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REPRESENTATIONS OF DIVISION ALGEBRAS
OVER LOCAL FIELDS: II

LAWRENCE CORWIN

Let D be a division algebra of degree p* over a non-
Archimedean locally compact field K (i.e., index (D/K)=p?).
We show how to construct the irreducible unitary represen-
tations of the multiplicative group of D.

1. Let K be a non-Archimedean locally compact field, with residue
field ¥ having ¢ = p” elements (p is a prime), and let D be a locally
compact division algebra with center K. Then [D: K] is a perfect
square—m?, say; m is called the index of D. It is a question of
some interest to determine the irreducible unitary representations
of D*. In[1], [2], and [3], the representations were determined and
their characters computed for the case where m is prime to » (the
“tamely ramified” case). As was pointed out in [4], the same pro-
cedure serves to compute the representations (though not the charac-
ters) in the case m = p.

In this paper we compute the irreducible representations of D*
in the case where m = p®. The procedure is like that of the previous
cases, but there are added technical difficulties. The method as given
here does work in somewhat greater generality; see §5 for a brief
discussion.

Before describing the method, we need some notation. Let K,
be a maximal unramified extension of K contained in D, so that
[K.: K] = m; let d be the residue class field of K, (and of D). Itis
possible to pick a prime element 7 of D such that conjugation by =
generates Gal (K,/K). (For these and other facts used here, see, e.g.,
Chapter 1 of [8].) Then z™ is a prime element of K. We may also
choose a set k,C K, of coset representatives of d such that 0 €%, and
the other elements of &, are the (¢ — 1)th roots of unity in K.
Then every element of D has a unique expression of the form

yv= 2 a0, jeZ,

i=io

where each a;e€k,. Set
D, = {y = i‘, a;m: oy # 0}
=0
and

G={yeD;:a,=1}.
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Then
D* = D, x{n: je Z}
and
D, =Gxki, ki=Fk\0}.

As noted in [1], the major problem in finding irreducible represen-
tations of D* lies in finding those of G.

Let © = O, = {y = >3, a;n’} be the ring of integers of D, and
let P =790 = Or be the maximal ideal of ©. Then for each j =1,
G; =1 + Piisasubgroup of G (and G = G,). Any irreducible represen-
tation p of the compact group G must be trivial on some G;; let =
be the smallest integer (= 1) such that p|G,,, is trivial. (In the
terminology of [3], » + 1 is the conductor of p.) Let n, = [(n + 1)/2],
where [ ] denotes the greatest integer function. Then G, /G, =
P[P+t is Abelian, and therefore p|G,, is a direct sum of 1-dimen-
sional representations. Let X be one of these, and regard X as a
representation of P~. We may describe X as follows: let + be a
character of K* which is trivial on O, = O, N K, but not on 77 "L,.
Then any character of D+ is of the form

L(y) = yoz(ay) ,

where xe D and 7: D— K is the reduced trace. If we identify D with
D" via 2 —X,, then O} = P~ and (P"*)* = P~ ", (P™)" = D/P~™ ",
The character X is an element of (P™)” that annihilates P"*', and is
thus given by an element of P~""/P~™~™*  That is, X = X,, where
x € P~™" (and z is determined mod P~™""*!), Conversely, p appears in
Indgno_,a (X.), and we therefore determine all irreducibles o containing
X by finding all irreducible components of Indgnoqa X,. Replacing X,
by X,, where x and 2’ are conjugate in G, does not change the
induced representation; if « and 2’ are conjugate in D, the induced
representation may be changed, but in an unimportant way so far
as representations of D are concerned.

The construction of p in the tamely ramified case proceeds as
follows: one first chooses « to generate a field of degree as small as
possible. Then one constructs a subgroup H = H, of G which con-
tains G,, (roughly speaking, H consists of elements of G commuting
with # mod an appropriate power of P), extends X, to an irreducible
representation X, , of H,, and induces up to G; the induced represen-
tation is irreducible, and one obtains all the irreducibles in Indg”oqg X,
by varying the X,.,. The procedure in our case is similar, but in some
cases the group H, depends on the extended representation X,.,.

The wildly ramified case seems to be harder than the tamely
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ramified one for two related reasons. Write z = >\ _,,_, a;7?, o, =
a_,_. 7w ™", In the tamely ramified case, we may assume (by taking
a conjugate of x) that the elements a;n’ all commute. Futhermore,
an important part in the analysis is played by elements z, which
are conjugate to £ mod P~ "** and which generate fields of degrees
as small as possible. In the tamely ramified case, these elements
can be assumed to lie in the division algebra D, of elements com-
muting with «,, and therefore many proofs can proceed inductively.
In the wildly ramified case, it is quite possible that 1 < [K(x,): K] <
[K(x): K] although K(x) contains no proper extension of K. As a
result, we need some technical lemmas to show that D, has elements
“close” (in D) to those of K(x). When these technical difficulties do
not arise, the proofs are easier; we discuss these cases in § 2.

For the rest of the paper, we set m = p* (though for typo-
graphical convenience we continue to use m). Let K, < K, be an
unramified extension of K of order ».

In what follows, ¢ denotes the element of Gal (K,/K) generated
by conjugation by x; o is generally written exponentially. We also
use o to denote the corresponding element of Gal (d/k). We shall
often denote an element of %, and the corresponding element of d
by the same letter; for example, we shall write Try,a for ack,.
This convention should cause no confusion; in case Char K = p, it is
justified by the fact that d = k,. Similarly, we write &, &k, for KN k,,
K,Nk, and regard elements of, e.g., k as either in K or in the residue
class field. For 0,1 xe D, D, is the division algebra of elements
commuting with «; however, D, will be the division algebra of ele-
ments commuting with K,. Note that if [K(x): K] = m,, then the
index of D, over K(x) is (m/m,)*. Then reduced trace (norm) is
denoted by z(v). Finally, we shall write “o contains X” for “the
restriction to (1 + P™) of the irreducible representation p of G
contains X.”

2. The results of this section are, generally speaking, either
specifically contained in those of [1], [2], or [3], or easily deduced
from them.

We continue with the notation of the first section. Let X = X,
=D a7, and set x, = a_,_,x~™". We assume throughout
this section and the next two that » is odd.

LEMMA 1. Ify=37 o BT/, With B_p_n = A_p_,, then e(K(y)) =
e(K(x,) and f(K(y)) = f(K(x,)), where e = ramification index and

f = residue class degree.

Proof. As the extra effort involved is small, we give a proof
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valid for all m. Write « for a_,,_,. Since 7™ e K, K(x,) = K(ax™™) =
K(x,), say. Let m = st, where s is the greatest common divisor of
m and n; z;eK,. Let K’'= K(x}). Then f(K(x,)) =[K": K] and
e(K(x,)) = t.

Suppose that am — bn = s. Then z™**Py’ ¢ P*, so that K(y) cer-
tainly has an element y, such that #z=™y! is a unit, and hence e(K(y))
is a multiple of ¢. Furthermore, y' = x! mod P~“™*"*!; now Hensel’s
lemma shows that K(y) contains a field isomorphic to K’. Thus
f(K(y)) = [K': K], as claimed.

We now proceed to look at the representations of G. The ana-
lysis splits into four basic cases, depending on the nature of x;:

(1) xekK;

(2) [K(x): K] =m;

(3) [K(z): K] = p and K(z,) is unramified over K;

(4) [K(z): K] = p and K(z,) is totally ramified over K.
We deal with the first three cases in this section. Case (4), which
splits into three subecases, is the subject of the next two sections.

Case (1) is handled by reducing it to the other cases; see [1],
[3], or [4].

THEOREM 1. If K(x,) = K, then every irreducible representation
o containing X, is of the form p = p, Q (Xyov), where v is the reduced
norm map (from D to K), X, is a 1-dimensional representation of
K*, and p, is a representation of G with conductor < n.

Proof. If x,¢K and 1 + ye@,, then

L1+ y) = Yotpx(xy) = ¥ (@TpcY) .

But (1 + %) = 1 + 7px(y) mod G,.,, so that X, (1 + y) depends only
on »(y). Hence there is a character X, of K G such that X = X,0ov
on G,. A simple counting argument (given in [1]) shows that
Indg, ¢ (X|q,_,) consists of multiples of representations p, ® (X,ov),
where p, has conductor < n. This proves the theorem.

Case (2) is also easy to deal with; the analysis follows that in
§4 of [4] (or that of [1], Theorem 2.3).

LemMMmA 2. If [K(z,): K] =m and yecK(®), y = >3, 8%, then
8.7 € K(x,); conversely, if B,n"e€ K(x,), then 3yecK(x) with y =
j=r BT

Proof. Since xy = yx, the lowest order terms of # and y must
commute—that is, if y, = g,7", then y.x, = x,y,. Thus y,€D,. Since
K(x,) is its own commutator in D, y € K(x,). For the converse, fix r
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and let b’ = {Bek;:3yecK(x) with y =35, 87 and 8, =g}, k"' =
{8 €k,;: Bn" € K(x,)}. Then k' and k" have the same cardinality (Lemma
1), and k' € k", from the first part of this lemma. Hence k" = k.

Since we assume that » is odd, we have n, = (» + 1)/2. Let
H, =G, N(GNK(x); we write H for H, when no confusion will
result.

LEmMmA 3. [H,H]<G,, and X =1 on [H, H].

]

Proof. Because K(x) is commutative and G,, is normal, [H, H] <
G, For the rest, we need to show that if we@G, and yeG N K(x),
then X(ywy™) = X(w). Let w =1+ w"; then

Lywy™) = XA + yw'y™)
= poT(yw'y™'x) = o T(W'YwY)
= apor(w'zx) = X(w) ,

since = and y commute.

There are [H: G,] different extensions of X, to H. Label them
X..., Where o runs through the integers from 1 to [H: G, ].

THEOREM 2. (@) 0., = Indy¢X,,, is irreducible.

(b)  0.i0 & 0u:s unless a = b.

() The p,.. exhaust the irreducible representations of G con-
taining X.

Proof. (a) It suffices, from Theorem 6 of [7], to show that if
y ¢ H, then there is some w e H such that ywy*e H and X, (w) =
Xoolywy™). Lety =1+ 8,7" + ---; we may assume, since y ¢ H and
we may multiply ¥ by any element of H, that » < n, and g,z" does
not commute with z, (see Lemma 2). Let w =1 + w’, with w’ € P2,
Then

Xolywy™) = $or(yw'y~'x)
= (Yyor(w'z))(yor(w'g,n"x — B, w'r)) ,

as one sees by expanding ¥y =[1 4+ (8,%7" + ---)]"* in a series. There-
fore X,..(ywy™) = X,..(w) for all such w only if

1 =or(w'B,mx — B,w"W'x) = yror(w' (8,7 — 28,7"))
= ’lp‘°T(w'(B,7r'x1 - wlﬁrﬂr)) ’

since, e.g., w'Bn"(x — x,) € P™™, and so or(w'B,m(x — x,)) = 1.
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But since w’ is any element of P"~"*, this implies that 3,7z" and «,
commute, a contradiction.

(b) If o, = 0.6 With a # b, then Theorem 7 of [7] implies that
3y ¢ H such that for all we HN yHy ™", X,..(w) = L,,(ywy™). We saw
in (a) that this is impossible.

(¢) The dimension of Ind%ﬁg X, is [G: G, ] and the dimension of
each p,, [G: H]. As there are [H: G,] possible X,.,’s, and as every
irreducible p containing X, occurs in IndGnqun X, (by Frobenius reci-
procity), the result follows from counting.

Next, we deal with Case (3). We continue with the notation as
above. Let H = G,(G N D), where D, is the algebra defined in §1.

THEOREM 3. Suppose that K(x,) is unramsified, with [K(x): K]=1p.
Then D, = D,. Let o, be any representation of G N D, such that
Oola,_,0p, 18 @ multiple of X,la,_,np,- Eatend o, to a representation
of letting ol +arn”) =1 if pkr, r=Zn, and ack, Then p=
Ind;q 0, s 1rreducible, and plg, , is a multiple of X,|s,_,. If p;is
another representation of D, N G satisfying the above condition and
o 1is the induced representation of G, then o = p'=p, = p;. Every
wrreducible representation of G which agrees with X on G,_, is obtained
wn this way.

Proof. Since K(z,) is unramified, we have »*|_,_,., and K(x,) =
Ka_,-.) = K,; thus K(x,) = K,, and D, = D,. Now the proof is the
same as that of Theorem 2.3 of [1], except that, since D, = {y =
>, Bl B; = 0 unless pfj}, one can simplify the notation and some
of the arguments.

REMARK. The above theorem does not directly identify the
representations p containing X,. The following observations let one
make this identification. For definiteness, assume that [K(z): K] = p*
From Lemma 1, K(x) contains a field isomorphic with K(z,); the
Skolem-Noether theorem (see, e.g., p. 166 of [8]) lets us assume (by
conjugating x) that K(x,) & K(x). Then X, defines a character on
G., N D, which agrees with the norm map on G,_, N D,. As described
in §IV of [4], we may use an appropriate extension of X, on a sub-
group of G N D, to induce p, on G N D,, and p, determines p. It is
not hard to use this method to give an explicit description of the
subgroup H, of G such that p is induced by X extended to H,. In
the next section, we shall see more complicated examples along the
same lines.

We should perhaps add a remark on the generality of these
results. Theorem 2 applies to general m (not just m = p?); it thus
permits the construction of many representations of G. So does
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Theorem 1, but that theorem reduces the problem only trivially.
Theorem 3 permits a reduction of the problem whenever [K(x,): K]
is unramified, but one must find a general procedure for finding the
irreducible representations of (D,)* to reap maximum benefit from
this procedure.

3. We have reduced the problem to Case (4): K(x,) is a totally
ramified extension of degree p. Thus a2?e€ K. Because the map
a+— af is an automorphism of %, one can see easily that there is an
element g™ with gek, N K and ! = (™ ")*. By conjugating
with an element of D (or, equivalently, by replacing = with another
prime element vz, 7 €k;), we may assume that x, = gz~™", or that
O mn€KNk. We keep to this assumption throughout this section
and the next.

We divide Case 4 into three subcases, and we deal with the
easiest one first.

. LEMMA 4. Let x generate a field of degree p; let y = >3-, B;7w!
commute with x. Then B,n" commutes with x,. Conversely, if B,7"
commutes with x,, then there 18 an element y = >.7.. 3,77 which
commutes with .

Proof. This has the same proof as in Lemma 2, once one notes
that the division algebras D, and D, are both p’-dimensional vector
spaces over K, and that both K,, K, are totally ramified of degree
p over K.

THEOREM 4. Let x, x;, generate fields of degree p. Then:

(1) %] Dpyney, Jactors through the reduced norm Yo x.);

(2) if yeD,NG and z€G,, then X,(yzy™) = X,(¥).
Thus one can extend X, to a 1-dimensional representation of G, (G N D)),
also to be called X,, which factors through the reduced norm on GND,.
Let & be any irreducible representation of GND, which is trivial on
G.,ND,. Then ¢RQX, is a representation of G, (G N D,) which is equiva-
lent to a multiple of X, on G, Let p;,=Inds, wnoy-c&@X,. Then:

(8) p.. 18 an irreducidble representation of G;

(4) 0 = Oy = 61 = &5

(5) every irreducible representation of G whose restriction to
G., contains X, is a 0,

Proof. (1) If y=1+ 9y €D, NG,, then let xy’ generate a field
K’ over K. We have (assuming that [K": K] = p?)

X.(y) = dotpx@y’) = ¥(Tre,x(@y)) = Y(T7x,x(T7xx(2Y)))
= A (T"'Kl/x(wT"'x'/Kly)) = ’sf"(T”'xl/x@TDl/xly-' ) -
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This result also holds if y'€ K. But v, (¥) =1 + 7p k" mod P,
and this shows that X,(y) depends only on v, «(y) for ye D, N G,,.
(2) If z=1+2"eGN D, then (for y as above)

L(yzy™) = pot(yz'y'x) = Jot(@'ywy) = Yov(2'x) = X, (2) .

(8)-(5) The proof is just like that of Theorem 1, except that
the counting argument is different. It is still routine; we omit
details.

We are thus in the situation where [K(x): K] = »* and K(x,) is
a totally ramified extension of degree p. This is the difficult case.
We shall divide it into two subcases, depending on whether or not
K(x) is totally ramified. While the approach is similar in the sub-
cases, and some lemmas could be combined, it seems clearer to divide
the work.

If K(x) contained a totally ramified extension (over K) of degree
p, we could proceed just as in the tamely ramified case. In general,
no such extension exists, and we must work harder.

For each » with 1 < » < n,, let z, be an element of D such that

(1) =z, =2 mod P~mntr;

(2) [K(zx,): K] is as small as possible, subject to (1).
Note that this notation is consistent with the definition of =z,.

There is a number s such that [K(x,): K] = p and [K(z,.,): K] =
p*. The general strategy of the proof is to show that for many
purposes, we can use K(x,) as a substitute for a subfield of K(x) of
degree p over K.

We begin by investigating some properties of =z,.

LEMMA 5. Let y = > 3., B;w? € D generate a field of ramification
index p over K. Then there is a conjugate (under G) of y, D5, 8;7,
with B; = 0 unless p|j.

Proof. D, certainly contains an unramified extension K; of K(y)
with [K}: K(y)] = p; by the Skolem-Noether theorem, we may assume
(by conjugating in D) that Ki = K(y, a), where K(a) = K,. But under
this assumption, y commutes with «, and this implies directly that
the B; are 0 unless p|j. Since conjugating by an element of % or
by a power of = gives an automorphism of K, we may equally well
assume that the conjugation is in G.

LEMMA 6. Let y=>.7, R, generate a totally ramified extension
of order p; let y, = B,n". Assume that 3; = 0 unless p|j and that
[K(y,): K]=p, 8, €k. Letw = g'n', t > r, be such that if y' =y +w
(mod P**"), then [K(¥'): K] = p%, and assume further that K(y + w) is
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not totally ramified over K. (Therefore f(K(y + w)/K) = p.) Then:
(a) »lt and Trep, B €k;
(b) if ¥ =y + w mod P**, then f(K(#')/K) = p.

Proof. Note that K, & D,. Since multiplying by an element of

K does not affect the hypotheses, we may assume that 0 < r < p%
Let F' be the minimal polynomial for y:

F(X)=§,a,-Xf, a,=1 and a,eOg, all 7.

By considering the valuation (plus the fact that F(y) = 0), one sees
that a,e P?7/P?** and that the terms a;y’ 1 <j<p—1) are in
p*rt . (Note that p|7r.)

Now consider F(y + w); again, valuation considerations show that

F(y + w) = 2> (Try,,8)x" mod Pe-vr+ist

If ptt and Tryu, B # 0, then this last calculation shows that F(y + w)
is an element which generates an ideal P* with (¢, ») = 1; it follows
that K(y + w) is totally ramified. On the other hand, if T7;, 8 =0,
then g’ is of the form 7" — 7 for some 7 ed, (where p|r and p*}t7),
and

A=)y — 7" = y + w mod P .

Thus there is an element ¥’ = y + w mod P*** with [K(¥'): K] = p, a
contradiction. It follows that »|t.

We know from general structure theory (and the fact that
K,K(y) is a maximal unramified field in D,) that 3« € D, such that
u? = y and conjugation by u induces an automorphism generating
Gal (K,/K). Then w = >3,0;7/, where ps =1, 6,€k,NK, 6= 3,,
and 6; = 0 unless j = s mod p. (This last follows because otherwise
conjugating by w will not be an automorphism of K,.) Because B,ck
and taking pth powers is an automorphism of %, d,€k. Let o' =
u + Yt note that p|t — ». Then

Wy?=y+06,%+ %+ -+ +7°")x* mod P+,

So if B can be written as B,(v, + ¥ + -+ + 7{"7"), then there
exists ¥’ =y + w mod P'** such that 3’ is a pth power in D; then,
of course, [K(¥'): K] < p% and we again have a contradiction. Thus
G’ is not of that form.

Let 0’ =0 let Ty =7+7"+ -+« + 79" vek,. Note that
T is k-linear and d,€k, so that g8’ ¢ Range (7). Thus we need to
show that RangeT = {0 ed: Tr,,0€k}. Call this last described set
V. Then V is a vector space over % of dimension p* — p + 1, since
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Ker (Trys,) is a (p — 1)-dimensional k,-space. On the other hand,
since ¢’ generates Gal (d/k), Toek = ¢'(T60) = To =06 = 6"“"" = d ek,
and on %k, T = Tr,,. Hence

Ker T' = Ker (Tryu) »

a (p — 1)-dimensional %-subspace of k,. Thus Range T and V have
the same dimension. Since, however, Ty o T = Tr,,, we have 7¢
Range T'= Tr;u,Y €k, or Range T = V. This proves (a).

For (b), note that if ¥’ = ¥ + w mod #*, then F(¥') = 2*(Try, L)%’
mod P»~0r++1; thus a(y’)*F(y') (@)’ = Tr:u,8 mod P for appropriate
ack, and a,be Z. By Hensel’s lemma, K(y') contains an unramified
extension of order p.

Now we return to the problem of representations. We let X =
X,, where [K(x): K] = p%, [K(zx,): K] = p, K(x,) is totally ramified over
K, and K(x) is not totally ramified. We choose z, as in the discus-
sion before Lemma 5. Then «x satisfies the hypotheses of Lemma 5,
and we may thus assume that z = >3, ., a7/, with @; =0 when
ptj. Moreover, x, and w = x — x, satisfy the hypotheses of Lemma
6. Note that p|s.

We need to show that certain elements of D, are ‘“close” to
elements of K(x), so that we will be able to use K(x,) as if it were
a subfield of K(x). The next lemma gives what is needed.

LEMMA 7. We can find elements t', t and w such that:

(a) t' is a prime element of K(x), and u is a prime element
of D,;

(b) u commutes with t' mod P****'; that s, ut’ — t'u € P+,

() u?P=t, and t is a prime element of K(x,) with t' =t
mod P**e. '

Proof. Recall that ¢ = a;,77? + higher order terms, where jp =
—m — n. Choose h so that jh =1 mod p; then we may find ac K
such that ¢’ = ax" generates P?. In fact, we may assume that ¢ =
n? + higher order terms. Let ¢ = ax!. Then ¢ = ¢ mod P?*. Since
t generates a field of degree p over K, we can find a pth root u of
t in D with v =3>7,8;7’, 0+ B,€k, as was done in Lemma 6.
Then, of course, ¥ commutes with ¢ mod P?™**!, since u € P and
' — tePrte.

Now assume for simplicity that s is even; let s = 2s,. We define
H, = G,(D,, N G, )G N K(x)) .
Note that coset representatives for D, N(1 + P%)/D, N(1 + P’*) are
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given by elements 1 + vu", Y€k, and w as in Lemma 7, and that

coset representatives for K(x) N (1 + P#*)/K(x) N (1 + P**') are given

by elements 1+7(t'), ved,. (If pfr, Kx)N(1+P)=K(x)N 1A+ P*).)
The next lemma is the crucial one for extending X to H,.

LEMMA 8. (a) If n,— s, < j < m,, then

[H., H]1N Q1 + P9)/[H, H]N @1+ P*)
A + PH/(1 + Pi*) if ptj and there is a multiple
=. of p between n, — s, and j ;
{1} otherwise ;

(b) If zel[H,, H]N A + P™), then X,(z) = 1.

REMARK. Part (b) of the lemma says that X, has an extension
to H,. Any such extension must be trivial on [H,, H,], of course;
part (a) therefore enables us to count the extensions of X,.

Proof. We use the notation of Lemma 7.
(a) Modulo G,, the commutators generating [H,, H,] are of the
form

(f, 9 =0+ fENA + g + &N + gw)™,

where f is a polynomial over K, with integral coefficients and no
constant term, while ¢ is a polynomial with integral coefficients in
K, and all terms of degree = n, — s,. (The coefficients of g(u) need
not commute with «.) Substitute

L+ FENT =1 = F&) + fEF + -+,
A+ gw)?=1—gw) + g+ ---,
in the formula for (f, g)’. Since g(u)’e P™ and we are calculating
modulo P™, we can drop all powers of g(u) beyond the first, setting
(f, 90 = 1+ 3, (=D gw) — FE)g)f(E)]
=1+ 3 (—DIO 0w — fOgw O] -

This last congruence holds because f(t) = f(t') mod P*** and g(u) € P o,

Any term in g(u) whose degree is a multiple of » can be written
as a power of ¢, since £ = u?; that term commutes with f. Let g, be
the polynomial obtained from g by omitting all terms whose degree
is a multiple of p. Then

(f, =1 + 3 (~ D)0 w) — Fang)fey],
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and every term in this expression is of degree prime to p and greater
than n, — s,. To complete the proof of (a), note that if n, — s, <
jop < jop + 5. = j < m,, then the elements

1 + (B)Y)A + vu)(1 + (BY) (1 + (Yu) ™,

where B, 7 vary over k, give the coset representatives.
(b) This is more complicated; the idea is to replace computations
of X, with computations of X,. Define (f, g)' as in (a), and set

(fyoh= 2:}) (=D1LrEY g — fE)g)f#)] -

If w = I (f 0> let wi= S (f) 0 wi=w(+w)™. One
can think of w; as containing all the terms in w' that are linear in
some g;. Similarly, we define

(9 =0+ fO)A + gu)d + ) + A + gw)™,
(f, 9 = 5; (=Df @ g(w) — f(Ogu)f ()] ;

note that we have replaced ¢ with ¢. If w’ is as above, let

w = H fnd)r  w= z Fon 0s o= w(d + w)™ .

Now:

(1) weG,. For w'eG,, and (as we saw in the proof of part
(a)) replacing ¢ by t in the commutators changes terms only by
elements of P™.

(2) w;=w, modG,,,. For w, — 1 is a sum of terms involving
products of two or more g;(u) and one or more fi(¢'), and w, — 1 can
be written as a similar sum involving the g;(u) and fi(f). Since
g5, (w)g;,(u) € P*~*** and ' — t € P*, we have w; — w, e P

(8) w;€G._o;- This follows from the calculation in (2), since
95, (w)g;,(w) € Gppyae

(4) Z(w:) = X, (w;) = X, (w,), from (2) and (3), since X, and X,
agree on G,_,,;.

(5) X,d4 w;) =1. For

X1 4+ wy) = P(tpx(wi)) ,

and, because « and ¢’ commute,

2(we) = (3 3% (- DA, — FHE)ofAE)))

F=1i=0

<h
i=1i

T
0.

Ms

(=D (g afy( e+ — g)fiEYafit))

-
]
o

I
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(6) X, A+ w) =1, by a calculation like that in (5), since «,
and ¢ commute.

(7) X(w') =%, (w), from (4), (5) and (6).

(8) Thus we need only compute X,(w). But w is a commutator
in D, N(1+P™), and therefore w=1+w,, with Tp, /KwyWo =0 mod P"*,
Hence z(w,) = 0 mod P**, and hence X, (w,) = 1.

To finish the proof of (b), we need only mention that all commu-
tators in H, N G,, are products of the commutators just considered
with commutators of the form z = 2,2,27'%", 2,2, €D, NG,_,. Then
2€G, ., and so X,(z) =X, (z) =1 for the same reasons as in (4) and
(8) above.

We label the different extensions of X, to H, with integers; a
typical one is X,,. Let pj, be the smallest multiple of p that is
greater than n, — s,, We say that X, , and X, , are equivalent if they
agree on K(x) N H,. (Thus they may differ on elements 1 + nu",
Ny — 8 = 1 < PjJ.)

It will be convenient in what follows to have a reference addi-
tive character ' defined on K(x,) which corresponds to 4 on K.
(Recall: 4 is an additive character. See §1.) We let ¥ be any
character on K(z,), trivial on P ™*?, whose restriction to K is .
Note that if «, is the character defined on k& by +.(¥) = (y7z™™),
then ' (Yt7?) = 4 (Y), V7Y €L.

THEOREM 5. (a) If X,., is any extension of X, to H,, then
Indy, ¢ X.io = 04:a 98 trreducible.

(b) Imequivalent X,., give rise to inequivalent o,.,, and equivalent
X..o give rise to equivalent p,.,.

(c) Any irreducible representation of G whose restriction to G,
contains X, is equivalent to some Q,,.

Proof. (a) We need to show that if z =1+ 35,77, r=1,
is such that X,..(zyz!) = X,..() whenever y, zyz~' are both in H,,
then z e H,. Suppose otherwise. We may then assume that 22'¢ G, ,
whenever 2’ € H,.

Let y =1+ 9y, y,eP™ Then X, (y) = X.(y) and X,,.(2yz7") =
X (zyz™) = X,~1,.,(¥), so that z7'xz = z mod P~ ™, In particular, 7,x,
commutes with x,. From Lemma 4 (applied to x,), there is an element
%, = 1+ 7,7" + higher order terms with zeD,. As 2z'€G,,,, we
may not have z,e H,. Therefore » < n, — s,. Moreover, if p|r, then
there is an element ¢’ = 1 + v,7" + higher order terms with 2z’ € K(z).
We conclude that p}7r.

Thus far, we have dealt only with X,; now we analyze X,., more
carefully. On D, NG,, X,, factors through Vb, /kzpe LhE proof of
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this fact parallels that of Theorem 1. Define the character «, on
K(z,) by 4y = 4o Trgn,x. If 1+yeD, NG,, then

”D,s/x(zs)(l +y)=1+ To, /K=Y (mod P™*),

and so X, (1 + y) = Vo(®sT, k2, Y) depends only on (y).

Let w be a 1-dimensional representation of D, N G which agrees
with X, on D, NG,. Then X,w™ is trivial on D, NG,_,. On D, N
G.y—sy We may write

Xa:'.a,a)_l(l + y) = QF(S)TDzs/K(zs)(yyO) ’
where

o

Yo = Z BjﬂjeDacs .

j=—n+s—m

Let y, = B ,pemt™ ™ ™, and write 6 = B_,;,_n; let € — 2z, = YA~ "™ 4
higher order terms.

Since z — x, and y, both describe the behavior of X,,,-w™* on G,_,,
they should be related. We now describe the relationship. If y =
1+ gu"*eD,, then

iiar @7(y) = 2o, () = voToix((y — D@ — )
=7 TD/K(B’yaﬂ—sﬂ_m) = g0 T’/'d/k(,ep)'an_s)
= a0 TTd/k(7BGS—”) = a0 T’I’do/klgaS—n(T’rd/do’)’) ,

since Bed, Also,

Koo @7y) = o TD:cs/K(a:s)((y — Dy,)
= '1}'1\(8) ° z-Dzs/K(z)(Baon_sz—m)
= a0 T”'do/k(ﬁb\dn‘s) =0 T’l‘do/k(,ea’_ns) .

Thus 6 = T744,Y. By Lemma 6, 0¢k,. Therefore y, generates an
unramified extension of order » over K(z,).

We use this fact to restrict the element z further. On H,N D,
conjugating by 2z commutes with ®w. Therefore it commutes with
X,o 0. Let yeD, NG,,,. Then

Liw @7 (y) = Xy 07 (2927,
and a calculation like that at the start of the proof shows that
27y = Y, mod P ot

In particular, y, and 7,z commute. But the residue class degree
of y, is divisible by p; it follows that p|r. This contradicts our
earlier demonstration that ptr, and part (a) follows.

(b) If p,, and p,, are equivalent, then 3z:X,.,(y) = X,,;(2yz™")
whenever y and zyz~! are both in H,. In particular, this holds for all
y€G,,. Write z as in part (a). The analysis given there shows that
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zeD, NG, ,, that ptr, and that conjugation by z changes X,., on
elements of the form 1+ gu**~*. We know that pyn —s—r. If
n — 8 — r > pj, (where pj, is the smallest multiple of p greater than
n, — 8,), then X,., and X,,, must agree, from (a) of Lemma 8. Hence
n—8—1r<pj. Itis now easy to check that z normalizes H, and
that X,., and X,,, are equivalent.

That equivalent X,,, produce equivalent p,,, can be proved by
picking z as in the above paragraph. It is also implied by (c); see
below.

(¢) This is a matter of counting. Observe first that if ze G
fixes X,, then (modulo H,) zeD, NG,,,. (This follows from the
analysis in part (a); the only difference is that in the second part of
the analysis, we are concerned only with elements yeD, NG,,.)
Conversely, a straightforward calculation shows that any such z does
fix X,. Hence the multiplicity of X, in p,.|G,, is [D,, N G, _,: D,,N
Gy /[ K@) N G,y K(®) N G,y ]. By Frobenius reciprocity, this is
also the multiplicity of p,., in Indgﬂoq,,X,. We also know that there
are [G N K(x): G,, N K(x)] equivalence classes of X,,,’s and that

Dim p,., = [G: H,]
= [G/G,;: (G N K(@))(Gry-s, N D, )/(G,y N K®))(G,y N D,,)] -
Since (G N K@) N (G,y—s, N D,) = G,—,, N K(x) and (G,, N K(2)) N (G, N
D(x)) = G,, N K(x), we have
Dim p,., = [G/G,,: G N K(x)/G,, N K(x)]
X [Guysy N Dy,[Goy N D, 2 Gy N K(@)/Gy N K(@)]7*

Thus the different X,., account for a subspace in IndG"OHGX,, of dimension

[G/G. ]G N K(@)/Gry N K(®)][Grysy N D, /Gy N DI
X [Gaysy N K(@)[Gry N K@G N K (2)/Gry N K ()]
X [st n Gno—a/Dzs n Gno—so][K(x) n G'no—s: K(x) n Gno—so]_l .

But [G,,-., N K(@)/Goy N K@)/[Gry-s O K@)/Gopry N K@)] =1 and
[D., N Gy D., N G, VD, N Goyef D, N Goyo] = 1. (Note that p =2,
since p|n and » is odd; also, p|s. Hence p|s,, and the number of
multiples of p between 5, — s, and 7, equals the number between
n, — 8 and m, — s,. From this, the first relation follows; the second
is even easier to verify.) That is, the X,., account for a subspace
in Indanoqax,, of dimension [G: G, ] = dim Indgno_,ax,.

That proves (¢). Also, as we have accounted for all the represen-
tations in Indanoquz, it must be the case that X,., equivalent to %,,
implies 0., = 0.

4, We still need to deal with the subcase in which [K(x,): K] = p,
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[K(x): K] = p*, and K(x) is totally ramified. This situation is similar
to the last one we dealt with, but there are complications.

We define x, as in the previous section. We begin with three
lemmas similar to Lemmas 6, 7 and 8.

LEMMA 9. Let y be as in Lemma 6. Let w = Bxn*, t > 7, be such
that if ¥ = y + w mod P, then [K(y'): K] = »*, and suppose that
Ky + w) s totally ramified over K. Then:

(a) ptt and Tr,,R + 0;

(b) if ¥ =y + w mod P**, then K(y') is totally ramified over K;

(e) by perhaps changing the choice of prime element, one can
also arrange that Tr,, R €k (without upsetting the other normaliza-
tions already made).

Proof. The proofs of (a) and (b) are like that of Lemma 6, with
easy modifications. For (¢), notice first that if ¢ e k,, then (67)? = §'n?,
0'€k. Thus using n' = 67'7r as prime element does not affect our
assumptions about y. On the other hand, this change means that
w = eB(n'),, where ¢ =4990°---(6°)"; of course, Tr,,eB8 = eTri,5,
and N, ¢ = (No)'. Because d* is cyclic, we can modify T7,,3 by
any element of k, whose norm in k is a ¢th power. Since N, is
onto (as a map from k to itself), we have N, .(T74xB) = NiyrfBos
Bo€k,. That is, we can modify 7748 to be (8y(T74/,R) )T, =
Bo €k, since N(B)Tr,,,R)~" is a pth power.

LeMMA 10. We can find elements ' and w such that:

(a) u' is a prime element of K(x) and u is a prime element of
D,

(b) % =u mod P-.

Proof. Let ' be any prime element of K(x). Then «' commutes
with 2, mod P~ ™**, and Lemma 4 plus an easy induction shows that
there is a prime element u of D, with » = 2’ mod P".

Assume that s is even, s = 2s,. Define H, = G, (G-, N D, )(G N
K(x)).

LemmA 11. (@) If n,— s, < j < m, then [H,, H,] N G;/[H,, H,] N
G has as coset Tepresentatives the elements 1 + au?, Tr, ,a = 0.
When 5 = n, — s,, the quotient is trivial.

(b) If ze[H,, H]NG,, then X, (2) = 1.

Proof. This is almost the same as the proof of Lemma 8; the
modifications are easy.
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From now on, the analogy with the procedure in § 3 is not nearly
so close. It is true that we could now extend X, to a group H, (as
in Theorem 5) and induce to G, and that the result would be an
irreducible representation of G. The trouble is that we would not
get enough representations of G in this way. The way out of this
difficulty is to vary the group H,. The details, as we shall see, are
notationally unpleasant.

We begin by analyzing the characters X, and X,, more closely.
Define the additive character 4 on K, as was done in §3, and let
® be a 1-dimensional representation of D, NG which agrees with
X,, on D, NG,. We may extend o to G, (D, NG) by letting it
equal X, on G,. Then w is trivial on all commutators of D, N G,,_,,
and X,0™ is trivial on G,_,. Hence if ¢ is any 1-dimensional represen-
tation of D, N G,,_,, which agrees with Z,®™ on D, N G,, then we
can extend X, to G, (D,, N G,,_,,) by letting it equal ¢w on D,N G, _,,.
There is an element we D, such that

o(1 + 2) = @ °TDmS/K<xs)(Zw) , 2€D, N Pr,

We write ¢ = X', In fact,

w = i Bu
j=—n—m+s
and, if * — ¢, = a@'x~" ™" 4 higher order terms, then a calculation
like that in part (a) of Theorem 5 shows that

B—n—m+a = Trk/ko(a,) .

From Lemma 9, 8_,_...€k.

LEMMA 12. (a) There are g orbits of the X' under the action
of D, NG, _,

(b) If 33, =m, then w = >3 . ni.BW, With B;ck for j=
—N, — M

(e) If 3s, < My, let t be the smallest integer with 2t = m, — s,.
Then B;e KNk, for j < —my#8 —m — L.

Proof. (a) The element B_,,, .4 ™ "' generates a totally rami-
fied field of degree p over K(x,). It follows (as in Lemma 1) that
the elements of D, NG, /D, NG,_, commuting with X, are (con-
gruent mod P™~* to) elements of K(z, w), and there are g¢* such
elements. The orbit calculation follows easily.

(b) Let u, ' be as in Lemma 10. If yeD, NG,,,, and v'¢
K(x)NG,, then X,(v'vv'"'v™") = 1, from Lemma 11. ButX, (v'yv"'y™") =1
as well. Forif y=1+1y, v =1+ v, then
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L,y y™) = «ﬁorme,<Zo (—1)Y (vy,vi — yovs'“)) .
=
But
Tox(XVYo — TYoVo) = To/x(T VYo — Yos¥o) = 0,

while the other terms in the parentheses are in P™*, so that we
can replace z, by 2. (It is here that we need the estimate of the
size of s.) As v, and 2 commute, a similar calculation shows that
the remaining terms have trace 0.

Thus X, (v'yv'"y*) = 1. Recall that v’ is given by a polynomial
in u'; let v be the corresponding polynomial in #. Then

L.(vyv7y™) =1,

since vyv~'y~* and v'yv' "y agree modulo G*°. Since X, is trivial
on these commutators, we must have we K(u) mod P~™ ™.
The proof of (¢) is essentially the same as that of (b).

Note. Parts (b) and (¢) of Lemma 12 may seem paradoxical.
After all, we may vary a — x, freely on P~"~"**; how can we restrict
the B; in any way? The answer is that the element u €D, depends
on z; varying x means a new choice of u, and hence a different
expression for w.

Define X$'(y) = oz'st,Km)(y —1),yeG,,, if weD, NP,
and let H,, = G,(G,—,, N D, )G N K(x)). We know that there are
extensions of X, to H,,. LetX,,beone, andletX, ,w*|D, NG,,_,, = X%.
Write w,=w,,,+w,.,, where w,,, € K(x,) and w,,, ¢ Pt or P~m mo~%~t+1
depending on whether (b) or (¢) of Lemma 12 applies. Choose one
element from each of the orbits in Lemma 12(a); a typical element
is w=w +w, wyeP ™" nD,. For the w-orbit, we may, and
do, take w, = 0.

Suppose that v"e€ K(x) N G, and y€ D, N G,,,,. In investigating
whether the induced representations we shall construct are irreducible,
we need to know when yv' commutes with X,,-X{) on D, NG, .
Write 2(X) for the conjugate action of z on X. Since v commutes
with X,,, we have

YV )Xo X5 Kio X5 = Y(Uyio) - (Y0)X55)) Ko X35~
= Ygso @)YV YA Lo 07 X))
= y(Xﬁ;‘})XWw,,,,/—f,,ﬂ) : (Xﬁﬁi'xf»“?, -
= XEZL;I;Oy"l)XE;Lq;ly")Xf(/?’wbv’“ly"‘xﬂq—u’b .

It is easy to check that y commutes with X{) ; for instance, if
Lemma 12(b) applies, then

-1 —m~—ng+i+ng—sg — —m—sp+1 .
YWYy - — ’meP 0 070 = P L
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and thus X)) ,-_,, is trivial on D, NG, Similarly, X{, .- =

X2... We can therefore write the last expression as

(s) (8) () (s)
Xw)’wl;ov’*'y"]x(yv’wbv"‘ly“l)x—wl;OX—-wb .

Thus yv" commutes with X,,-X{) iff yv' commutes with w,, + w,
(modulo a sufficiently high power of p).

LeMMA 13. Let u, = (W, + w,)"w ™2 be a prime element in
K(w,,, + w,, x,), so that u, = >3, s;u?, with ¢;e€k for 1< j<n,—s
and €; €k, generally. Let u, = >3, ¢;(w’)’. Then elements in G N K(u,)
commute with the representation on G,(G.._,, N D,) given by X, on
G, and extended (as indicated above) by X3, w = Wy, + Wiy + w,.

Let H,,=G,(Gpy-s, N D, )G N K(uy)). The 1-dimensional represen-
tations described above have exactly qm*~' extensions to H,,.

Proof. We checked above that the elements in G N K(u;) com-
mute with the given representation; they also commute with other.
Therefore the representation extends. The last statement holds
because [H,,;: G, (G, N D,)] = g,

We are now (finally!) ready to describe the irreducible represen-
tations of G containing X,.

THEOREM 6. Let X,.;,, be one of the 1-dimensional representations
of H,, described in Lemma 13. (Recall that one chooses exactly one
w = w, + w, from each of the orbits in Lemma 12(a).) Let 0,4, =
Indy, . ,~eXsip:a- Then:

(8)  Duinia 78 Prreducible;

(b) the 0.4, are mutually disjoint;

() the P, exhaust the irreducible representations of G con-
taining X,.

Proof. For(a),let H,,, = G, (G, N D, NG N K(w), J, = Gpy_.Ds,.
The elements of G which fix X, |G, are all in H;,,, and H.;, normalizes
H,.,. Moreover, the coset representatives for H,,/H,,, can all be
chosen from among coset representatives of J,/J, N G,,—,» We need
only show, therefore, that any element of J, (modulo J,NG, )
which commutes with X,.,., lies in H,.,. From Lemma 11, there are
exactly g** such elements, and elements of H,., account for them.
Thus 0,...;, is irreducible.

The proof of (b) is nearly identical; we need to show that no
element of H, can transform one X,,, into a X,,.,, and this is
evident because w, w' are in different orbits. Finally, (c) is the
usual counting argument.

Theorems 1-6 solve the problem of finding the irreducible repre-
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sentations of G, except for some minor details to be dealt with in
the next section.

5. We still need to remove the assumptions on the parity of
n and s. As the procedure is the same as in [1] and [4], we omit
proofs. (Some of the counting arguments above must be modified;
this, too, is not hard.)

If n is even, but n — s is odd, let n, = 1 + (n/2), and let (H,),
or (H,),. be the group described in §2 or 38 (so that if, e.g.,
K(z,) = K(x) = p°, then (H), = G, (K(®) N G). We shall write (H,),
in what follows, but the remarks apply equally to (H,),.,. Consider
the bilinear form

B,: (a, B) — X, (1 + az™ ) (1 + ™)1 + az™ )1 + Br"~)™*

taking d x d to the unit circle. It is antisymmetric, and the radical
is {B8: K(x,) contains an element 37, _, 8;%’ with g,_, = 8}. There-
fore the elements 1 + gz with geRad (B,) are already contained
in (H,),. Let h be a maximal isotropic subspace of B,; we let H,
be the group generated by (H,), and the elements (1 + gz™™') with
B€h. Two extensions of X, to H, are equivalent if they are equiva-
lent on (H,),. The representations p,, = Ind; _sX,,, are irreducible
and exhaust the representations of G whose restrictions to G, con-
tain X,, and inequivalent X,,, give rise to inequivalent p,.,.

If n — sis even, the procedure is similar; let n, — s, = (n — 8)/2 + 1
and consider a maximal isotropic subspace &’ of

B;: (a, B) — Xx_%((]_ + aum ) (1 + Buno—ao-1)
X (]_ + auno—%—l)—l(l + Buno—so—l)—l) :

add the elements (1 + au™ %), ach’, to (H,)., and call extensions
of X to (H,), equivalent if they agree on H,.

There is another description of this procedure, in which if, e.g.,
n is odd, one tensors X,., on (H,), with a Heisenberg-like represen-
tation of G, _;; see [4].

We also need to extend representations from G to D®. The
method is generally like that in [1]; here, for example, is a descrip-
tion for the case [K(x,): K] = p*>. We may assume that the maximal
unramified extension in K(z) is contained in K,. Let 2’ be a prime
element of K(x), and let

Jo ={@'):5e Z}-{k, 1 K*(2)} .

Then conjugation by elements of J, fixes X,., on H,. Tensor the X_.,
with representations of J, and induce to find the irreducible repre-
sentations of D=
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The case considered in §4 is somewhat different; we merely
sketch the argument, since the result is not quite satisfactory. We
use the notation of §4. Let p,,;, be induced from X,,, on H,,,
and let F be the trace character of X,.;.,. We note that u; normalizes
H,,. Let yeG. If no G-conjugate of y lies in H,,,, then no G-con-
jugate of wu,y(u;)™* lies in H,,;; hence F'(y) = F(uyu,™*) = 0. On the
other hand, it is not hard to see that if ye H,,, then there is a
prime element v = >\, »,;7?, 7, = 1, such that F(vyv™) = F(y). (For
instance, if yeG,, then X, =X,, and so F(u'y(u')™) = F(y).)
Since vu’ € G, we conclude that, e.g., conjugation by u, fixes F. Thus
one can extend p,;, to J,. Now one proceeds as in [1]. It would,
of course, be preferable to have a concrete description to J,.

The procedure for constructing representations described in this
paper also applies to division algebras D whose index m is the pro-
duct of two primes. (If neither prime is p, then, of course, we are
in the situation of [1] or [3].) There is some difference in the con-
sideration of cases because the behavior of T, , depends on whether
or not [k, k] is prime to p. The procedure also applies to some
representations in the case where m is a power of p; for instance,
if m = p” and [K(z,): K(x)] = ™, one can find the representations
of G containing X, by methods like those of §§3 and 4.

The general case is murkier. The problems with extending the
procedures of §§3 and 4 are twofold: the approximation lemma
analogous to Lemmas 7 and 10 becomes more difficult to prove, and
one needs to deal with certain finite-dimensional representations of
H_, which are hard to describe. I hope to return to this topic in
future papers.

Two other matters deserve mention. In [6], Langlands predicted
a correspondence between representations of D and certain represen-
tations of the Weil group of K. This correspondence has been veri-
fied in the tamely ramified case (see [5]). It is of considerable interest
to know whether the correspondence holds more generally.

Finally, there is the question of finding the characters of the
representations. In the tamely ramified case, the computations are
found in [4]. The wildly ramified case seems much harder.
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