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REPRESENTATIONS OF DIVISION ALGEBRAS
OVER LOCAL FIELDS: II

LAWRENCE CORWIN

Let D be a division algebra of degree p4 over a non-
Archimedean locally compact field K (i.e., index (D/K)—p2).
We show how to construct the irreducible unitary represen-
tations of the multiplicative group of D.

1* Let K be a non-Archimedean locally compact field, with residue
field k having q = pr elements (p is a prime), and let D be a locally
compact division algebra with center K. Then [D: K] is a perfect
square—ra2, say; m is called the index of D. It is a question of
some interest to determine the irreducible unitary representations
of D*. In [1], [2], and [3], the representations were determined and
their characters computed for the case where m is prime to p (the
"tamely ramified" case). As was pointed out in [4], the same pro-
cedure serves to compute the representations (though not the charac-
ters) in the case m = p.

In this paper we compute the irreducible representations of D*
in the case where m = p2. The procedure is like that of the previous
cases, but there are added technical difficulties. The method as given
here does work in somewhat greater generality; see § 5 for a brief
discussion.

Before describing the method, we need some notation. Let Kt

be a maximal unramified extension of K contained in D, so that
[Kx\ K] = m; let d be the residue class field of Kx (and of D). It is
possible to pick a prime element π of D such that conjugation by π
generates Gal (KJK). (For these and other facts used here, see, e.g.,
Chapter 1 of [8].) Then πm is a prime element of K. We may also
choose a set ^cz^ of coset representatives of d such that O e ^ and
the other elements of kx are the (qm — l)th roots of unity in Kx.
Then every element of D has a unique expression of the form

j 0 e Z,

where each a3ekt. Set

A = \y = Σ ocάπ
β: a0 Φ ol

( i=o

and
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Then

and

D^GKK, Λί = Λ

As noted in [1], the major problem in finding irreducible represen-
tations of Dx lies in finding those of G.

Let O = OD = {y = Σ?=o &&*} be the ring of integers of D, and
let P = πO = OTΓ be the maximal ideal of £>. Then for each i ^ 1,
G5 = 1 + P ' is a subgroup of G (and G = Gλ). Any irreducible represen-
tation p of the compact group G must be trivial on some Gό\ let w
be the smallest integer (^ 1) such that p\Gn+1 is trivial. (In the
terminology of [3], n + 1 is the conductor of p.) Let n0 = [(w + l)/2],
where [ ] denotes the greatest integer function. Then GnJGn s
pnojpn+i g Abelian, and therefore ^ |G n o is a direct sum of 1-dimen-
sional representations. Let X be one of these, and regard X as a
representation of Pπ°. We may describe X as follows: let f be a
character of K+ which is trivial on Oκ == OD f] K, but not on π~mDκ.
Then any character of D+ is of the form

XM = ψ°τ(xy) ,

where xeD and r: D-+Kis the reduced trace. If we identify D with
D~ via x~Xx, then £)£ = P~m+1 and ( P ^ 1 ) 1 = p-*-», (Pn°y = D/P~m-no+1.
The character X is an element of (Pπo)~ that annihilates Pra+1, and is
thus given by an element of p-™~*/p-™-no+\ That is, X = %,,, where
cc e p~m-n (and α? is determined mod p-m~no+1)t Conversely, p appears in
Ind^ ^G (Xx), and we therefore determine all irreducibles p containing
X by finding all irreducible components of Indβίio_»G Xx. Replacing Xx

by Xx,, where x and xf are conjugate in G, does not change the
induced representation; if x and xf are conjugate in D, the induced
representation may be changed, but in an unimportant way so far
as representations of D are concerned.

The construction of p in the tamely ramified case proceeds as
follows: one first chooses x to generate a field of degree as small as
possible. Then one constructs a subgroup H — Hx of G which con-
tains Gno (roughly speaking, H consists of elements of G commuting
with x mod an appropriate power of P), extends Xx to an irreducible
representation XXiΛ of Hx, and induces up to G; the induced represen-
tation is irreducible, and one obtains all the irreducibles in I n d ^ ^ Xx

by varying the Xx a. The procedure in our case is similar, but in some
cases the group Hx depends on the extended representation Xxιa.

The wildly ramified case seems to be harder than the tamely
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ramified one for two related reasons. Write x = Σf=_m_n Oίάπ
5

9 xλ =
a_m_nπ~m~n. In the tamely ramified case, we may assume (by taking
a conjugate of x) that the elements asπ

s all commute. Futhermore,
an important part in the analysis is played by elements xt which
are conjugate to x mod p-»-»+< and which generate fields of degrees
as small as possible. In the tamely ramified case, these elements
can be assumed to lie in the division algebra DXl of elements com-
muting with xlf and therefore many proofs can proceed inductively.
In the wildly ramified case, it is quite possible that 1 < [JBΓfo): K] <
[K(x): K] although K(x) contains no proper extension of K. As a
result, we need some technical lemmas to show that DXχ has elements
"close" (in D) to those of K(x). When these technical difficulties do
not arise, the proofs are easier; we discuss these cases in § 2.

For the rest of the paper, we set m = p2 (though for typo-
graphical convenience we continue to use m). Let KQ Q Kx be an
unramified extension of K of order p.

In what follows, σ denotes the element of Gal {KJK) generated
by conjugation by π; σ is generally written exponentially. We also
use σ to denote the corresponding element of Gal (d/k). We shall
often denote an element of kx and the corresponding element of d
by the same letter; for example, we shall write Trd/fc a for a e kλ.
This convention should cause no confusion; in case Char K = p, it is
justified by the fact that d = fcx. Similarly, we write k, k0 for K Π k19

ULOΓΊ&I, and regard elements of, e.g., k as either in K or in the residue
class field. For 0, 1 Φ x eD, Dx is the division algebra of elements
commuting with x; however, Do will be the division algebra of ele-
ments commuting with Ko. Note that if [K(x): K] = mOf then the
index of Dx over K(x) is (m/m0)

2. Then reduced trace (norm) is
denoted by τ(v). Finally, we shall write "p contains %" for "the
restriction to (1 + Pn°) of the irreducible representation p of G
contains X."

2 The results of this section are, generally speaking, either
specifically contained in those of [1], [2], or [3], or easily deduced
from them.

We continue with the notation of the first section. Let X = Xx,
x = ΣΓ=-rc-m otjft3', and set xx = a_m_nπ~m~n. We assume throughout
this section and the next two that n is odd.

LEMMA 1. Ify = Σ>7=-m-n ββ*> with β_m_n = α_m_n, then e(K(y)) ^
e(K(Xj)) and f(K(y)) ^ f(K(xJ), where e — ramification index and
f = residue class degree.

Proof. As the extra effort involved is small, we give a proof
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valid for all m. Write a for α_w_TO. Since π~m e K, K{xx) = K(aπ~n) ==
JΓ(ίc0), say. Let m = si, where s is the greatest common divisor of
m and n; xleK,. Let iΓ = K(xl). Then /(jBΓCαίJ) = [-BΓ': JKΓ] and
e{K{xd) = t.

Suppose that am - bn = s. Then πmla+b)yb eP8, so that J5Γ(y) cer-
tainly has an element y0 such that π~myl is a unit, and hence e{K{y))
is a multiple of ί. Furthermore, yι == a?ί modP~ ί (w+n>+1; now HenseΓs
lemma shows that £"(2/) contains a field isomorphic to K'. Thus

[JΓ: K], as claimed.

We now proceed to look at the representations of G. The ana-
lysis splits into four basic cases, depending on the nature of xt:

(1) ^eK;
(2) [K(xd: K] = m;
(3) [ίΓfe): jδΓ] = p and i£(αθ is unramified over K;
(4) [JΓC )̂: JC] = p and Xfe) is totally ramified over K.

We deal with the first three cases in this section. Case (4), which
splits into three subcases, is the subject of the next two sections.

Case (1) is handled by reducing it to the other cases; see [1],
[3], or [4].

THEOREM 1. If K(xt) = K, then every irreducible representation
p containing Xx is of the form p = px ® (Zo ° v)9 where v is the reduced
norm map (from D to K), Xo is a 1-dimensional representation of
Kx, and pt is a representation of G with conductor < n.

Proof If xxeK and 1 + y e Gnf then

*β(l + V) = ψ ° τD/κ(xy) = ψ{xτD/κy) .

But v(l + y) = 1 + τD/κ(y) mod Gn+U so that Xx(l + y) depends only
on v(y). Hence there is a character Xo of K G such that X = X0ov
on Gn. A simple counting argument (given in [1]) shows that
Inda^y^β (K \on-J consists of multiples of representations pi®(Z0

o*0»
where px has conductor < n. This proves the theorem.

Case (2) is also easy to deal with; the analysis follows that in
§ 4 of [4] (or that of [1], Theorem 2.3).

LEMMA 2. // [Kfa): K] = m and yeK(x)f y = Σ y W Λ ^ then
βrπ

reK(x^)\ conversely, if βrπ
reK(x^)9 then 3yeK(x) with y —

Proof. Since xy = yx, the lowest order terms of x and y must
commute—that is, if yx = βrπ% then j / ^ = xxylm Thus i/i e Dmχ. Since
JBΓfe) is its own commutator in D, yeKixJ. For the converse, fix r
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and let K = {β e ftx: 3 y e K(x) with y = Σf=r ββ* and βr = β), ft" =
{/3 € ftx: βπ r e K(xt)}. Then ft' and ft" have the same cardinality (Lemma
1), and ft' S ft", from the first part of this lemma. Hence ft' = ft".

Since we assume that n is odd, we have n0 = (n + l)/2. Let
Hx = (?no Π((?n UL(#)); we write i ϊ for Hx when no confusion will
result.

LEMMA 3. [H, H] Q Gno, and 1 s 1 oti [H, i ϊ ] .

Proof. Because K(x) is commutative and Gno is normal, [fΓ, H] £
Gno. For the rest, we need to show that if w eGno and y eG f) K(x),
then Xiywy'1) = X(w). Let w = 1 + wf\ then

l{ywyι) = Z(l + yw'y~ι)

= ψo τ{ywfy~1x) — ψ o τ(w'y~ιxy)

= ψ o τ{wrx) =

since cc and ?/ commute.

There are [jfiΓ: GJ different extensions of Ẑ  to if. Label them
Zβ;β, where α runs through the integers from 1 to [iϊ: GnJ.

THEOREM 2. (a) ^.^ = I n d j ^ Xx;a is irreducible.
(b) pΛ.a g pΛ.Λ unless a — b.
(c) The px%a exhaust the irreducible representations of G con-

taining X.

Proof, (a) It suffices, from Theorem 6 of [7], to show that if
y 0 H, then there is some w e H such that ywy"1 e H and Xx a(w) Φ
Xx-Λywy'1)- Let y = 1 + βrπ

r + •; we may assume, since y &H and
we may multiply y by any element of H, that r < n0 and /3rπ

r does
not commute with xx (see Lemma 2). Let w = 1 + w', with w'
Then

1) = ψ
— (ψo τ(w'x)){ψ © τ(w'βrπ

rx — βrπ
rwfx)) ,

as one sees by expanding 2/"1 = [1 + (/3rπ
r + -)]"1 in a series. There-

fore X^Jiywy"1) = %a.;α(w) for all such w only if

1 = ψ o τ(w'βrπ
rx — βrπ

rw'x) = ψo τ(w\βrπ
rx — xβrπ

r))

= for(κ; f(/3rπ% - ffi/3rO) ,

since, e.g., w'βrπ
r(x — ajj € P"*"1, and so ψoτ(wfβrπ

r(x — ί̂ )) = 1.
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But since w' is any element of Pn~r-\ this implies that βrπ
r and xt

commute, a contradiction.
(b) If px;a = px;b with a Φ b, then Theorem 7 of [7] implies that

ly ίH such that for all w e H Π yHy~\ Xx-,a{w) = X^ywy'1). We saw
in (a) that this is impossible.

(c) The dimension of I n d ^ ^ Xx is [G: Gno] and the dimension of
each px;a [G: H]. As there are [H: Gno] possible Xβϊβ's, and as every
irreducible p containing Xx occurs in Ind^ ^Gn Xx (by Frobenius reci-
procity), the result follows from counting.

Next, we deal with Case (3). We continue with the notation as
above. Let H = GnQ(G f] DQ), where DQ is the algebra defined in § 1.

THEOREM 3. Suppose that K{xx) is unramified, with [K{xx)\ K] = p.
Then ΌXλ = DQ. Let pQ be any representation of G Π DQ such that
PolGn-^Do is a multiple of ZJ^^nzv Extend pQ to a representation
of letting po(l + aπr) = I if p\r, r ^ nQ, and aek0. Then p =
Indff̂ G1(?o is irreducible, and p\Gn^ is a multiple of Xx\Gn_ι If pΌ is
another representation of Dof)G satisfying the above condition and
pr is the induced representation of G, then p ~ p'^pQ = p'o. Every
irreducible representation of G which agrees with X on Gn_x is obtained
in this way.

Proof. Since K(x^) is unramified, we have p2 |_n_m, and K(x^) =
K(a_m_n) — K^ thus Kixj) = KQ, and DXl = Do. Now the proof is the
same as that of Theorem 2.3 of [1], except that, since DQ = {y —
Σ?=r βfij'- βj = 0 unless p)fj}9 one can simplify the notation and some
of the arguments.

REMARK. The above theorem does not directly identify the
representations p containing Xx. The following observations let one
make this identification. For definiteness, assume that [K(x): K] = p2.
From Lemma 1, K(x) contains a field isomorphic with Iffo); the
Skolem-Noether theorem (see, e.g., p. 166 of [8]) lets us assume (by
conjugating x) that K(xx) £ K(x). Then Xx defines a character on
Gno Π DQ which agrees with the norm map on Gn_x Π DQ. As described
in § IV of [4], we may use an appropriate extension of Xx on a sub-
group of G Γ\D0 to induce ρ0 on G Π Do, and pQ determines p. It is
not hard to use this method to give an explicit description of the
subgroup Hx of G such that p is induced by X extended to Hx. In
the next section, we shall see more complicated examples along the
same lines.

We should perhaps add a remark on the generality of these
results. Theorem 2 applies to general m (not just m = p2); it thus
permits the construction of many representations of G. So does
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Theorem 1, but that theorem reduces the problem only trivially.
Theorem 3 permits a reduction of the problem whenever [K(Xj): K]
is unramified, but one must find a general procedure for finding the
irreducible representations of (DXl)

x to reap maximum benefit from
this procedure.

3* We have reduced the problem to Case (4): K(Xχ) is a totally
ramified extension of degree p. Thus xfeK. Because the map
a H-* av is an automorphism of k, one can see easily that there is an
element βπ~m~n with β e &x Π K and x\ = (βπ~m~n)p. By conjugating
with an element of D (or, equivalently, by replacing π with another
prime element 7?τ, 7 6 k[), we may assume that xx = βπ~m~n, or that
α_m_n 6 K Π A*. We keep to this assumption throughout this section
and the next.

We divide Case 4 into three subcases, and we deal with the
easiest one first.

LEMMA 4. Let x generate a field of degree p; let y = Σ?=r βft*
commute with x. Then βrπ

r commutes with xλ. Conversely, if βrπ
r

commutes with xlf then there is an element y — ΣΓ=r fifi* which
commutes with x.

Proof. This has the same proof as in Lemma 2, once one notes
that the division algebras Dx and DXl are both ps-dimensional vector
spaces over K, and that both Kx, KXl are totally ramified of degree
p over K.

THEOREM 4. Let x, xx generate fields of degree p. Then:
(1) Xx\Dχr\Gn factors through the reduced norm vDχ/κ{x)\
( 2 ) if yeDxf)G and z e Gno, then l^yzy'1) = Xx(y).

Thus one can extend lx to a 1-dimensional representation of GnQ(G Π A)>
also to be called Xx, which factors through the reduced norm on GΠ A
Let ξ be any irreducible representation o / ( ? n A which is trivial on
Gno Π A Then ξ(g)Xxis a representation of GnQ(G Π A) which is equiva-
lent to a multiple of Xx on Gno. Let pξiX = lnάGno(G(]Dί)^G ζ <^)XX. Then:

(3) pξfX is an irreducible representation of G;
( 4 ) phtX = ph>x <=> ξi = ζz;

(5) every irreducible representation of G whose restriction to
GnQ contains Xx is a pξfX.

Proof. (1) If y = 1 + y' 6 A Π GnQ, then let xyf generate a field
Kf over K. We have (assuming that [K': K] = p2)

= ψ°τD/κ(xy') = ψ(Trκ,/κ(xy)) =

= ψ(TrKl/κ(xTrκ,/Kly)) = ψ(TrKι/κ{xτDι/Kιy')) .
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This result also holds if y' e K» But vDχ/Kl(y) = 1 + τDl/Kly
f mod Pn,

and this shows that Xx(y) depends only on vDι/Kl{y) for y e A Π Crno.
(2) If z = 1 + s' e G Π A , then (for # as above)

lx(yzy~ι) = ψ o τ(yz'y~ιx) — ψ o τ(zfy~xxy) — ψ o r(z'aθ = %,(s) .

(3)-(5) The proof is just like that of Theorem 1, except that
the counting argument is different. It is still routine; we omit
details.

We are thus in the situation where [K(x): K] = p2 and K(Xj) is
a totally ramified extension of degree p. This is the difficult case.
We shall divide it into two subcases, depending on whether or not
K{x) is totally ramified. While the approach is similar in the sub-
cases, and some lemmas could be combined, it seems clearer to divide
the work.

If K(x) contained a totally ramified extension (over K) of degree
p, we could proceed just as in the tamely ramified case. In general,
no such extension exists, and we must work harder.

For each r with 1 ^ r ^ n0, let xr be an element of D such that
(1) xr = x mod p-»-»+';
(2) [K(xr): K] is as small as possible, subject to (1).

Note that this notation is consistent with the definition of xx.
There is a number s such that [K(x8): K] = p and [K(x8+1): K] =

p2. The general strategy of the proof is to show that for many
purposes, we can use K(x8) as a substitute for a subfield of K(x) of
degree p over K.

We begin by investigating some properties of x8.

LEMMA 5. Let y = Σ?=rj^iπ>j βD generate a field of ramification
index p over K. Then there is a conjugate (under (?) of y, ΣiW βjπj,
with βj = 0 unless p\j.

Proof Dz certainly contains an unramified extension Kό of K(y)
with [K'o: K(y)] — p; by the Skolem-Noether theorem, we may assume
(by conjugating in D) that K'Q = K(y, a), where K{a) = Ko. But under
this assumption, y commutes with α, and this implies directly that
the βd are 0 unless p\j. Since conjugating by an element of k[ or
by a power of π gives an automorphism of Ko, we may equally well
assume that the conjugation is in G.

LEMMA 6. Let y = Σ?=r βjπj generate a totally ramified extension
of order p; let yx = /3rττr. Assume that βd = 0 unless p \ j and that
[KiyJ: K] = p, βr e k. Let w = βfπ\ t> r, be such that ifyf^y + w
(mod Pt+1), then [K(y')ι K] = p2> and assume further that K(y + w) is
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not totally ramified over K. {Therefore f{K{y + w)jK) = p.) Then:
(a) p\t and Trd/kQβ'$k;
(b) ifyf = y + w mod Pt+1, then f{K{y')/K) = p.

Proof. Note that Ko £ Dy. Since multiplying by an element of
K does not affect the hypotheses, we may assume that 0 < r < p2.
Let F be the minimal polynomial for y:

F{X) = Σ tyX* > a>p = l and as e Dκ , all j .
i=o

By considering the valuation (plus the fact that F(y) = 0), one sees
that α0 6 p**/p**+1 and that the terms asy* (1 S j ^ P - 1) are in
p p ( r + 1 ). (Note that p |r .)

Now consider F{y + w); again, valuation considerations show that

F{y + w) = x*-\Trd/hβ')π% mod P ( p - υ

If p\t and Trd/kQ βf Φ 0, then this last calculation shows that F(y + w)
is an element which generates an ideal Pto with (t0, p) — 1; it follows
that K(y + w) is totally ramified. On the other hand, if Trd/kβ' = 0,
then βf is of the form Tr — 7 for some 7ec£0 (where p\r and p 2 | r ) ,
and

(1 - 7π'-r)2/(l - 7π ί" r)"1 = y + w mod P ί + 1 .

Thus there is an element y' = y + w modP ί + 1 with [K(y')ι K] = p, a
contradiction. It follows that p\t.

We know from general structure theory (and the fact that
KQK(y) is a maximal unramified field in Dy) that 3ueDv such that
up — y and conjugation by u induces an automorphism generating
Gal (JBLO/JSΓ). Then u = Σ?«. ^ ^ where ps = r, δs 6 fcx Π K, δ* = /3r,
and δ̂  = 0 unless j ' = s mod p. (This last follows because otherwise
conjugating by u will not be an automorphism of KQ.) Because βr e k
and taking pth powers is an automorphism of k, δ8 e k. Let u' =
u + 70π

8+(t-r); note that p\t - r. Then

(u'y = y + d8(ΎQ + Ύf + .. + 7J ( ί )-1 )> t mod P t + 1 .

So if β' can be written as β£y0 + γf + ... + τo

{p~1)8), then there
exists y' = y + w mod P ί + 1 such that yf is a pth power in Z); then,
of course, [K{y')\ K] < p2, and we again have a contradiction. Thus
/3' is not of that form.

Let σf = σ8; let Γ7 = 7 + 7*' + + 7(σ')?>~1, 7 e fe. Note that
T is ft-linear and ^βe&, so that β' 0 Range (Γ). Thus we need to
show that Range Γ = {δ e d: Trd/kβ e k). Call this last described set
V. Then V is a vector space over & of dimension p2 — p + 1, since
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Ker (Trd/ko) is a (p — l)-dimensional &0-space. On the other hand,
since σ' generates Gal (d/k), Tδek<=> σ'(Tδ) = Tδ <=> δ = δ ( σ ' ) P <=>δekQ,
and on &0, T7 = Trko/k. Hence

Ker Γ = Ker (TrkQ/k) ,

a (p — l)-dimensional fc-subspace of k0. Thus Range T and F have
the same dimension. Since, however, Trd/kQ o T — Trd/k, we have Te
Range Γ=> Trd/koy ek, or Range T £ V. This proves (a).

For (b), note that if y' == y + w mod π\ then F(y') = x^iTr^β)^
mod p(p-^+t+u t h u s a(y')aF(y')(πp2)b = Γ r ^ ^ mod P for appropriate
αe&0 and a,beZ. By HenseΓs lemma, iϋΓ(2/') contains an unramified
extension of order p.

Now we return to the problem of representations. We let X =
Xx9 where [K(x): K] = p\ [K(x& K] = p, K{x,) is totally ramified over
K, and K{x) is not totally ramified. We choose x8 as in the discus-
sion before Lemma 5. Then x satisfies the hypotheses of Lemma 5,
and we may thus assume that x — ΣyLOT_n ajic't with ad = 0 when
p)fj. Moreover, x8 and w = x — x8 satisfy the hypotheses of Lemma
6. Note that p\s.

We need to show that certain elements of DXg are "close" to
elements of K(x), so that we will be able to use K{xs) as if it were
a subfield of K(x). The next lemma gives what is needed.

LEMMA 7. We can find elements t\ t and u such that:
(a) tf is a prime element of K(x), and u is a prime element

of DX8;
(b) u commutes with tf mod p*+ +1; that is, ut' - t'u 6 P^+8+1;
(c) up •=• t, and t is a prime element of K(x8) with ί' = ί

mod P p + S .

Proof Recall that x = ajpπ
jp + higher order terms, where jp =

—m — n. Choose h so that jh Ξ 1 modp; then we may find aeK
such that t' = axh generates Pp. In fact, we may assume that tr =
πp + higher order terms. Let t — axh

x. Then t' = t mod Pp+S. Since
t generates a field of degree p over K, we can find a pth root u of
ί in ΰ with u = ΣiU /^i^5, 0 ^ β1 e k, as was done in Lemma 6.
Then, of course, u commutes with tf modP*>+8+1

f since ueP and
ί' - ί e

Now assume for simplicity that s is even; let s = 2sQ. We define

HX = Gno(D,β n Gno_8Q)(G n JΓ(«)).

Note that coset representatives for DXa Π (1 + P3')/DXa Π (1 + P 5 + 1) are
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given by elements 1 + Ύur, Ύek0 and u as in Lemma 7, and that
coset representatives for K{x) Π (1 + Pjp)/K(x) Π (1 + Pjp+1) are given
by elements l+Ύ(t'Y, Ύ e dQ. (If p\r} K(x) Π (l+Pr) = K(x) n (1+P r+1).)

The next lemma is the crucial one for extending X to Hx.

L E M M A 8. (a) If nQ — sQ< j < n0, then

[Hx, HX] n a + PJ)I[HX, HX] n (l + P'+ i)

(1 + P0/(l + P i + 1) if pJfj and there is a multiple

=: o/ p between n0 — sQ and j

,{1} otherwise

(b) If ze [Hβt Hm] Π (1 + Pn°),

REMARK. Part (b) of the lemma says that Xx has an extension
to Hx. Any such extension must be trivial on [Hx, Hx], of course;
part (a) therefore enables us to count the extensions of Xx.

Proof We use the notation of Lemma 7.
(a) Modulo GnQ, the commutators generating [Hx, Hx] are of the

form

(/, oY = a
where / is a polynomial over Ko with integral coefficients and no
constant term, while g is a polynomial with integral coefficients in
KQ and all terms of degree ^ n0 — β0. (The coefficients of g(u) need
not commute with u.) Substitute

(l + /(ί')Γ = l - /(to + /(ίθ2 + ,

(1 + g(u)Γ = 1 - g(u) + g(u)2 + ,

in the formula for (/, g)'. Since g(u)2 e Pn° and we are calculating
modulo Pn°, we can drop all powers of g(u) beyond the first, setting

(/, or)' s l + Σ ( - ^ W Γ 1 ^ ) - f(t')g(u)f(tγ]
i = 0

= l + Σ (-WCίΓW - f(t)g(u)f(ty].
ΐ0

This last congruence holds because /(ί) = /( ίθ mod P p + S and (/(%) e Pno-*ot

Any term in jr(w) whose degree is a multiple of p can be written
as a power of ί, since t = up; that term commutes with /. Let gQ be
the polynomial obtained from g by omitting all terms whose degree
is a multiple of p. Then

(/, flOsi + Σ (-m/c^
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and every term in this expression is of degree prime to p and greater
than nQ — s0. To complete the proof of (a), note that if nQ — s0 ^
JoP < 3oP + ii = 3 < ^o, then the elements

where β, Ί vary over k0, give the coset representatives.
(b) This is more complicated; the idea is to replace computations

of Xx with computations of XXs. Define (/, g)' as in (a), and set

(/, so; = Σ (-mf(t')i+1g(u) - f(t')g(u)f(tγ].

If W = ΠJ-i (/Λ 0i)'. let wί = Σ*-i (Λ, Λ)ί. wί = w'd + wIΓ1. One
can think of wl as containing all the terms in w' that are linear in
some gs. Similarly, we define

(/, 9) = (1

(/, ffX = Σ i-mf(ty+1g(u) - f(t)g(u)f(tγ]

note that we have replaced tf with ί. If wf is as above, let

h h

w = Π (/;, ί7i) , Wi = Σ (/;, ^ )i , w2 = w(l + ^i)"1

J=l i = l

Now:
(1) we Gno. For w' e Gno, and (as we saw in the proof of part

(a)) replacing tf by t in the commutators changes terms only by
elements of Pn°.

(2) w[ ΞΞ w2 mod(rft+1. For w'2 — 1 is a sum of terms involving
products of two or more gά(u) and one or more /*(£')> a n d w2 — 1 can
be written as a similar sum involving the g3-(u) and /*(£). Since
gh(u)gh(u) 6 p*-*+1 and t' - t e P% we have wj - w2 6 P n + 1 .

(3) wJeGn_β+1. This follows from the calculation in (2), since
ffiSu)gh(u) 6 G n _ β + 1 .

( 4 ) Zβ(wJ) = y>Xs(w[) = XX8(w2), from (2) and (3), since Xx and Za.β

agree on GΛ_ 8 + 1 .

( 5 ) Z.(l + wl) = 1. F o r

Zβ(l + wθ = ψ(τD/κ(w[x)) ,

and, because x and έf commute,

r(wίa?) = τ(Σ Σ {-mfi

Σ Σ (-i)4(
= o .
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( 6 ) XXa{l + wo = 1, by a calculation like that in (5), since xs

and t commute.
( 7 ) Xx{wf) = Xu{w)f from (4), (5) and (6).
( 8 ) Thus we need only compute X8{w). But w is a commutator

in DXgf)(l+Pn°), and therefore w = l + w0, with τDχs,κ{Xs)w0 = 0modPn+1.
Hence τ(wQx8) Ξ= 0 mod P r a + 1, and hence XXs(wQ) = 1.

To finish the proof of (b), we need only mention that all commu-
tators in Hx Π Gno are products of the commutators just considered
with commutators of the form z = Z&Z^ZΪ1, zu z2 e Dx$ Π Gno_8f). Then
z 6 6rn_#+1, and so Xx(z) = XXs(z) = 1 for the same reasons as in (4) and
(8) above.

We label the different extensions of Xx to Hx with integers; a
typical one is X9ta. Let pj\ be the smallest multiple of p that is
greater than n0 — «0. We say that XXta and XXfb are equivalent if they
agree on K(x) Π Hx. (Thus they may differ on elements 1 + ηur,
nQ - s0 <; r < pj.)

It will be convenient in what follows to have a reference addi-
tive character ψ{8) defined on K(x8) which corresponds to ψ on K.
(Recall: ψ is an additive character. See § 1.) We let ψ{8) be any
character on K{x8), trivial on p- w + p, whose restriction to K is ψ.
Note that if ψk is the character defined on k by ψk(Ύ) = ψ(Ύπ~m),
then ψl8)(7t-p) = φk(Ύ), V7e&.

THEOREM 5. (a) // Xx.a is any extension of Xx to Hx, then
Ind^^ί? Xx.a = px,a is irreducible.

(b) Inequivalent Zβ ; β give rise to inequivalent pxιaf and equivalent
y<x\a give rise to equivalent px.a.

(c) Any irreducible representation of G whose restriction to GnQ

contains Xx is equivalent to some px a.

Proof (a) We need to show that if z = 1 + Σ?=r y^*, r ^ l ,
is such that XXXa{zyz~ι) — Xx-,a(z) whenever y, zyz"1 are both in Hx,
then z e Hx. Suppose otherwise. We may then assume that zz' & Gr+1

whenever zf eHx.
Let » = l + tfo, 2/o€Pn°. Then Xx;a(y) = Xx(y) and X^izyz'1) =

Xχ{zyz~ι) = Xz-iχz(y), so that ^ " ^ = 2 mod?"7 1 0"*1. In particular, τrττr

commutes with a?lβ From Lemma 4 (applied to α?β), there is an element
z0 = 1 + 7rττr + higher order terms with zeDXs. As zsj"1 e Grr+1, we
may not have z06 JET,.. Therefore r < n0 — s0. Moreover, if p\r, then
there is an element qf = 1 + 7 r π

r + higher order terms with 2' e JSfa).
We conclude that p\r.

Thus far, we have dealt only with X8; now we analyze Xxla more
carefully. On 2?ββnG»0, Za?s factors through PDXf/jc(ββ). The proof of
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this fact parallels that of Theorem 1. Define the character φQ on
K(x8) by to = ψ o Trκ{Xs)/κ. If 1 + y e D.9 Π G*o, then

^ v c . ) ^ 1 + 2/) Ξ 1 + τDajK{.9)y (mod P*+1) ,

and so Zβ#(l + j/) = ψ*{x9τDχjK{Sa)y) depends only on \>(y).
Let a) be a 1-dimensional representation of DXs Π G which agrees

with XXs on DXs Π Gno. Then Xxω~x is trivial on Zλjn Gn_8. On Z)ββ Π
Gno_8o, we may write

Xx,αω-\1 + y) =
where

lfo= Σ j

Let ^ = /3_n+β_wirn+s-™, and write ί = /3- n + s - m ; let a; - ^ = yπ"n+8'm +
higher order terms.

Since x — x8 and yί both describe the behavior of Xe.aO0~~l on Gn_s,
they should be related. We now describe the relationship. If y =
1 + /9wn- 6 DXs, then

K,*-ω~~\y) = %.-./») = Ψ°τD/κ((y - l)(x - a?.))

since /3 6 d0. Also,

Thus δ = Trd/doΎ. By Lemma 6, S e fco Therefore yx generates an
unramified extension of order p over K(xs).

We use this fact to restrict the element z further. On Hx Π DXs,
conjugating by z commutes with α>. Therefore it commutes with
Xx,a - or 1 . Let y e DXs n Gn_3_r. Then

and a calculation like that at the start of the proof shows that

z~xyQz Ξ= yQ m o d p-no-*o-™ β

In particular, yx and 7 rπ
r commute. But the residue class degree

of yx is divisible by p; it follows that p\r. This contradicts our
earlier demonstration that p | r , and part (a) follows.

(b) If px,a and px,h are equivalent, then 3 z: X9la(y) = Xx-Azyz~ι)
whenever y and zyz"1 are both in Hx. In particular, this holds for all
y e Gno. Write z as in part (a). The analysis given there shows that
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z e DXa Π Crno_8, that p\r, and that conjugation by z changes Xx.a on
elements of the form 1 + βun~*~r. We know that p\% — s — r. If
n — s — r > pio (where p i 0 is the smallest multiple of p greater than
n0 — s0), then Xx;a and Xx;b must agree, from (a) of Lemma 8. Hence
n — s — r < p j 0 . I t is now easy to check that z normalizes Hx and
that Xx;a and %β;d are equivalent.

That equivalent Xx.a produce equivalent pΛia can be proved by
picking z as in the above paragraph. It is also implied by (c); see
below.

(c) This is a matter of counting. Observe first that if zeG
fixes Xx, then (modulo Hx) zeDXsΠ Gno_8. (This follows from the
analysis in part (a); the only difference is that in the second part of
the analysis, we are concerned only with elements y e DXg 0 Gno.)
Conversely, a straightforward calculation shows that any such z does
fix Xx. Hence the multiplicity of Xx in ρx ,a\Gno is [DXs f] Gno_8: DXsΠ
Gno-8M

κ(χ) Π Gy..: K(x) n Gno-J. By Frobenius reciprocity, this is
also the multiplicity of px.a in Ind^-^Xa.. We also know that there
are [G Γ) K(x): Gno Π K(x)] equivalence classes of Xx-J$ and that

Dim p...a = [G:H9]

= [G/Gno: (G Π K{x)){Gn^ n DX8)/(Gno n ^W)(Gno n D..)]

Since (G n JSΓ(a?)) Π ((?W o- ί o Π i ) . ) = Gno_8Q f) K(x) a n d (G rao Π K(x)) n (Gn0 Π
D(aO) = G n o Π JΓ(a?)f w e h a v e

Dim pmiu = [G/G^: G n ϊ ( ^ Π K(x)]

x [GTO0_80 Π JD../G., Π DXs: Gno_8o n ί(»)/G«o Π

Thus the different Xx.a account for a subspace in I n d ^ ^GXX of dimension

[G/Gno][G n i r c a ? ) ^ n κ(x)γ\Gno_8o n i?,s/(?no n D . J - 1

x [Gno_8o n J:(α;)/Gno n κ(x)][G n ΛΓW/GWO n JΓ(*)]

x [DX8 n ff^D.. n Gno.8jκ(x) n G.0_β: UΓW n Gno_8or
But [Gno_8o n K(x)/Gno n i^(x)]/[(?no-8 n K(x)/Gno_8o n *(»)] = I and

[DXs n G ^ . J D ^ n G.J/[J9.t n GnQJDXs n G,o_so] = I. (Note that p Φ 2,
since p |w and w is odd; also, p\s. Hence p\sQ, and the number of
multiples of p between n0 — s0 and n0 equals the number between
n0 — s and n0 — s0. From this, the first relation follows; the second
is even easier to verify.) That is, the Xxxa account for a subspace
in I n d ^ s Z , . of dimension [G: Gno] = dim Indβ^^Za .

That proves (c). Also, as we have accounted for all the represen-
tations in lnάGn^GXx, it must be the case that Xx.a equivalent to XXth

implies p..u s ρlΛ.

4* We still need to deal with the subcase in which [iΓ(aα): K] — p,
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[K(x): K] — p2, and K(x) is totally ramified. This situation is similar
to the last one we dealt with, but there are complications.

We define x8 as in the previous section. We begin with three
lemmas similar to Lemmas 6, 7 and 8.

LEMMA 9. Let y be as in Lemma 6. Let w = βπ\ t > r, be such
that if y' = y + w modP ί + 1, then [K(yτ): K] = p2, and suppose that
K(y + w) is totally ramified over K. Then:

(a) p\t and Tτd/kβ Φ 0;
(b) if yf = y + w mod Pt+1, then K(yr) is totally ramified over K;
(c) by perhaps changing the choice of prime element, one can

also arrange that Trd/kβ e k (without upsetting the other normaliza-
tions already made).

Proof. The proofs of (a) and (b) are like that of Lemma 6, with
easy modifications. For (c), notice first that if δ e k0, then (δπ)p = δ'πp,
δ' e k. Thus using πr = δ~xπ as prime element does not affect our
assumptions about y. On the other hand, this change means that
w = εβ(π')\ where ε = δ δ° (δ0)*"1; of course, Trd/kQεβ = εTrd/kQβ,
and NkQ/kε — (Nδ)*. Because dx is cyclic, we can modify Trdίkβ by
any element of k0 whose norm in & is a tth power. Since Nko/k is
onto (as a map from k to itself), we have NkQ/k(TrdJkβ) = Nko/kβo,
βoekQ. That is, we can modify Trd/kβ to be (β,{Trdlkβ)-ι)Trdfkβ =
βQek, since Niβ^Tr^β)'1 is a pth power.

LEMMA 10. We can find elements u' and u such that:
(a) ur is a prime element of K(x) and u is a prime element of

(b) v! Ξ u mod P 8.

Proof. Let uτ be any prime element of K(x). Then uf commutes
with xs mod p-n~m+s

f and Lemma 4 plus an easy induction shows that
there is a prime element u of DXs with u = xf mod P s .

Assume that s is even, s = 2s0. Define iϊ,. = GnQ(Gno_So Π 2), )(G Π

LEMMA 11. (a) If nQ - so<j < n, then [Hx, Hx] n (?i/[fl., Hx] n
G y + 1 /ιαs as coset representatives the elements 1 + aup, Trko/ka — 0.
When j — nQ — so> ί^β quotient is trivial.

(b) // ̂  e [fl., HX] n Gno,

Proof. This is almost the same as the proof of Lemma 8; the
modifications are easy.
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From now on, the analogy with the procedure in § 3 is not nearly
so close. It is true that we could now extend Xx to a group Hx (as
in Theorem 5) and induce to G, and that the result would be an
irreducible representation of G. The trouble is that we would not
get enough representations of G in this way. The way out of this
difficulty is to vary the group Hx. The details, as we shall see, are
notationally unpleasant.

We begin by analyzing the characters Xx and XXs more closely.
Define the additive character ψ{s) on KXs as was done in § 3, and let
ft) be a 1-dimensional representation of DXs Π G which agrees with
XXs on DXsΓ\Gno. We may extend ω to Gno(DXsf]G) by letting it
equal XXs on Gno. Then ω is trivial on all commutators of DXs Π Gno-So,
and Zsft)"1 is trivial on Gn__8. Hence if φ is any 1-dimensional represen-
tation of DXa Π GnQ_SQ which agrees with Xxω~x on DXs Γϊ Gno, then we
can extend Xx to Gno(DXs Π Gno_8Q) by letting it equal φω on Dx Π 6r«o-.o.
There is an element w e DXs such that

φ(l + z) = f{8) o τDχs/κ{Xs)(zw) , zeDXsf] P»o-° .

We write φ = %ls). In fact,

j=—n—m+s

and, if x — xs = αfπ~n~rΆ+8 + higher order terms, then a calculation
like that in part (a) of Theorem 5 shows that

β-n-m+8 = Trk/k0(α') .

From Lemma 9, β_m_n+8ek.

LEMMA 12. (a) There are qs° orbits of the X^ under the action
of Dx, n Gno_8.

(b) If 3s0 ^ nQ, then w = Σi7=-n-m+s βjUj, with βά e k for j ^
—n0 — m

(c) // 3s0 < nOf let t be the smallest integer with 2t^n0 — s0.
Then βj e K f] kt for j ^ — nQ Φ s0 — m — t.

Proof (a) The element β_n+8_mu~m~n+s generates a totally rami-
fied field of degree p over K(xa). It follows (as in Lemma 1) that
the elements of DXs Π Gno_JDXs n Gno_8Q commuting with X'w are (con-
gruent modPn°~s° to) elements of K(x8, w), and there are qs° such
elements. The orbit calculation follows easily.

(b) Let u, nr be as in Lemma 10. If y e DXs Γl Gno-so and vf e
K{x) Π GSo, then Xx{vfvvf-ιv~ι) = 1, from Lemma 11. But X^yv^y'1) = 1
as well. For if y = 1 + y0, v' = 1 + v0, then
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\y=o

But

yQvi+i

/

- x8yQvQ) = τD/κ(xβvoyQ - yo».vo) = 0 ,

while the other terms in the parentheses are in Pn~% so that we
can replace xs by x. (It is here that we need the estimate of the
size of s.) As v0 and x commute, a similar calculation shows that
the remaining terms have trace 0.

Thus X'uiv'yv'^y"1) = 1. Recall that v' is given by a polynomial
in u'; let v be the corresponding polynomial in u. Then

since vyv~xy~ι and v'yv'^y"1 agree modulo Gn~s. Since Tw is trivial
on these commutators, we must have w e K{u) mod p-m~no#

The proof of (c) is essentially the same as that of (b).

Note. Parts (b) and (c) of Lemma 12 may seem paradoxical.
After all, we may vary x — xs freely on p-»-»+«; how can we restrict
the β3- in any way? The answer is that the element u e DXs depends
on x; varying x means a new choice of u, and hence a different
expression for w.

Define l^(y) = ψ^ o τDχ&/κ{Xs){y - 1), y e Gno_8o, if w e DXs n P ™ + ,
and let HXt0 = GnQ(GnQ_8o Π DX)(G Π ίΓ(a?)). We know that there are
extensions of Xx to HXf0. Let XXt0 be one, and let XXt0(O~'11 i?ββ (Ί Gno-So = ZSJ-
Wri te Wi=w 1 ; 0+Wiu, where w l ; 0 e JBΓ(flcβ) and wVΛ e p~m-no+i o r p-m-no-βo-ί+i^
depending on whether (b) or (c) of Lemma 12 applies. Choose one
element from each of the orbits in Lemma 12(a); a typical element
is w = w1 + w6, wbeP~m~n+s n 1?,,. For the w r orbit, we may, and
do, take wb = 0.

Suppose that v' e iί(x) n G, and ?/ e -DXs Π Gno_8o. In investigating
whether the induced representations we shall construct are irreducible,
we need to know when yv' commutes with XX.Q-X^l on DXsΓ\Gno_So.
Write z(X) for the conjugate action of z on X. Since v' commutes
with XX.Q, we have

__, y(β) v(s) _1y(s)
y 1)/v(i/w^i;i2/ l)*^yv'w}jv' 1y 1Λ'—wί—w

It is easy to check that y commutes with Z^ ; i; for instance, if
Lemma 12 (b) applies, then

^y-1 - w1;16 p-m
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and thus X$i;i2/-i_Wι;i is trivial on D,a n Gv_.o. Similarly, X
%ί?].o. We can therefore write the last expression as l;QV>

Thus yvr commutes with Zβϊ0 Z»j iff yv' commutes with wVΛ + wb

(modulo a sufficiently high power of p).

LEMMA 13. Let uλ = (wVΛ + wb)
riπ~mr2 be a prime element in

K(wuo + wbt x8), so that uL = Σ~ = 1 e ^ , wi£/& ŝ  6 k for 1 ^ j ^ n0 — s
and ed e k0 generally. Let u[ = Σf= 1 eά(u'y. Then elements in G Π ΛΓ(wί)
commute with the representation on Gno(GnQ-SQ Π Dx$) given by X8 on
GnQ and extended (as indicated above) by X^, w = wVΛ + wVΛ + wb.

Let Hx.b=Gno(GnQ_8QΓ\DX$)(GΠK(u[)). The 1-dimensional represen-
tations described above have exactly q71*-^-1 extensions to HXtb.

Proof. We checked above that the elements in G Π K(u[) com-
mute with the given representation; they also commute with other.
Therefore the representation extends. The last statement holds
because [Hmth: Gno(GnQ_8o n D.9)] - qn^-\

We are now (finally!) ready to describe the irreducible represen-
tations of G containing Xx.

THEOREM 6. Let Xx;b;a be one of the 1-dimensional representations
of Hx.b described in Lemma 13. (Recall that one chooses exactly one
w = w1 + wh from each of the orbits in Lemma 12(a).) Let pβ.b.a =
Ind f f β 5 6 ^Z. ; d . β . Then:

(a) px b;a is irreducible;
(b) the px;b.a are mutually disjoint;
(c) the px.tb.a exhaust the irreducible representations of G con-

taining Xx.

Proof. For (a), let H'M = Gno(Gno_8 f] DX)(G n K(u[), Jx = Gno_8DXs.
The elements of G which fix Xx\GnQ are all in H'x,w, and £ΓJ;w normalizes
Hx.w. Moreover, the coset representatives for Hx.JHx;w can all be
chosen from among coset representatives of JJJX n Gno_$Q. We need
only show, therefore, that any element of Jx (modulo Jx Π GnQ_8Q)
which commutes with Z β ; w ϊ β lies in Hx.w. From Lemma 11, there are
exactly qn°~8° such elements, and elements of ΉXtV} account for them.
Thus ρxιw;a is irreducible.

The proof of (b) is nearly identical; we need to show that no
element of Hf

XtV} can transform one Xx-b a into a Xx-,b"ta', and this is
evident because w, wr are in different orbits. Finally, (c) is the
usual counting argument.

Theorems 1-6 solve the problem of finding the irreducible repre-
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sentations of G, except for some minor details to be dealt with in
the next section.

5* We still need to remove the assumptions on the parity of
n and s. As the procedure is the same as in [1] and [4], we omit
proofs. (Some of the counting arguments above must be modified;
this, too, is not hard.)

If n is even, but n — s is odd, let n0 = 1 + (w/2), and let (H0)x

or (H0)x.tW be the group described in § 2 or 3 (so that if, e.g.,
K(xJ = K(x) = p\ then (H0)x = Gno(K(x) nG). We shall write (H0)x

in what follows, but the remarks apply equally to CEΓ0)*;» Consider
the bilinear form

Bx: (a, β) l >XZQ + aπ710"1)^ + βπn*~ι)(l + aπ71^1)^! + βπ71^1)"1

taking d x d to the unit circle. It is antisymmetric, and the radical
is {β: K{x^) contains an element Σ?=no-i βόπύ with /5no_i = /3} There-
fore the elements 1 + βπ710'1 with β e Rad (Bx) are already contained
in (H0)x. Let h be a maximal isotropic subspace of i?^ we let JΓ,
be the group generated by (H0)x and the elements (1 + βπ710"1) with
βeh. Two extensions of Xx to IT,, are equivalent if they are equiva-
lent on (JEΓo)*. The representations pa.a = InaHx^GXx;a are irreducible
and exhaust the representations of G whose restrictions to Gno con-
tain Xx, and inequivalent Xx.a give rise to inequivalent px.a.

If n — s is even, the procedure is similar; let n0 — s0 — (n — s)/2 + 1
and consider a maximal isotropic subspace hf of

Uχ» \\A»m A-)/ ' :^ **X X \\ I KΛW /\"* I p WJ J

X (Λ i /v i/^o ®o—1 \—^-(Λ I /OΊ/^O—^o—^-\—^Λ

add the elements (1 + me7*0"80"1), a eh', to (i2o)*> and call extensions
of X to (flo), equivalent if they agree on HQ.

There is another description of this procedure, in which if, e.g.,
n is odd, one tensors Xx.a on (H0)x with a Heisenberg-like represen-
tation of Gno^; see [4].

We also need to extend representations from G to Dx. The
method is generally like that in [1]; here, for example, is a descrip-
tion for the case [K{x^): K] — p2. We may assume that the maximal
unramified extension in K(x) is contained in K19 Let x' be a prime
element of K(x), and let

J* ~ {(%y''- j 6 ZJ-ffci Π Kx(x)} .

Then conjugation by elements of Jx fixes Xx.a on Hx. Tensor the Xx.a

with representations of Jx and induce to find the irreducible repre-
sentations of Dx.
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The case considered in § 4 is somewhat different; we merely
sketch the argument, since the result is not quite satisfactory. We
use the notation of § 4. Let pa.b.a be induced from Zβ;6;β on Hx.b,
and let F be the trace character of Zβ;δϊβ. We note that u[ normalizes
Hxώ. Let y eG. If no G-conjugate of y lies in HXtb, then no G-con-
jugate of ulyίu'O'1 lies in Hx.b; hence F(y) = FζuΊyu'Γ1) = 0. On the
other hand, it is not hard to see that if y e HΛibf then there is a
prime element v = Έi?=iViπJ> Vi == h s u c ^ that F(vyv~ι) = F(y). (For
instance, if yeGnQ, then X ^ - w = #«, and so F(u'y(u')-χ) = F{y).)
Since ιm' 6 G, we conclude that, e.g., conjugation by u[ fixes i*7. Thus
one can extend pβ.bια to Jx. Now one proceeds as in [1]. It would,
of course, be preferable to have a concrete description to Jx.

The procedure for constructing representations described in this
paper also applies to division algebras D whose index m is the pro-
duct of two primes. (If neither prime is p, then, of course, we are
in the situation of [1] or [3].) There is some difference in the con-
sideration of cases because the behavior of Trko/k depends on whether
or not [k0: k] is prime to p. The procedure also applies to some
representations in the case where m is a power of p; for instance,
if m — pr and [iΓ(cCi): K(x)] = pr~\ one can find the representations
of G containing %x by methods like those of §§ 3 and 4.

The general case is murkier. The problems with extending the
procedures of §§3 and 4 are twofold: the approximation lemma
analogous to Lemmas 7 and 10 becomes more difficult to prove, and
one needs to deal with certain finite-dimensional representations of
Hx which are hard to describe. I hope to return to this topic in
future papers.

Two other matters deserve mention. In [6], Langlands predicted
a correspondence between representations of D and certain represen-
tations of the Weil group of K. This correspondence has been veri-
fied in the tamely ramified case (see [5]). It is of considerable interest
to know whether the correspondence holds more generally.

Finally, there is the question of finding the characters of the
representations. In the tamely ramified case, the computations are
found in [4]. The wildly ramified case seems much harder.
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