EMBEDDING HOMOLOGY 3-SPHERES IN S^5

STEVEN PLOTNICK

The purpose of this note is to give a proof independent of high-dimensional surgery theory of the following embedding result:

THEOREM. Let $\Sigma^{\mathfrak{s}}$ be the homology 3-sphere resulting from a Dehn surgery of type 1/2a on a knot in $S^{\mathfrak{s}}$. Then $\Sigma^{\mathfrak{s}}$ smoothly embeds in $S^{\mathfrak{s}}$ with complement a homotopy circle.

This theorem illustrates the connection between two major areas of ignorance in low-dimensional topology. For instance, if the homology sphere Σ^3 bounds a contractible 4-manifold V^4 , then, using the 5-dimensional Poincaré conjecture, we see that $\Sigma^3 \times 0 \hookrightarrow \Sigma^3 \times D^2 \cup$ $V^4 \times S^1$ is a smooth embedding of Σ into S^5 with complement homotopy equivalent to a circle. Conversely, if Σ smoothly embeds in S^5 with $S^5 - \Sigma \simeq S^1$, and if the Browder-Levine fibering theorem [1] holds in dimension 5, then $S^5 - \Sigma^3 \times D^2$ fibers over S^1 , and the fiber is necessarily contractible.

High dimensional surgery theory can be used to completely solve this problem. Given $\Sigma^{\mathfrak{s}}$, convert $\Sigma^{\mathfrak{s}} \times T^{\mathfrak{s}}$ to $K \simeq S^{\mathfrak{s}} \times T^{\mathfrak{s}}$ via surgery. with $\Sigma^3 \subset K$ (see [6]). By work of Kirby-Siebenmann, K is homeomorphic to $S^{\mathfrak{s}} \times T^{\mathfrak{s}}$. Lifting to the universal cover, we get $\Sigma \subset S^{\mathfrak{s}} \times$ $R^2 \subset S^5$, and we see that every homology 3-sphere topologically embeds in S^5 with complement a homotopy circle. However, if Σ has nontrivial Rochlin invariant, a standard argument shows that the embedding cannot be smooth or PL. (If it were smooth (PL), make the homotopy equivalence $f: S^5 - \Sigma^3 \times \mathring{D^2} \rightarrow S^1$ transverse to a point $p \in S^1$. Then $f^{-1}(p)$ would be a smooth (PL) spin manifold V^{4} with zero signature and $\partial V = \Sigma$, contradicting the fact that Σ has nontrivial Rochlin invariant.) If Σ has trivial Rochlin invariant, the argument in [8] shows that the embedding can be taken to be smooth or PL. (See [7] for a much deeper analysis of knotting of homology 3-spheres in S^{5} .) Nevertheless, it seems desirable to give a more elementary construction for these embeddings when possible. It would be nice if these methods, together with the Kirby-Rolfsen calculus for links in S^{3} , could provide the desired embeddings for all Σ^{*} with zero Rochlin invariant.

This proof grew out of studying Fintushel and Pao's attempt [3] to show that Scharlemann's possibly exotic $S^3 \times S^1 \# S^2 \times S^2$ is standard [6]. The basic construction is from [3] and will be described below.

STEVEN PLOTNICK

I would like to thank the referee for very useful and constructive comments.

Proof of the theorem. Let $K \subset S^3$ be a smooth knot, and let Σ^3 be the homology 3-sphere resulting from a Dehn surgery on K of type 1/2a. Let m and \checkmark be a meridian and preferred longitude of K. It is not hard to see that surgery on the curve $\checkmark \times \{^*\}$ in the 4-manifold $\Sigma^3 \times S^1$ produces a manifold homotopy equivalent to $S^3 \times S^1 \# S^2 \times S^2$ or $S^3 \times S^1 \# S^2 \widetilde{\times} S^2$, depending on the framing used, where $S^2 \widetilde{\times} S^2$ is the nontrivial S^2 bundle over S^2 . We will sketch the proof ([3]) that the manifold is in fact diffeomorphic to $S^3 \times S^1 \# S^2 \times S^2$, assuming we use the framing which produces an even 4-manifold, and we will also keep track of homology generators for future use.

Think of surgery on $\checkmark \times \{^*\}$ in $\Sigma^3 \times S^1$ as follows: First remove a tubular neighborhood $T \approx S^1 \times D^2 \times S^1$ of $\checkmark \times S^1$ in $\Sigma^3 \times S^1$, leaving $(S^3 - K \times D^2) \times S^1$. Let $X \approx S^1 \times D^3$ be a tubular neighborhood of $\checkmark \times$ $\{^*\}$, where X sits in T in the obvious fashion, so that $\overline{T - X} = S^1 \times D^2 \times I$. To surger \checkmark , replace X by $D^2 \times S^2$, identifying $S^1 \times \{\text{polar caps}\} \subset D^2 \times S^2$ with $S^1 \times D^2 \times \{\pm 1\} \subset S^1 \times D^2 \times I$.

The identification $D^2 \times S^2 \bigcup_{S^1 \times D^2 \times \{\pm 1\}} S^1 \times D^2 \times I$ produces a 4manifold P^4 which can be identified as the result of plumbing two copies of $S^2 \times D^2$ at two points. The boundary of P^4 is T^3 with homology generators e_1 , e_2 , e_3 as follows: e_1 is a meridian of $S^1 \times D^2 \times$ I, e_2 is that longitude of $S^1 \times D^2 \times I$ which, after being isotoped across a plumbing point, becomes a meridian to $D^2 \times$ equator $\subset D^2 \times$ S^2 , and e_3 generates $H_1(P^4) \cong Z$. Actually, e_3 is defined only modulo multiples of e_1 and e_2 , but P^4 admits self-diffeomorphisms taking any generator of $H_1(P)$ to any other generator (see [2], Lemma 3.3), so we can ignore this point.

If we let N denote the result of surgery on $\checkmark \times \{^*\}$ in $\Sigma^3 \times S^1$ (using the framing induced from the zero framing of \checkmark in Σ^3), we see that N is the union of P^4 and $(S^3 - K \times \mathring{D}^2) \times S^1$ defined by the matrix

 $e_1 \quad e_2 \quad e_3 \ m \begin{pmatrix} 1 & 0 & 0 \\ 2a & 1 & 0 \\ h & 0 & 1 \end{pmatrix},$

where *m* is a meridian to *K* in S^3 , and *h* generates the circle factor in $(S^3 - K \times D^2) \times S^1$.

Notice that there are two natural 2-spheres in P^4 , the cores of

the two copies of $S^2 \times D^2$. We have $H_2(P) \cong \mathbb{Z}^2$, generated by the cores, which we denote A and B, where A corresponds to the S^2 added in the surgery, and B is

 $D^2 imes$ {north and south poles} \cup $S^1 imes$ {0} imes I

in the decomposition $P = D^2 \times S^2 \cup S^1 \times D^2 \times I$. Also, $H_2(T^3 = \partial P^4) \cong \mathbb{Z}^3$, generated by $e_1 \wedge e_2$, $e_1 \wedge e_3$, and $e_2 \wedge e_3$, which we write as e_{12} , e_{13} , e_{23} . The inclusion $T^3 \hookrightarrow P^4$ induces $e_{12} \mapsto 0$, $e_{13} \mapsto A$, $e_{23} \mapsto B$. Finally,

$$H_2((S^3-K imes {D}^2) imes S^1)\cong oldsymbol{Z}$$
 ,

generated by $m \wedge h$.

Examination of the Mayer-Vietoris sequence for N yields $H_2(N) \cong \mathbb{Z}^2$, with explicit generators. The 2-sphere A is one generator. Since e_2 bounds a disk in P, and is glued to \checkmark , which bounds a Seifert surface in $S^3 - K \times \mathring{D}^2$, we may glue the disk to the surface to produce the other generator, which we refer to as the generator arising from e_2 . Notice that B is trivial in $H_2(N)$.

Now create W^5 by adding a 2-handle to $\Sigma^3 \times S^1 \times I$ along $\ell \times \{^*\} \times \{1\}$, producing a cobordism from $\Sigma^3 \times S^1$ to N. The class of A in $H_2(N)$ dies in $H_2(W)$, while the class arising from e_2 lives in $H_2(W)$. In fact, it is easy to see that

$$H_i(W) = egin{cases} oldsymbol{Z} \ oldsymbol{,} \quad i=0,\,1,\,2,\,3,\,4 \ 0 \ oldsymbol{,} \quad i=5 \end{cases}$$

with all of $H_*(W)$ coming from $H_*(N)$.

Now, as first observed by Pao [5], P^4 admits the following selfdiffeomorphism: remove one copy of $S^2 \times D^2$ and replace it by an element in the kernel of $\pi_1 SO(2) \rightarrow \pi_1 SO(3)$. This idea can easily be used to produce a self-diffeomorphism f which fixes e_3 and one of e_1 , e_2 (say e_2), and takes e_1 to e_1 plus an even multiple of e_2 . (To do this we remove and replace B.) This gives the following diagram:

The top row gives N, the bottom $S^3 \times S^1 \# S^2 \times S^2$, yielding

$$N { \longrightarrow \over pprox} S^{\scriptscriptstyle 3} imes S^{\scriptscriptstyle 1} \, \# \, S^{\scriptscriptstyle 2} imes S^{\scriptscriptstyle 2} \; .$$

We can also create V^5 , a cobordism from $S^3 \times S^1$ to $S^3 \times S^1 \# S^2 \times S^2$, by attaching a 2-handle along $\checkmark \times \{^*\} \times \{0\}$ in $S^3 \times S^1 \times I$. Glue W to V using the diffeomorphism f, creating a cobordism X^5 from $\Sigma^3 \times S^1$ to $S^3 \times S^1$.

The point is this: The class of A in $H_2(N)$ is taken to the corresponding class in $H_2(S^3 \times S^1 \# S^2 \times S^2)$, which dies in $H_2(V)$. This is certainly not true geometrically, since f takes A to A + 2aB (essentially, A is altered by the "belt trick"), but B is homologically trivial. The class in $H_2(N)$ arising from e_2 is geometrically taken to the corresponding class in $H_2(S^3 \times S^1 \# S^2 \times S^2)$.

Now examine $H_*(X)$. Since A bounds D^3 in W, and A + 2aB bounds a 3-chain in V, we produce a generator in $H_3(X)$. This 3-cycle has intersection number ± 1 with the generator of $H_2(W)$ arising from e_2 , and the generator of $H_2(W)$ arising from e_2 is identified with a class in $H_2(V)$ which we can represent by an embedded 2-sphere (with trivial normal bundle), since \checkmark bounds a singular disk in S^3 .

Now surger the generator of $H_2(X)$. Standard sequences for this surgery show that this simultaneously kills the generator of $H_2(X)$ and its dual in $H_3(X)$. The result is a homology product, Y, from $\Sigma^3 \times S^1$ to $S^3 \times S^1$, and $\pi_1 Y \cong \mathbb{Z}$, coming from the circle factor in either boundary component. If we now glue $D^4 \times S^1$ to Y along $S^3 \times S^1$, and glue $\Sigma^3 \times D^2$ along $\Sigma^3 \times S^1$, we have a simply-connected homology 5-sphere, hence S^5 . Thus, we have a smooth embedding of Σ^3 in S^5 with $\pi_1(S^5 - \Sigma^3 \times D^2) \cong \mathbb{Z}$.

Actually, it follows from [6] that for every homology 3-sphere $\Sigma, \Sigma \times S^1$ is homology-cobordant to $S^3 \times S^1$. The argument is as follows: embed Σ^3 in S^5 and remove a tubular neighborhood $\Sigma^3 \times D^2$

of Σ and a tubular neighborhood $S^1 \times D^4$ of a meridian to the knotted Σ^3 . The result is a homology-cobordism Y^5 from $\Sigma^3 \times S^1$ to $S^3 \times S^1$, and $\pi_1(\Sigma) \to \pi_1(Y)$ is trivial. In general, $\pi_1 Y$ will be mysterious.

Consider the universal cover \widetilde{X} : We have $H_2(\widetilde{X}) \cong \mathbb{Z}(\mathbb{Z})$ and $H_s(\widetilde{X}) \cong \mathbb{Z} \bigoplus \mathbb{Z}(\mathbb{Z})$. If we do \mathbb{Z} surgeries equivariantly, killing the $\mathbb{Z}(\mathbb{Z})$ factors, the result is \widetilde{Y} . To create $\widetilde{S^5 - \Sigma \times D^2}$, attach $D^4 \times \mathbb{R}$ to \widetilde{Y} along $S^3 \times \mathbb{R}$. This kills $H_s(\widetilde{Y})$, and thus $\widetilde{S^5 - \Sigma \times D^2}$ is contractible, so that $S^5 - \Sigma \times D^2$ is a $K(\mathbb{Z}, 1)$. This proves the theorem.

REMARKS. (1) Surgery of type 1/2a on a knot in S^3 results in a homology 3-sphere with zero Rochlin invariant, by [4].

(2) The proof is equally valid for (a) knots in homology spheres which bound contractible 4-manifolds, or (b) surgeries of type $1/2a_i$, $i = 1, \dots, n$, on a link of *n* components, provided the components are algebraically unlinked (by doing *n* times as many surgeries). In particular, the theorem is valid for connected sums of Σ 's as above.

References

1. W. Browder and J. Levine, *Fibering manifolds over a circle*, Comment. Math. Helv., **40** (1966), 153-160.

2. R. Fintushel, Locally smooth circle action on homotopy spheres, Duke Math. J., 43 (1976), 63-70.

3. R. Fintushel and P. Pao, A surgery construction on $M^3 \times S^1$, Houston J. Math., 5 (1979), 69-73.

4. F. González-Acuña, Dehn's construction on knots, Bol. Soc. Mat. Mex., 15 (1970), 58-79.

5. P. S. Pao, Non-linear circle actions on the 4-sphere and twisting spun knots, Topology, **17** (1978), 291-296.

6. M. Scharlemann, Constructing strange manifolds with the dodecahedral space, Duke Math. J., **43** (1976), 33-40.

7. _____, Non-PL imbeddings of 3-manifolds, Amer. J. Math., 100 (1978), 539-545.

8. J. Shaneson, On non-simply-connected manifolds, Proc. Amer. Math. Soc. Symposia in Pure Math. XXII, Madison, (1970), 221-229.

Received June 1, 1980.

UNIVERSITY OF CHICAGO CHICAGO, IL 60637

Current address: Columbia University New York, NY 10027