows that the embedding cannot be smooth or PL. (If it were smooth (PL), make the homotopy equivalence $f: S^{5}-\Sigma^{3} \times D^{2} \rightarrow S^{1}$ transverse to a point $p \in S^{1}$. Then $f^{-1}(p)$ would be a smooth (PL) spin manifold V^{4} with zero signature and $\partial V=\Sigma$, contradicting the fact that Σ has nontrivial Rochlin invariant.) If Σ has trivial Rochlin invariant, the argument in [8] shows that the embedding can be taken to be smooth or PL. (See [7] for a much deeper analysis of knotting of homology 3 -spheres in S^{5}.) Nevertheless, it seems desirable to give a more elementary construction for these embeddings when possible. It would be nice if these methods, together with the Kirby-Rolfsen calculus for links in S^{3}, could provide the desired embeddings for all Σ^{3} with zero Rochlin invariant.

This proof grew out of studying Fintushel and Pao's attempt [3] to show that Scharlemann's possibly exotic $S^{3} \times S^{1} \# S^{2} \times S^{2}$ is standard [6]. The basic construction is from [3] and will be described below.

I would like to thank the referee for very useful and constructive comments.

Proof of the theorem. Let $K \subset S^{3}$ be a smooth knot, and let Σ^{3} be the homology 3 -sphere resulting from a Dehn surgery on K of type $1 / 2 a$. Let m and ι be a meridian and preferred longitude of K. It is not hard to see that surgery on the curve $\ell \times\left\{{ }^{*}\right\}$ in the 4-manifold $\Sigma^{3} \times S^{1}$ produces a manifold homotopy equivalent to $S^{3} \times$ $S^{1} \# S^{2} \times S^{2}$ or $S^{3} \times S^{1} \# S^{2} \widetilde{\times} S^{2}$, depending on the framing used, where $S^{2} \widetilde{\times} S^{2}$ is the nontrivial S^{2} bundle over S^{2}. We will sketch the proof ([3]) that the manifold is in fact diffeomorphic to $S^{3} \times$ $S^{1} \# S^{2} \times S^{2}$, assuming we use the framing which produces an even 4-manifold, and we will also keep track of homology generators for future use.

Think of surgery on $\ell \times\left\{^{*}\right\}$ in $\Sigma^{3} \times S^{1}$ as follows: First remove a tubular neighborhood $T \approx S^{1} \times D^{2} \times S^{1}$ of $\ell \times S^{1}$ in $\Sigma^{3} \times S^{1}$, leaving $\left(S^{3}-K \times \dot{D}^{2}\right) \times S^{1}$. Let $X \approx S^{1} \times D^{3}$ be a tubular neighborhood of $\ell \times$ $\left\{^{*}\right\}$, where X sits in T in the obvious fashion, so that $\overline{T-X}=S^{1} \times$ $D^{2} \times I$. To surger ℓ, replace X by $D^{2} \times S^{2}$, identifying $S^{1} \times$ polar caps $\} \subset D^{2} \times S^{2}$ with $S^{1} \times D^{2} \times\{ \pm 1\} \subset S^{1} \times D^{2} \times I$.

The identification $D^{2} \times S^{2} \bigcup_{S^{1} \times D^{2} \times\{ \pm 1} S^{1} \times D^{2} \times I$ produces a 4 manifold P^{4} which can be identified as the result of plumbing two copies of $S^{2} \times D^{2}$ at two points. The boundary of P^{4} is T^{3} with homology generators e_{1}, e_{2}, e_{3} as follows: e_{1} is a meridian of $S^{1} \times D^{2} \times$ I, e_{2} is that longitude of $S^{1} \times D^{2} \times I$ which, after being isotoped across a plumbing point, becomes a meridian to $D^{2} \times$ equator $\subset D^{2} \times$ S^{2}, and e_{3} generates $H_{1}\left(P^{4}\right) \cong \boldsymbol{Z}$. Actually, e_{3} is defined only modulo multiples of e_{1} and e_{2}, but P^{4} admits self-diffeomorphisms taking any generator of $H_{1}(P)$ to any other generator (see [2], Lemma 3.3), so we can ignore this point.

If we let N denote the result of surgery on $\ell \times\left\{{ }^{*}\right\}$ in $\Sigma^{3} \times S^{1}$ (using the framing induced from the zero framing of ℓ in Σ^{3}), we see that N is the union of P^{4} and $\left(S^{3}-K \times \grave{D}^{2}\right) \times S^{1}$ defined by the matrix

$$
m\left(\begin{array}{lll}
e_{1} & e_{2} & e_{3} \\
m \\
\iota & 0 & 0 \\
2 a & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

where m is a meridian to K in S^{3}, and h generates the circle factor in $\left(S^{3}-K \times D^{2}\right) \times S^{1}$.

Notice that there are two natural 2-spheres in P^{4}, the cores of
the two copies of $S^{2} \times D^{2}$. We have $H_{2}(P) \cong \boldsymbol{Z}^{2}$, generated by the cores, which we denote A and B, where A corresponds to the S^{2} added in the surgery, and B is

$$
D^{2} \times\{\text { north and south poles }\} \cup S^{1} \times\{0\} \times I
$$

in the decomposition $P=D^{2} \times S^{2} \cup S^{1} \times D^{2} \times I$. Also, $H_{2}\left(T^{3}=\partial P^{4}\right) \cong$ Z^{3}, generated by $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}$, and $e_{2} \wedge e_{3}$, which we write as e_{12}, e_{13}, e_{23}. The inclusion $T^{3} \hookrightarrow P^{4}$ induces $e_{12} \mapsto 0, e_{13} \mapsto A, e_{23} \mapsto B$. Finally,

$$
H_{2}\left(\left(S^{3}-K \times \dot{D}^{2}\right) \times S^{1}\right) \cong Z
$$

generated by $m \wedge h$.
Examination of the Mayer-Vietoris sequence for N yields $H_{2}(N) \cong$ \boldsymbol{Z}^{2}, with explicit generators. The 2 -sphere A is one generator. Since e_{2} bounds a disk in P, and is glued to ℓ, which bounds a Seifert surface in $S^{3}-K \times \dot{D}^{2}$, we may glue the disk to the surface to produce the other generator, which we refer to as the generator arising from e_{2}. Notice that B is trivial in $H_{2}(N)$.

Now create W^{5} by adding a 2 -handle to $\Sigma^{3} \times S^{1} \times I$ along $\ell \times$ $\left\{^{*}\right\} \times\{1\}$, producing a cobordism from $\Sigma^{3} \times S^{1}$ to N. The class of A in $H_{2}(N)$ dies in $H_{2}(W)$, while the class arising from e_{2} lives in $H_{2}(W)$. In fact, it is easy to see that

$$
H_{i}(W)= \begin{cases}Z, & i=0,1,2,3,4 \\ 0, & i=5\end{cases}
$$

with all of $H_{*}(W)$ coming from $H_{*}(N)$.
Now, as first observed by Pao [5], P^{4} admits the following selfdiffeomorphism: remove one copy of $S^{2} \times D^{2}$ and replace it by an element in the kernel of $\pi_{1} S O(2) \rightarrow \pi_{1} S O(3)$. This idea can easily be used to produce a self-diffeomorphism f which fixes e_{3} and one of e_{1}, e_{2} (say e_{2}), and takes e_{1} to e_{1} plus an even multiple of e_{2}. (To do this we remove and replace B.) This gives the following diagram:

$$
\begin{aligned}
& P \longleftrightarrow \partial P \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
2 a & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}\left(S^{3}-K \times \dot{D}^{2}\right) \times S^{1} \\
& f \\
& P \longleftrightarrow \partial P \xrightarrow[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)]{ }\left(S^{3}-K \times \dot{D}^{2}\right) \times S^{1}
\end{aligned}
$$

The top row gives N, the bottom $S^{3} \times S^{1} \# S^{2} \times S^{2}$, yielding

$$
N \underset{\approx}{\underset{\approx}{f}} S^{3} \times S^{1} \# S^{2} \times S^{2}
$$

We can also create V^{5}, a cobordism from $S^{3} \times S^{1}$ to $S^{3} \times S^{1} \#$ $S^{2} \times S^{2}$, by attaching a 2 -handle along $\ell \times\left\{^{*}\right\} \times\{0\}$ in $S^{3} \times S^{1} \times I$. Glue W to V using the diffeomorphism f, creating a cobordism X^{5} from $\Sigma^{3} \times S^{1}$ to $S^{3} \times S^{1}$.

The point is this: The class of A in $H_{2}(N)$ is taken to the corresponding class in $H_{2}\left(S^{3} \times S^{1} \# S^{2} \times S^{2}\right)$, which dies in $H_{2}(V)$. This is certainly not true geometrically, since f takes A to $A+2 a B$ (essentially, A is altered by the "belt trick"), but B is homologically trivial. The class in $H_{2}(N)$ arising from e_{2} is geometrically taken to the corresponding class in $H_{2}\left(S^{3} \times S^{1} \# S^{2} \times S^{2}\right)$.

Now examine $H_{*}(X)$. Since A bounds D^{3} in W, and $A+2 a B$ bounds a 3 -chain in V, we produce a generator in $H_{3}(X)$. This 3cycle has intersection number ± 1 with the generator of $H_{2}(W)$ arising from e_{2}, and the generator of $H_{2}(W)$ arising from e_{2} is identified with a class in $H_{2}(V)$ which we can represent by an embedded 2-sphere (with trivial normal bundle), since ℓ bounds a singular disk in S^{3}.

Now surger the generator of $H_{2}(X)$. Standard sequences for this surgery show that this simultaneously kills the generator of $H_{2}(X)$ and its dual in $H_{3}(X)$. The result is a homology product, Y, from $\Sigma^{3} \times S^{1}$ to $S^{3} \times S^{1}$, and $\pi_{1} Y \cong Z$, coming from the circle factor in either boundary component. If we now glue $D^{4} \times S^{1}$ to Y along $S^{3} \times S^{1}$, and glue $\Sigma^{3} \times D^{2}$ along $\Sigma^{3} \times S^{1}$, we have a simply-connected homology 5 -sphere, hence S^{5}. Thus, we have a smooth embedding of Σ^{3} in S^{5} with $\pi_{1}\left(S^{5}-\Sigma^{3} \times \dot{D}^{2}\right) \cong \boldsymbol{Z}$.

Actually, it follows from [6] that for every homology 3 -sphere $\Sigma, \Sigma \times S^{1}$ is homology-cobordant to $S^{3} \times S^{1}$. The argument is as follows: embed Σ^{3} in S^{5} and remove a tubular neighborhood $\Sigma^{3} \times D^{2}$

of Σ and a tubular neighborhood $S^{1} \times D^{4}$ of a meridian to the knotted Σ^{3}. The result is a homology-cobordism Y^{5} from $\Sigma^{3} \times S^{1}$ to $S^{3} \times S^{1}$, and $\pi_{1}(\Sigma) \rightarrow \pi_{1}(Y)$ is trivial. In general, $\pi_{1} Y$ will be mysterious.

Consider the universal cover \tilde{X} : We have $H_{2}(\tilde{X}) \cong \boldsymbol{Z}(\boldsymbol{Z})$ and $H_{3}(\tilde{X}) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}(\boldsymbol{Z})$. If we do \boldsymbol{Z} surgeries equivariantly, killing the $\boldsymbol{Z}(\boldsymbol{Z})$ factors, the result is \tilde{Y}. To create $\widehat{S^{5}-\Sigma \times D^{2}}$, attach $D^{4} \times \boldsymbol{R}$ to \tilde{Y} along $S^{3} \times \boldsymbol{R}$. This kills $H_{3}(\tilde{Y})$, and thus $\widehat{S^{5}-\Sigma \times D^{2}}$ is contractible, so that $S^{5}-\Sigma \times{ }^{\circ} D^{2}$ is a $K(\boldsymbol{Z}, 1)$. This proves the theorem.

Remarks. (1) Surgery of type $1 / 2 a$ on a knot in S^{3} results in a homology 3 -sphere with zero Rochlin invariant, by [4].
(2) The proof is equally valid for (a) knots in homology spheres which bound contractible 4 -manifolds, or (b) surgeries of type $1 / 2 a_{i}$, $i=1, \cdots, n$, on a link of n components, provided the components are algebraically unlinked (by doing n times as many surgeries). In particular, the theorem is valid for connected sums of Σ 's as above.

References

1. W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv., 40 (1966), 153-160.
2. R. Fintushel, Locally smooth circle action on homotopy spheres, Duke Math. J., 43 (1976), 63-70.
3. R. Fintushel and P. Pao, A surgery construction on $M^{3} \times S^{1}$, Houston J. Math., 5 (1979), 69-73.
4. F. González-Acuña, Dehn's construction on knots, Bol. Soc. Mat. Mex., 15 (1970), 58-79.
5. P. S. Pao, Non-linear circle actions on the 4 -sphere and twisting spun knots, Topology, 17 (1978), 291-296.
6. M. Scharlemann, Constructing strange manifolds with the dodecahedral space, Duke Math. J., 43 (1976), 33-40.
7. ——, Non-PL imbeddings of 3-manifolds, Amer. J. Math., 100 (1978), 539-545.
8. J. Shaneson, On non-simply-connected manifolds, Proc. Amer. Math. Soc. Symposia in Pure Math. XXII, Madison, (1970), 221-229.

Received June 1, 1980.
University of Chicago
Chicago, IL 60637
Current address: Columbia University
New York, NY 10027

