SEMI-GROUPS OF QUASINORMAL OPERATORS

MARY EMBRY-WARDROP

Strongly continuous semi-groups $\{Q_t\}$ of quasinormal operators on Hilbert space are characterized as follows: there exist Hilbert spaces \mathscr{L} and \mathscr{K} , a strongly continuous normal semi-group $\{N_t\}$ on \mathscr{L} and a strongly continuous self-adjoint semi-group $\{h(t)\}$ on \mathscr{K} such that $\{Q_t\}$ is unitarily equivalent to $\{N_t\} \oplus \{\overline{h(t)}L_t\}$ on $\mathscr{L} \oplus \mathscr{L}^2(\mathscr{K})$, where $\{L_t\}$ is the forward translation semi-group on $\mathscr{L}^2(\mathscr{K})$ and $(\overline{h(t)}f)(x) =$ h(t)f(x) a.e. for each f in $\mathscr{L}^2(\mathscr{K})$.

1. Preliminaries. In this paper we characterize one parameter strongly continuous semi-groups of quasinormal operators. The major result, found in Theorem 6, bears a marked resemblance to the characterization of quasinormal operators given by Brown in [2]. He showed that an operator A is quasinormal (A commutes with A^*A) if and only if there exist Hilbert spaces \mathcal{L} and \mathcal{K} , a normal operator N on \mathcal{L} and a positive operator P on \mathcal{K} such that A is unitarily equivalent to $N \bigoplus S\overline{P}$ on $\mathcal{L} \bigoplus \ell^2(\mathcal{K})$ where Sis the unilateral shift on $\ell^2(\mathcal{K})$ and $(\overline{P}x)_k = Px_k$ whenever $\{x_k\} \in$ $\ell^2(\mathcal{K})$.

We shall use the following notation and conventions. \mathscr{H} is a separable Hilbert space and $\mathscr{R}(\mathscr{H})$ is the space of continuous linear operators on \mathscr{H} . $\ell^2(\mathscr{H})$ is the Hilbert space of all sequences $\{x_n\}$ where $x_n \in \mathscr{H}$ and $\Sigma ||x_n||^2 < \infty$. In particular, $\ell^2 = \ell^2(\mathscr{C})$, where \mathscr{C} is the set of complex numbers. \mathscr{R}_+ denotes the set of nonnegative real numbers. $\mathscr{L}^2(\mathscr{H})$ will stand for the Hilbert space of (equivalence classes) of weakly measurable functions from \mathscr{R}_+ into \mathscr{H} such that

 $\int_0^\infty \|f(x)\|^2 dx < \infty. \quad \text{In particular, } \mathscr{L}^2 = \mathscr{L}^2(\mathscr{C}) \ .$

An operator A on \mathcal{H} is self-adjoint if $A = A^*$, normal if $AA^* = A^*A$, subnormal if A is the restriction of a normal operator to an invariant subspace, an isometry if $A^*A = I$ where I is the identity operator on \mathcal{H} , a partial isometry if $(A^*A)^2 = A^*A$, and unitary if A is a normal isometry.

We use [3] as a general reference on semi-groups of operators. The set $\{S_t\} = \{S_t: t \in \mathscr{R}_+\}$ is a semi-group of elements of $\mathscr{B}(\mathscr{H})$ if $S_{t+r} = S_t S_r$ for all t and r in \mathscr{R}_+ and $S_0 = I$. We say that $\{S_t\}$ has a certain property (for example, is quasinormal) if each of the operators S_t has that property. A semi-group $\{S_t\}$ is strongly continuous if $\lim_{t\to 0} ||S_t f - f|| = 0$ for each f in \mathscr{H} and uniformly continuous if $\lim_{t\to 0} ||S_t - I|| = 0$. The generator of a strongly continuous semi-group $\{S_t\}$ is the (not necessarily bounded) linear transformation S defined by $Sf = \lim_{t\to 0} (S_t f - f)/t$, whenever this limit exists in the strong topology.

One semi-group which will play a prominent part in the development of ideas is the forward translation semi-group $\{L_t\}$ on $\mathscr{L}^2(\mathscr{H})$ defined for each f in $\mathscr{L}^2(\mathscr{H})$ by $(L_t f)(x) = f(x-t)$ if $x \ge t$ and zero otherwise. It is well-known that $\{L_t\}$ is a strongly continuous semi-group and the infinitesimal generator of $\{L_t\}$ is defined by $f \to$ -f' for all f in $\mathscr{L}^2(\mathscr{H})$ for which f is absolutely continuous, $f' \in$ $\mathscr{L}^2(\mathscr{H})$ and f(0) = 0. We shall denote this unbounded operator by -D. The semi-group of adjoints $\{L_t^*\}$ is the backward translation semi-group and for each f in $\mathscr{L}^2(\mathscr{H})$, $(L_t^*f)(x) = f(x+t)$. The generator of $\{L_t^*\}$ is defined by $f \to f'$ for all f in $\mathscr{L}^2(\mathscr{H})$ for which f is absolutely continuous and $f' \in \mathscr{L}^2(\mathscr{H})$.

The isometric semi-groups $(U_t^* U_t = I)$ are obviously quasinormal. In [5] Cooper characterizes them as follows: a strongly continuous semi-group $\{U_t\}$ is isometric if and only if there exist Hilbert spaces \mathscr{L} and \mathscr{K} and a unitary semi-group $\{W_t\}$ on \mathscr{L} such that $\{U_t\}$ is unitarily equivalent to $\{W_t\} \bigoplus \{L_t\}$ on $\mathscr{L} \bigoplus \mathscr{L}^2(\mathscr{K})$. In §2 we show that $\{Q_t\}$ can be factored into an isometric semi-group and a self-adjoint semi-group, each of which is strongly continuous and which commute with one another. This reduces the general problem of characterizing quasinormal semi-groups to that of characterizing those semi-groups of the form $\{H_tL_t\}$ where $\{H_t\}$ is a self-adjoint semi-group commuting with $\{L_t\}$. In §3 we complete the characterization.

In §4 we investigate the properties of the infinitesimal generator of a quasinormal semi-group and give an explicit representation for it in terms of the characterization of the semi-group.

2. Factoring semi-groups. Let ϕ be a continuous, almost every where nonzero function from \mathscr{R}_+ into \mathscr{C} and define $(S_t f)(x) = (\phi(x)/\phi(x-t))f(x-t)$ if $x \geq t$ and zero otherwise for f in $\mathscr{L}^2(\mathscr{K})$. Under suitable boundedness conditions on ϕ , $\{S_t\}$ is a strongly continuous semi-group in $\mathscr{R}(\mathscr{L}^2)$ [7, p. 334] and is called a *weighted* translation semi-group. Such a semi-group is quasinormal exactly when ϕ is a multiple of an exponential: $\phi(x) = Me^{ax}$ [7, p. 340-341]. A straightforward computation shows that $\{S_t^*S_t\}$ is a semi-group exactly when $\phi(x + t + s)\phi(x) = \phi(x + t)\phi(x + s)$ for all x, t, s, or equivalently, when ϕ is a multiple of an exponential. Therefore $\{S_t\}$ is quasinormal exactly when $\{S_t^*S_t\}$ is a semi-group. In Lemma 1 we show that this equivalence always occurs. LEMMA 1. Let $\{Q_i\}$ be a strongly continuous semi-group of operators. $\{Q_i\}$ is quasinormal if and only if $\{Q_i^*Q_i\}$ is a semi-group. Moreover in this case $\{Q_i^*Q_i\}$ is strongly continuous and Q_r commutes with $\{Q_i^*Q_i\}$ for each r and t.

Proof. Assume first that $\{Q_t\}$ is quasinormal. Every quasinormal operator is subnormal [9] and every strongly continuous semi-group of subnormal operators has a normal extension as a semi-group [10]. That is, there exists a strongly continuous normal semi-group $\{N_t\}$ of operators on a Hilbert space \mathscr{H} , containing \mathscr{H} , with $N_t/\mathscr{H} = Q_t$. Since Q_t is quasinormal, then \mathscr{H} is invariant under $N_t^*N_t$ [4] and since $\{N_t\}$ is a strongly continuous normal semi-group, it follows that $\{N_t^*N_t\}$ is a strongly continuous semi-group and N_r commutes with $N_t^*N_t$ for each r and t. Consequently, $\{Q_t^*Q_t\}$ inherits the same properties.

On the other hand if we assume that $\{Q_t^*Q_t\}$ is a semi-group, then for each t and each nonnegative integer n, $(Q_t^*)^n (Q_t)^n = Q_{nt}^*Q_{nt} = (Q_t^*Q_t)^n$, which is sufficient to imply that each Q_t is quasinormal [6].

By the polar decomposition of an operator A we mean the unique representation A = UP where P is the unique square root of A^*A and U is a partial isometry such that ker $U = \ker P = \ker A$. A necessary and sufficient condition that A be quasinormal is that U and P commute [2]. It is not difficult to show that when A is quasinormal, the polar decomposition of A^n is U^nP^n . The continuous analogues of these assertions are found in the following theorem.

THEOREM 2. For each t in \mathscr{R}_+ let U_tP_t be the polar decomposition of Q_t . Then $\{Q_t\}$ is a strongly continuous quasinormal semigroup if and only if

- (i) $\{P_t\}$ is a strongly continuous self-adjoint semi-group,
- (ii) $\{U_i\}$ is a strongly continuous isometric semi-group, and
- (iii) P_r commutes with U_t for each r and t.

Proof. Obviously, if conditions (i), (ii), and (iii) are true, then $\{Q_t\}$ is a quasinormal semi-group. Moreover, in this case $\{Q_t\}$ is the product of strongly continuous semi-groups and is, itself, strongly continuous.

Assume now that $\{Q_t\}$ is a strongly continuous quasinormal semigroup. P_t is the positive square root of $Q_t^*Q_t$. Therefore since P_t^2 and P_r^2 commute, so do P_t and P_r for all t and r. This implies that $(P_{t+r})^2 = (P_tP_r)^2$. Since the positive square roots are unique, $P_{t+r} = P_tP_r$ and $\{P_t\}$ is a semi-group of self-adjoint operators. Moreover, since $P_t - I = (P_t + I)^{-1}(P_t^2 - I)$ and $\{P_t^2\}$ is strongly continuous by Lemma 1, then so is $\{P_t\}$. (We use here the fact that $||(P_t + I)^{-1}|| \leq 1$ since P_t is positive.)

To show that U_t is an isometry, we only need show that ker $P_t = \{0\}$. But if $P_t f = 0$, then $P_{(1/2)t} f = 0$ since P_t is positive. Thus by induction there is a sequence $t_n \to 0$ such that $P_{t_n} f = 0$. Using the strong continuity of $\{P_t\}$ we arrive at f = 0.

Since ker $P_t = \{0\}$, any operator commuting with Q_t and P_t also commutes with U_t . Also, Q_r commutes with P_t for each r and t by Lemma 1. Therefore since each of $\{P_t\}$ and $\{Q_t\}$ is commutative, U_r commutes with P_t and U_t for each r and t. Also $U_t U_s P_{t+s} =$ $U_t P_t U_s P_s = Q_t Q_s = Q_{t+s} = U_{t+s} P_{t+s}$ so that $U_t U_s = U_{t+s}$ on the range of P_{t+s} which is a dense subset of \mathscr{H} . We have shown that $\{U_t\}$ is an isometric semi-group.

To show that $\{U_i\}$ is strongly continuous we argue as follows: For f and g in \mathcal{H}

$$egin{aligned} |\langle f - U_t f, g
angle| &= |\langle f - Q_t f, g
angle + \langle P_t f - f, U_t^* g
angle| \ &\leq (\|f - Q_t f\| + \|P_t f - f\|) \|g\| \ , \end{aligned}$$

and consequently

$$||f - U_t f|| \leq ||f - Q_t f|| + ||P_t f - f||.$$

Strong continuity of $\{Q_t\}$ and $\{P_t\}$ now implies strong continuity of $\{U_t\}$.

REMARK 1. We note that $\{Q_t\}$ is normal if and only if $\{U_t\}$ is unitary. This follows from Theorem 2(ii) and the fact that a quasinormal operator is normal if and only if the partial isometry in the polar decomposition of Q is normal.

In view of the nice behavior of the sets $\{U_t\}$ and $\{P_t\}$ when $\{Q_t\}$ is quasinormal, we shall write $\{Q_t\} = \{U_t\}\{P_t\}$ and call $\{U_t\}$ the *isometric factor* of $\{Q_t\}$ and $\{P_t\}$ the *positive factor*.

3. A characterization of quasinormal semi-groups.

THEOREM 3. Let $\{Q_i\}$ be a strongly continuous quasinormal semi-group. There exist Hilbert spaces \mathcal{L} and \mathcal{K} , a strongly continuous normal semi-group $\{N_i\}$ on \mathcal{L} and a strongly continuous self-adjoint semi-group $\{H_i\}$ on $\mathcal{L}_2(\mathcal{K})$ commuting with $\{L_i\}$, such that $\{Q_i\}$ is unitarily equivalent to $\{N_i\} \bigoplus \{H_i L_i\}$ on $\mathcal{L} \bigoplus$ $\mathcal{L}^2(\mathcal{K})$. Conversely, any semi-group constructed in this fashion is a strongly continuous quasinormal semi-group.

Proof. The converse is immediate since $\{N_t\}$ is trivially quasi-

106

normal and $\{H_tL_t\}$ is a strongly continuous quasinormal semi-group by Theorem 2.

Assume that $\{Q_i\}$ is a strongly continuous quasinormal semigroup. By Theorem 2 $\{Q_i\} = \{P_i\}\{U_i\}$ where $\{P_i\}$ is self-adjoint and commutes with the isometric semi-group $\{U_i\}$. Cooper's theorem [5] tells us that $\{U_i\}$ is unitarily equivalent to $\{W_i\} \bigoplus \{V_i\}$ where $\{W_t\}$ is unitary and defined on \mathcal{L} , and \mathcal{L} is the range of the projection $\lim_{t\to\infty} U_t U_t^*$. Moreover $\{V_i\}$ is unitarily equivalent to the forward translation semi-group $\{L_i\}$ on $\mathcal{L}^2(\mathcal{K})$ for some Hilbert space \mathcal{K} .

Since by Theorem 2 P_r commutes with U_t for each r and t, then \mathscr{L} reduces $\{P_t\}$. Thus we have $\{P_t\}$ unitarily equivalent to $\{K_t\} \bigoplus$ $\{H_t\}$ where $\{K_t\}$ is self-adjoint and commutes with $\{W_t\}$ on \mathscr{L} and $\{H_t\}$ is self-adjoint and commutes with $\{L_t\}$ on $\mathscr{L}^2(\mathscr{K})$. Thus $\{Q_t\}$ is unitarily equivalent to $\{K_tW_t\} \bigoplus \{H_tL_t\}$ on $\mathscr{L} \oplus \mathscr{L}^2(\mathscr{K})$, and $\{K_tW_t\}$ is normal since $\{W_t\}$ is unitary and commutes with $\{K_t\}$.

The semi-group $\{H_iL_i\}$ is completely nonnormal in the sense that there exists no subspace which reduces $\{H_iL_i\}$ and on which $\{H_iL_i\}$ is normal. The last step in characterizing quasinormal semigroups is to characterize the self-adjoint semi-groups commuting with $\{L_i\}$ on $\mathcal{L}^2(\mathcal{H})$.

Each h in $\mathscr{B}(\mathscr{K})$ induces an operator \overline{h} in $\mathscr{B}(\mathscr{L}^2(\mathscr{K}))$ by $(\overline{h}f)(x) = hf(x)$ a.e. whenever $f \in \mathscr{L}^2(\mathscr{K})$. Each such induced operator \overline{h} commutes with $\{L_t\}$ and if $\{h(t)\}$ is a (self-adjoint) semigroup in $\mathscr{B}(\mathscr{K})$, then $\{\overline{h(t)}\}$ is a (self-adjoint) semi-group in $\mathscr{B}(\mathscr{L}^2(\mathscr{K}))$. (We shall show in Theorem 5 that the strong continuity of either implies strong continuity of the other.) All of this leads to the following: $\{\overline{h(t)}\}$ is a strongly continuous selfadjoint semi-group, commuting with $\{L_t\}$ whenever $\{h(t)\}$ is a strongly continuous selfadjoint semi-group on \mathscr{K} . In Theorem 5 we shall show that this is the only way to construct a positive factor for a quasinormal semi-group with isometric factor $\{L_t\}$. The key to this result lies in the following lemma concerning the commutant of $\{L_t\}$.

The commutant of a collection \mathscr{A} of operators on \mathscr{K} is the algebra $\mathscr{A}' = \{T: T \in \mathscr{B}(\mathscr{K}) \text{ and } TA = AT \text{ for all } A \text{ in } \mathscr{A}\}.$

LEMMA 4. Let $\{L_t\}$ be the forward translation semi-group on $\mathscr{L}^2(\mathscr{K})$. Then $\{L_t\}' \cap \{L_t^*\}' = \{\overline{h} : h \in \mathscr{B}(\mathscr{K})\}.$

Proof. We have already observed that each \bar{h} is in $\{L_t\}'$. Since $(L_t^*f)(x) = f(x+t)$, a quick check shows that each \bar{h} is also in $\{L_t^*\}'$. Now assume that H commutes with $\{L_t\}$ and $\{L_t^*\}$. Without loss of generality we may assume that H is self-adjoint since each of Re H and Im H commutes with $\{L_i\}$ and $\{L_i^*\}$. Let $\{e_n: n \in \Delta\}$ be a complete orthonormal basis of the separable Hilbert space \mathcal{K} and identify $\mathscr{L}^2(\mathscr{K})$ with $\Sigma_n \bigoplus \mathscr{L}^2(\mathscr{C})$ in the usual fashion [8, p. 32]. The coordinate functions of each element f of $\mathscr{L}^2(\mathscr{K})$ are defined by $f_n(x) = \langle f(x), e_n \rangle$ and the matrix $[T_{nm}]$ of an operator T on $\mathscr{L}^2(\mathscr{K})$ is defined by $T_{nm}f = (T(fe_m))_n$ whenever $f \in \mathscr{L}^2$. (fe_m is the element of $\mathscr{L}^2(\mathscr{K})$ whose value at x is $f(x)e_m$ a.e.) Straightforward computations show the following:

(1) $[(L_t)_{nm}]$ is diagonal and $(L_t)_{nn} = L_t^{(0)}$, the forward translation by t on $\mathscr{L}^2 = \mathscr{L}^2(\mathscr{C})$;

(2) $H_{nm}^* = H_{mn}$ for each n and m since H is self-adjoint;

(3) H_{nm} commutes with $L_t^{(0)}$ for each n and m since H commutes with L_t and the matrix of L_t is diagonal.

But the forward translation semi-group on \mathscr{L}^2 is irreducible [1, p. 76]. Thus the self-adjoint operators on \mathscr{L}^2 commuting with $\{L_t^{(0)}\}$ are the scalar multiples of the identity operator I on \mathscr{L}^2 . It now follows from (2) and (3) that Re H_{nm} , Im H_{nm} and consequently H_{nm} are scalar multiples of I. Let $H_{nm} = h_{nm}I$. For each f in $\mathscr{L}^2(\mathscr{K})$ and each n

(1) $(Hf)_n = \sum_{m \in \varDelta} H_{nm} f_m = \sum_{m \in \varDelta} h_{nm} f_m.$

Let $k \in \mathscr{K}$ and define f(x) = k for x in [0, 1] and 0 elsewhere. Then $(Hf)_n(x) = \sum_{m \in \mathcal{A}} h_{nm} k_m$ for x in [0, 1] and 0 elsewhere. Also ||f|| = ||k|| and $\sum_{n \in \mathcal{A}} |\sum_{m \in \mathcal{A}} h_{nm} k_m|^2 = \sum_{n \in \mathcal{A}} \int_0^1 |(Hf)_n(x)|^2 dx = ||Hf||^2$. Thus the matrix $[h_{nm}]$ defines a (bounded) operator h on \mathscr{K} . Finally, we see from equation (1) that for each f in $\mathscr{L}^2(\mathscr{K})$, (Hf)(x) = hf(x) a.e. so that $H = \overline{h}$.

LEMMA 4 is the continuous analogue of the fact that $\{A\}' \cap \{A^*\}' = \{\overline{m}: m \in \mathcal{K}\}\$ when A is the unilateral shift on $\mathcal{H}^2(\mathcal{K})$ [8, §4]. The connection between the unilateral shift on $\mathcal{H}^2(\mathcal{K})$ and the forward translation semi-group on $\mathcal{L}^2(\mathcal{R}_+, \mathcal{K})$ is discussed in [11, p. 29-31].

THEOREM 5. The strongly continuous self-adjoint semi-groups on $\mathcal{L}^2(\mathcal{K})$, commuting $\{L_i\}$, are induced by the strongly continuous self-adjoint semi-groups on \mathcal{K} .

Proof. First let $\{h(t)\}$ be a strongly continuous self-adjoint semi-group on \mathscr{K} . We have already noted that $\overline{\{h(t)\}}$ is a selfadjoint semi-group on $\mathscr{L}^2(\mathscr{K})$, commuting with $\{L_t\}$. We need to show that $\overline{\{h(t)\}}$ is strongly continuous. Let f be an element of $\mathscr{L}^2(\mathscr{K})$. Then for each x, $\lim_{t\to 0} h(t)f(x) = f(x)$, since $\{h(t)\}$ is strongly continuous on \mathscr{K} . Moreover $\{h(t)\}$ is bounded on finite intervals [3, p. 8]. Hence for t in $[0, 1] ||h(t)f(x)|| \leq M ||f(x)||$ and consequently by the Lebesgue Dominated Convergence Theorem, $||\overline{h(t)}f - f|| \to 0$, showing that $\{\overline{h(t)}\}$ is strongly continuous.

Secondly, assume that $\{H_t\}$ is a strongly continuous self-adjoint semi-group, commuting with $\{L_t\}$ on $\mathscr{L}^2(\mathscr{K})$. By Lemma 4, $H_t = \overline{h(t)}$ for some h(t) in $\mathscr{B}(\mathscr{K})$. To verify that $\{h(t)\}$ has the desired properties we proceed as follows: Let $k \in \mathscr{K}$ and define f by f(x) = k if $x \in [0, 1]$ and 0 otherwise. Then $f \in \mathscr{L}^2(\mathscr{K})$ and

$$\begin{array}{ll} (1) & h(t+s)k = (H_{t+s}f)(x) = (H_tH_sf)(x) = h(t)(H_sf)(x) = h(t)h(s)k, \\ (2) & \langle H_tf, f \rangle = \int_0^\infty \langle h(t)f(x), f(x) \rangle dx = \langle h(t)k, k \rangle, \\ \end{array}$$

$$(3) \quad ||H_tf - f||^2 = \int_0^\infty ||h(t)f(x) - f(x)||^2 dx = ||h(t)k - k||^2.$$

Thus $\{h(t)\}$ is (1) a semi-group, (2) self-adjoint, and (3) strongly continuous.

We combine the results of Theorems 3 and 5 to arrive at the continuous analogue of Brown's characterization of quasinormal operators.

THEOREM 6. $\{Q_t\}$ is a strongly continuous quasinormal semigroup if and only if there exist Hilbert spaces \mathcal{L} and \mathcal{K} , a strongly continuous normal semi-group $\{N_t\}$ on \mathcal{L} and a strongly continuous self-adjoint semi-group $\{h(t)\}$ on \mathcal{K} such that $\{Q_t\}$ is unitarily equivalent to $\{N_t\} \oplus \{\overline{h(t)}L_t\}$ on $\mathcal{L} \oplus \mathcal{L}^2(\mathcal{K})$.

COROLLARY 7. Let \mathscr{K} and $\{h(t)\}$ be as in Theorem 6. If \mathscr{K} is finite n-dimensional, then there exist real numbers a_1, \dots, a_n such that $\{\overline{h(t)}L_t\}$ is unitarily equivalent to $e^{a_1t}L_t^{(0)} \oplus \dots \oplus e^{a_nt}L_t^{(0)}$, where $\{L_t^{(0)}\}$ is the forward translation semi-group on $\mathscr{L}^2(\mathscr{C})$.

Proof. Since \mathscr{K} is finite dimensional, the generator h of $\{h(t)\}$ is bounded, and since h is self-adjoint, h is diagonal. Let $\{e_k\}$ be a basis of \mathscr{K} such that the matrix of h is diagonal with diagonal elements a_1, \dots, a_n . Then $\{h(t)\}$ is diagonal with diagonal elements $e^{ta_1}, \dots, e^{ta_n}$. Recall from the proof of Lemma 4 that $[(L_t)_{nm}]$ is diagonal and $(L_t)_{kk} = L_t^{(0)}$. Thus the matrix of $\overline{h(t)}L_t$ is diagonal with $(h(t)L_t)_{kk} = (e^{ta_k})L_t^{(0)}$, as desired.

We see now that the quasinormal weighted translation semi-groups introduced at the beginning of § 2 were quite typical. By Corollary 7 each quasinormal semi-group is a finite direct sum of quasinormal weighted translation semi-groups whenever the auxiliary space \mathscr{K} is finite dimensional. We can go a little farther: if $\{h(t)\}$ is uniformly continuous and if the infinitesimal generator of $\{h(t)\}$ is a diagonal operator on \mathscr{K} , then the proof of Corollary 7 is valid whether \mathscr{K} is finite or infinite dimensional. Consequently we can conclude that $\{\overline{h(t)}L_t\}$ is unitarily equivalent to a direct sum of quasinormal semigroups of the form $\{e^{at}L_t^{(0)}\}$. However, if \mathscr{K} is infinite dimensional and we choose a self-adjoint operator h on \mathscr{K} with no point spectrum, then the induced operator \overline{h} on $\mathscr{L}^2(\mathscr{K})$ also fails to have point spectrum and consequently $\{e^{t\overline{h}}L_t\}$ is not unitarily equivalent to a direct sum of quasinormal weighted translation semi-groups.

4. The generator of a quasinormal semi-group. Recall that the (infinitesimal) generator of a strongly continuous semi-group $\{S_i\}$ is the operator S (not necessarily bounded) defined by $Sf = \lim_{t\to 0} (S_t f - f)/t$, whenever this limit exists in the strong topology. We shall denote the domain of S by $\mathscr{D}(S)$. In general if $\{S_i\}$ is the product of two strongly continuous semi-groups $\{R_i\}$ and $\{T_i\}$, the most one can show is that $R + T \subset S$ in the sense that $\mathscr{D}(R) \cap$ $\mathscr{D}(T) \subset \mathscr{D}(S)$ and that R + T = S on $\mathscr{D}(R) \cap \mathscr{D}(T)$. However quite a bit more can be said about the generators of a quasinormal semi-group and its isometric and positive factors.

THEOREM 8. Let $\{Q_t\} = \{U_t\}\{P_t\}$ be a strongly continuous quasinormal semi-group and let Q, U, and P be the generators of $\{Q_t\}$, $\{U_t\}$ and $\{P_t\}$, respectively. Then

- (i) $\mathscr{D}(Q) \subset \mathscr{D}(Q^*)$
- (ii) $\mathscr{D}(Q) = \mathscr{D}(P) \cap \mathscr{D}(U)$
- (iii) Q = P + U and $Q^* = P U$ on $\mathscr{D}(Q)$ and
- (iv) $Q^*(\mathscr{D}(Q^2)) \subset \mathscr{D}(Q)$ and $QQ^* = Q^*Q$ on $\mathscr{D}(Q^2)$.

Proof. Assertion (i) follows from the fact that $||Q_t^*f - f|| \leq ||Q_tf - f||$ for all f and t. Moreover $Q^*f = \lim_{t\to 0} (Q_t^*f - f)/t$ on $\mathscr{D}(Q)$.

To prove (ii) and (iii) we first prove that $\mathscr{D}(Q) \subset \mathscr{D}(P)$ and $P = (1/2)(Q + Q^*)$ on $\mathscr{D}(Q)$. For each f in \mathscr{H} and each t > 0, $P_t f - f = (P_t + I)^{-1}[Q_t^*(Q_t f - f) + (Q_t^* f - f)]$. But as $t \to 0$, $(P_t + I)^{-1}$ converges strongly to (1/2)I, Q_t^* converges strongly to I, and if $f \in \mathscr{D}(Q)$, $(Q_t f - f)/t$ converges to Qf and $(Q_t^* f - f)/t$ converges to Q^*f . Therefore $\lim_{t\to 0} (P_t f - f)/t = (1/2)(Qf + Q^*f)$, so that $f \in \mathscr{D}(P)$ and $Pf = (1/2)(Qf + Q^*f)$.

Now observe that for each f and t

(2) $Q_t f - f = U_t (P_t f - f) + (U_t f - f).$

Equation (2) immediately implies that $\mathscr{D}(P) \cap \mathscr{D}(U) \subset \mathscr{D}(Q)$ and $\mathscr{D}(Q) \cap \mathscr{D}(P) \subset \mathscr{D}(U)$. We have already shown $\mathscr{D}(Q) \subset \mathscr{D}(P)$.

These three set inclusions yield $\mathscr{D}(Q) = \mathscr{D}(P) \cap \mathscr{D}(U)$. Therefore, equation (2) can be used to conclude that Qf = Pf + Uf for all f in $\mathscr{D}(Q)$. Finally since $Pf = (1/2)(Qf + Q^*f)$ for all f in $\mathscr{D}(Q)$, we also have $Q^*f = Pf - Uf$ for all f in $\mathscr{D}(Q)$.

Note now that if $f \in \mathscr{D}(Q^2)$, then by definition $f \in \mathscr{D}(Q)$ and $Qf \in \mathscr{D}(Q)$. But then $f \in \mathscr{D}(P)$ and $Qf \in \mathscr{D}(P)$ by (ii). Consequently $(P_tf - f)/t \to Pf$ and since P_t commutes with $Q, Q(P_tf - f)/t \to PQf$. Every generator is closed [3, p. 10] so that $Pf \in \mathscr{D}(Q)$ and QPf = PQf. Similarly $Vf \in \mathscr{D}(Q)$ and QVf = VQf. Finally, since $Q^*f = Pf - Vf$, we know that $Q^*f \in \mathscr{D}(Q)$. Moreover $QQ^*f = Q(Pf - Vf) = PQf - VQf = Q^*Qf$ by (iii) since $Qf \in \mathscr{D}(Q)$.

The fourth conclusion in Theorem 3 indicates that the generator Q behaves very much like a normal operator. In general it is not true that $Q^*(\mathscr{D}(Q)) \subset \mathscr{D}(Q)$ (for example, if Q = -D, the generator of the forward translation semi-group on \mathscr{L}^2). Thus the assertion $QQ^* = Q^*Q$ on $\mathscr{D}(Q)$ is not meaningful. We also note that the first conclusion of Theorem 3 cannot in general be strengthened.

Although we have not been able to verify it we conjecture that if Q is the generator of a strongly continuous semi-group $\{Q_t\}$ and Q satisfies conditions (i)-(iv) of Theorem 8, then $\{Q_t\}$ is quasinormal.

REMARK 2. Since a generator is closed and densely defined [3, p. 10], it is bounded if and only if it is everywhere defined. It follows now from Theorem 8(ii) that Q is bounded if and only if both U and P are bounded. But this is equivalent to $\{Q_t\}$ being uniformly continuous [3, p. 13] and normal, the normality resulting from each of the quasinormal operators Q_t being invertible (and hence normal) when Q is bounded.

It is well-known that the generator of a normal semi-group $\{N_i\}$ is normal. Applying Theorem 8 we note that the generator of $\{N_i\}$ is the sum of the generators of the unitary factor $\{W_i\}$ and the positive factor $\{K_i\}$ of $\{N_i\}$. The generator of $\{W_i\}$ is iT, where T is self-adjoint [8, p. 93] and the generator of $\{K_i\}$ is self-adjoint. To complete our analysis of the generator of a quasinormal semi-group we need to determine the generator of $\{\overline{h(t)}L_i\}$, the completely nonnormal part of $\{Q_i\}$.

COROLLARY 9. Let $\{h(t)\}$ be a strongly continuous self-adjoint semi-group on \mathscr{K} with generator h. The generator of $\{\overline{h(t)}L_t\}$ is $\overline{h} + (-D)$, where -D is the generator of $\{L_t\}$ on $\mathscr{L}^2(\mathscr{K})$ and \overline{h} is defined by $(\overline{h}f)(x) = hf(x)$ for all f in $\mathscr{L}^2(\mathscr{K})$ such that $f(x) \in \mathscr{D}(h)$ a.e. and $(hf)(\cdot) \in \mathscr{L}^{2}(\mathscr{K})$.

Proof. By Theorem 8 we know that the generator of $\{\overline{h(t)}L_t\}$ is H + (-D), where H is the generator of $\overline{\{\overline{h(t)}\}}$. We need to show that $\mathscr{D}(H) = \mathscr{D}(\overline{h})$ and if $f \in \mathscr{D}(H)$, then (Hf)(x) = hf(x) a.e.

First let $f \in \mathscr{D}(\bar{h})$. Then $\lim_{t\to 0} (h(t)f(x) - f(x))/t = hf(x)$ a.e. and $hf(\cdot) \in \mathscr{L}^2(\mathscr{K})$. But $||(h(t)f(x) - f(x))/t|| \leq \sup_{0 \leq t \leq 1} ||h(t)|| ||hf(x)||$ [3, p. 88] for all t in [0, 1] and once again the Lebesgue Dominated Convergence Theorem applies. The result is that $(\overline{h(t)}f - f)/t \to \overline{h}f$ in the $\mathscr{L}^2(\mathscr{K})$ norm. Consequently $f \in \mathscr{D}(H)$ and $Hf = \overline{h}f$.

Now let $f \in \mathscr{D}(H)$. By [3, p. 10] $\overline{h(t)}f - f = \int_0^t \overline{h(s)}Hfds$. Consequently, for almost all x, $h(t)f(x) - f(x) = \int_0^t h(s)(Hf)(x)ds$. But since $\{h(s)\}$ is strongly continuous, $\lim_{t\to 0} 1/t \int_0^t h(s)kds = h(0)k = k$ for all k in \mathscr{K} . Therefore $\lim_{t\to 0} (h(t)f(x) - f(x))/t = (Hf)(x)$ for almost all x. But then $f(x) \in \mathscr{D}(h)$ a.e. and hf(x) = (Hf)(x). Thus $f \in \mathscr{D}(\overline{h})$ and $\overline{h}f = Hf$, completing the proof.

Using Corollary 9 it is now easy to construct a quasinormal semi-group such that neither the isometric nor the positive factor is uniformly continuous. We let $\{L_t\}$ on $\mathscr{L}^2(\ell^2)$ be the isometric factor. The Hille-Yosida theorem [3, p. 36] guarantees that the unbounded diagonal operator with diagonal $(-1, -2, \dots, -n, \dots)$ is the generator of a strongly continuous semi-group $\{h(t)\}$ on \mathscr{L}^2 . The induced semi-group $\{\overline{h(t)}\}$ on $\mathscr{L}^2(\ell^2)$ is self-adjoint and strongly, but not uniformly, continuous. Thus neither factor of $\{\overline{h(t)}L_t\}$ is uniformly continuous.

References

1. R. Beals, Topics in Operator Theory, University of Chicago Press, Chicago, 1971.

2. A. Brown, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723-728.

3. P. L. Butzer and H. Beren, Semi-Groups of Operators and Approximation, Springer-Verlag, New York, 1967.

4. S. L. Campbell, Subnormal operators with nontrivial quasinormal extensions, Acta Sci. Math., (Szeged), **37** (1975), 191-193.

5. J. L. B. Cooper, One parameter semi-groups of isometric operators in Hilbert space, Ann. Math., **48** (1947), 827-842.

6. M. R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Math. (Szeged), **35** (1973), 61-64.

7. M. R. Embry and A. Lambert, Weighted translation semi-groups, Rocky Mountain J. Math., 7 (1977), 333-344.

8. P. A. Fillmore, Notes on Operator Theory, Van Nostrand Reinhold Co., New York, 1970.

P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Co., Princeton, 1967.
 T. Ito, On the commutative family of subnormal operators, J. Fac. Sci., Hokkaido University, 14 (1958), 1-15.

11. D. Sarason, Invariant subspaces, Mathematical Surveys, Amer. Math. Soc., 13 (1974).

Received May 1, 1981. This research was supported by a Research Professorship at Central Michigan University.

Central Michigan University Mt. Pleasant, MI 48859