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REMARKS ON NONLINEAR CONTRACTIONS

KUN-JEN CHUNG

Throughout this paper, we assume that K is strongly
normal, that P = {d(z, ¥); %, y € X}, that P denotes the weak
closure of P, and that P, ={z;2€ P and z + <}. The main
result of this paper is the following.

Let (X, d) be a nonempty K-complete metric space, and
let S, T be mappings of X into itself satisfying (1) and (2).

(1) #(d(Sw, Ty)) < d(z,y), z+yeX,
(2) &) >t for any teh,

where ¢: P, > K is lower semicontinuous on P,.

Then exactly one of the following three statements holds:

(a) S and T have a common fixed point, which is the
only periodic point for both S and T}

(b) There exist a point 2,€ X and an integer p > 1 such
that Sz, = 2, = T?x, and Tz, % x,;

(¢) There exist a point 7, € X and an integer ¢ > 1 such
that S%, = y, = Ty, and Sy, * Y.

Recently, J. Eisenfeld and V. Lakshmikantham [e6, 7, 8], J. C.
Bolen and B. B. Williams [1], S. Heikkila and S. Seikkala [9, 10],
K. J. Chung [3, 4], M. Kwapisz [12] J. Wazewski [16] proved some
fixed point theorems in abstract cones which extend and generalize
many known results. In this paper, we extend some main results
of A. Meir and E. Keeler [14] and C. L. Yen and K. J. Chung [17]
to cone-valued metric spaces.

(I). Definitions. Let EF be a normed space. A set KCFE is
said to be a cone if (i) K is closed (ii) if u, ve K then au + tve K
for all o,z = 0, (iii) KN (—K) = {7} where ¢ is the zero of the
space E, and (iv) K°# ¢ where K° is the interior of K. We say
#=v if and only if u —ve K, and u > v if and only if u —veK
and u # v. The cone K is said to be strongly normal if there is a
0 > 0 such that if z = >7, b2, 2, €K, ||x;]] =1, b, =0, 27, b, =1,
implies ||z]| > 6. The cone K is said to be normal if there is a 6 > 0
such that || f; + f,|| > 0 for £, ,€ K and || f;|| = || /2|l = 1. The norm
in E is said to be semimonotone if there is a numerical constant M
such that & <« <y implies |[z|| < M||y| (where the constant M
does not depend on z and y).

Let X be a set and K a cone. A function d: X X X —> K is
said to be a K-metric on X if and only if (i) d(z, ¥) = d(y, x), (ii)
d(z, y) = ¢ if and only if ¢ = y, and (iii) d(z, ¥) < d(z, 2) + d(z, ¥).
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A sequence {r,} in a K-metric space X is said to converge to z, in
X if and only if for each u ¢ K° there exists a positive integer N
such that d(z,, z,)<u for all n=N. A sequence {z,} in X is Cauchy
if and only if for each u € K° there exists a positive integer N such
that d(x,, ©,)<wu for all », m=N. The K-metric space (X, d) is said to
be complete if and only if every Cauchy sequence in X converges.

Throughout the rest of this paper we assume that K is strongly
normal, that E is a reflexive Banach space, that (X, d) is a complete
K-metric space, that P = {d(x, ¥); %, ¥y € X}, that P denotes that weak
closure of P, and that P, = {z;2z¢ P and z = &}.

(II). Preliminary results. In this section we list Mazur lemma
and needed properties of cone K and the related K-metric space which
will be used in our theorem.

(a) “Strongly normal” is normal.

(b) A necessary and sufficient condition for the cone K to be
normal is that the norm be semimonotone (cf. [11]).

(¢) If the sequence {u,} in E converges (in norm) to wu, the
sequence {v,} in E converges (in norm) to v and u, < v, for each =,
then u < ».

(d) If {x,} is a sequence in the K-metric space X that has a
limit in X, then the limit is unique.

(e) If we K° then there exists a positive number ¢ such that
if ve{p;|p|l <e}N K then v < u.

(f) If h is an element in the Banach space E, h,c€ K for each
n, h £ h, for each n and {h,} converges (in norm) to ¢ in E, then
—heK.

(g) If ueK®° and {h,} is a sequence in K which converges (in
norm) to ¢ in E, then there exists a positive integer N such that
h, < u for n = N.

(h) If {x,} is a sequence in the K-metric space X that is con-
vergent to ¢ in X then {d(x,, )} converges (in norm) to < in E.

(i) Mazur lemma [5,13]. Let E be a normed space and {u,}
a sequence in E converging weakly to . Then there is a sequence
of convex combinations {v,} such that v, = >\, b,u, where >\\_. b, =1,
and b, = b,(n) =0, n <1< N = N(n) which converges to % in norm.

(j) Let the sequence {u,} in E be weakly convergent to v, if
u, = ¢ for each n =1 then v = 2.

(IIT). Examples and main results.

EXAMPLE 1. Let E = R (all real numbers) and K = R* (all non-
negative real numbers), then K is strongly normal and semimonotone,
and K satisfies the law of trichotomy.
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EXAMPLE 2. Let E=R* and K={2cR50<a =< Argz=<b<
w/2} U {¢”}, where the symbol Argz denotes the argument of the
complex number z. Although K is strongly normal, semimonotone,
K doesn’t satisfy the law of trichotomy.

The mapping ¢: P, — K is said to be lower semicontinuous if {u,}
and {¢u,} are both weakly convergent, then lim ¢u, = ¢(lim u,).

The property of the law of trichotomy of the set B has been
used in the proof of [14] and [17] but it can not be used in our
Theorem 1 (cf. Example 2). The proof of Theorem 1 differs from
that of theorem [14] and theorem [17].

THEOREM 1. Let (X, d) be a nonempty complete K-metric space,
and let S, T be mappings of X into itself satisfying (1) and (2).

(1) $(d(Sx, Ty)) < d(z,9), x+yeX,
(2) oty >t for any telP,,

where ¢: P, — K is lower semicontinuous on P,.

Then exactly one of the following three statements holds:

(a) S and T have a common fixed point, which is the only peri-
odic point for both S and T;

(b) There exist a point x,e X and an integer p > 1 such that
Sz, = x, = T*x, and Tz, # x;

(¢) There exist a point y,€ X and an integer ¢ > 1 such that
Sy, = y, = Ty, and Sy, # ¥,.

(IV). Lemmas and proofs.

LEMMA 1. For each x,€ X, we define a sequence {x,} recursively
as follows:

X = Sxo; X, = Twu ey Loy = szm Lonte = Tw2n+1: tee

Then the sequence {d(x,, ©,.,)} weakly converges to & if d(®,, T,i) > &
for all m = 1.

Proof. Suppose that d(x,, x,.,) > ¢ for all n =1. Let d,=
d(x,, ©,..). It follows, by (1) and (2), that, for each positive integer =,

d2n+1 = d(qu; Tx?n+1) < ¢(d2n+l) = dZn ’

3
( ) dZn = d(ngn, TxZ'n—l) < ¢(d2n) é d2n—1 .

Therefore {d,} is decreasing and bounded. Let {d,,} be a subsequence
of {d,}. Since {d,} is bounded, there exists a subsequence {d,.} of
{d..} such that {d, .} weakly converges to ze€ K and {d,,_,} to te K.
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From the fact that d,,;,_; = i) = @ruiiin—1, We see that 2 = t. Because
& = (A pisy) = Aisy_1, We see that {4(d,.;)} is bounded. For convenience,
we can assume that {¢(d,.,)} has a weak limit. By the lower semi-
continuity, we have ¢(z) < 2. Therefore z = & and {d,} weakly
converges to 2.

LEMMA 2. If y is a fixzed point for S, then for each x€ X, x + vy,
either there exists a positive imteger p such that T*x =1y or else
{d(T™x, y)} weakly converges to . Moreover, if {d(Tx, y)} weakly
converges to 7, then Ty = y; and if Ty + vy, then T*y = y for some
p > 1.

Proof. Suppose that d(T"x, y) > <. By (1), we have
d(y, T"'x) = d(Sy, T""x) < ¢(d(Sy, T"x)) < d(y, T x)

foralln =1,2, ---. Asin Lemma 1, we see {d(y, T"x)} weakly con-
verges to 7.
Since

ATz, Ty) < d(T(T" '), S(Tx)) + d(S(T"x), Ty)
= ¢(d(T(T"'x), S(T"2))) + $(d(S(T"x), Ty))
< d(T" 'z, T™x) + d(y, T™x)
= 3d(y, T"'2) ,

and
d(y, Ty) = d(y, T"x) + d(T"x, Ty) ,

we have, as n — oo, y = Ty.

LemMA 3. If S, T have fixed points x,, x, respectively in X,
then x, = x, and x, 1s the unique periodic point for S and T.

Proof. 1If x, #+ x,, then d(x,, z,) < ¢(d(Sx,, Tx,)) < d(z,, x.), a con-
tradiction. Moreover, if T% = x, then, by Lemma 2, there is a
positive integer p such that T?r = x,, and therefore Tz, = = for
some integer r > 0. But Tz, = x,, so that x, = z; and by the same
argument, if S% = x, then 2 = x,, which completes the proof.

Proof of Theorem 1. For a fixed x, € X, we define {x,} recursively
Longr = STopy Tongs = TXopyy, w=0,1,2, ---, as in Lemma 1.

Case 1. Suppose d(x,, %,.,) = ¢ for some even integer n = 1.
Then z, = 2,,, = Sz, is a fixed point of S, so that by Lemma 2,
either z, is a fixed point of T or else Tx,+# x, and there is a positive
integer p > 1 such that T7x, = x,.
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Case 2. Suppose d(x,, £,..) = ¢ for some odd integer n = 1.
Then by the same argument, we have either Sx, = Tx, = x, or else
Sz, # x, and S%, = x, for some integer ¢ > 1.

Case 3. Suppose d(x,, z,.,) # ¢ for all n=1,2 -.-. Then
{d(z,, *,.,)} weakly converges to «7. We wish to show that {z,} is a
Cauchy sequence. Suppose not. Then there is an ¢¢ K° such that
for every integer, there exist integers n(i) and m(i) with 7 £ n(1) <
m(t) such that

(4) Ay, Tminy) Z € -

Let, for each integer 7, m(z) be the least integer exceeding n(7)
satisfying (4); that is,

(5) Aoty Tmii) Z € aNd d(@piiyy Tpii)—) = € -

Since K is semimonotone, the sequence {d(%,u), Tmw-1)} is bounded.
Consequently the sequence {d(x,.), Tme)} is bounded.
Because E is a reflexive Banach space, for convenience, we let

{d(®, 15, ®miy)} be weakly convergent to z,,
(A) {d(®y, min-1)} be weakly convergent to z,,
{d(®piy-1y Twmir—)} be weakly convergent to z;,

where z,, z; and 2, are in K. According to the triangular inequality,
we have

(6) A&ty Tmin—) T ABniry Tty 1) = HRniir—1y Tmir—1)
(7) A niy—1y Tmiiy—1) + E@niiyay Tutiy) = Uiy Tmii—1)
(8) ALty Tmiy) + U Cmiiy Tmiir—1) = ABniiry Tmeir-1)
(9) A1y Tomiir—1) T A Liiy—15 Tmity) = W Znityy Tomisy) -

From (6), (7), (8), (9) and Lemma 1, we see that z, =z, 2, = z,

2y = 2y %3 = %, a0nd 2, = 2, = 2, = z (say). For convenience, we assume
that n(i) + m(7) is odd. We see that

(10) HAX ity Tmie) = ALty Tnii—) -

Let {¢(d(2,), Tmw)))} have a weak limit. Therefore we have ¢(z) < 2,
we obtain that z = ¢#". If n(d) + m(i) is even, we shall consider
putting the sequence {d(%,u)11, Zmw)}, instead of {d(x.., Tnw)}, into
(10).) By (4) and (g), there exist a positive number s and a sub-
sequence {d(,u), T,0)} of {d(@,u), Zme)} such that the sequence {d(x, .,
%,)} doesn’t converge to ¢ (in norm) and lim, . ||d(®,u), Z,w)| =
s > 0. Since the sequence {d(z,), %,u))} weakly converges to ¢, by
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Mazur lemma, then there is a sequence of convex combinations {v,}
such that

N
V, = Z bjuj y
i=n

where 3., 0; =1, b0; =b;(n) =0, n < j =< N = N(n) and u; = d@,,
Z.5), Which converges to ¢ (in norm). For convenience, we can
assume s = 1. Since K is strongly normal, then there exists a 6 > 0
such that ||v,|| > 0, when n is sufficiently large. Because {v,} con-
verges to ¢ (in norm), this is a contradiction. Therefore {z,} is a
Cauchy sequence. By completeness, there is a u € X such that {z,}
converges to u in X. We see that

d(Tu, w) < d(Tu, T%:11) + A Xonpe, U) -

Let {y,} ¢ X converge to y with y, # ¥,,, and y, # y for all n = 1.
Then

d(Tym Ty) é d(Tym Syn+1) + d(Syn-Hy Ty)
é d(yn, yn+1) + d(yn+ly y) .

We have, as n — o, Tu = u. Similarly we have Su = u. These
three cases show that at least one of (a), (b), (¢) in Theorem 1 holds;
and therefore, by Lemma 8, exactly one of (a), (b), (¢) in Theorem
1 holds.

If E is the set of all real numbers and if K is the set of all
nonnegative reals, then, from (4), (10) and Lemma 1, Theorem 1 may
now be restated in the following form.

THEOREM 2. Let (X, d) be a nonempty complete metric space, and
let S, T be mappings of X into itself satisfying (1) and (2).

(1) ¢(d(Sz, Ty)) < d(x, ), * =y € X,

(2) ¢(t)>1t for any te P,
where ¢ is lower semicontinuous from the right on P,.

Then exactly one of (a), (b) and (c) as in Theorem 1 holds.

Utilizing the way of the proof of Theorem 1 [15], we have the
following result.

THEOREM 3. Let S, T be mappings on a nonempty complete
metric space (X, d). Then the following conditions are equivalent:
(i) For any ¢ > 0, there exists o() > 0 such that

d(Sx, Ty) < & whenever ¢ < d(x,y) <e¢ + 0(),

(ii) There exists a self mapping ¢ of [0, o) into [0, o] such
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that ¢(s) > s for all s > 0, ¢ is lower semicontinuous from the right
on (0, o) and

#(d(Sz, Ty)) = d(z,y), x+yeX.
From Theorem 3, we have the following result.

THEOREM 4. Let (X, d) be a complete metric space, and let S,
T be mappings of X into itself satisfying condition (i) in Theorem
3; then exactly one of (a), (b) and (c) as in Theorem 1 holds.

Theorem 4 was proved in [17] by Chi-Lin Yen and Kun-Jen Chung,
but it is a special case of our Theorem 1.

REMARK 1. If S= T = F in Theorem 4, any one of (a), (b) and
(¢) implies that F' has a fixed point, that is, that S and T have a
common fixed point. Hence (a) holds; namely T has a unique fixed
point. This result was proved by A. Meir and E. Keeler [14].

REMARK 2. The condition that two mappings T and S satisfy
(i) in Theorem 3 does not imply S = T (cf. [17]).

The author would welcome an example of a strongly normal cone
K in a reflexive infinite dimensional Banach space.
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