ON THE EVALUATION OF PERMANENTS

Natália Bebiano*

Abstract

Two identities involving permanents are obtained. One of them is used to deduce in a simple way, two well known formulas for the evaluation of permanents, namely the formulas of Binet and Minc and of Ryser.

1. Notation. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The permanent of A is defined by

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where S_{n} is the symmetric group of degree n.
Let $\Gamma_{r, n}$ denote the set of all n^{r} sequences $\omega=\left(\omega_{1}, \cdots, \omega_{r}\right)$ of integers satisfying $1 \leqq \omega_{i} \leqq n$. Let $Q_{r, n}$ be the set of those sequences in $\Gamma_{r, n}$ which are strictly increasing.

By $G(n)$ we denote the set of all nondecreasing sequences of positive integers $\left(t_{1}, \cdots, t_{k}\right)$ such that $t_{1}+\cdots+t_{k}=n$.

Given an $n \times n$ matrix A and nonnegative integers $\alpha_{1}, \cdots, \alpha_{n}$ $\left(\beta_{1}, \cdots, \beta_{n}\right)$ satisfying $\alpha_{1}+\cdots+\alpha_{n}=n\left(\beta_{1}+\cdots+\beta_{n}=n\right)$, we represent by $A\left(\alpha_{1}, \cdots, \alpha_{n}\right)\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right)$ the matrix obtained from A by repeating its first row (column) $\alpha_{1}\left(\beta_{1}\right)$ times, its second row (column) $\alpha_{2}\left(\beta_{2}\right)$ times \cdots and its nth row (column) $\alpha_{n}\left(\beta_{n}\right)$ times. If $\alpha_{i}=0\left(\beta_{i}=0\right)$ the i th row (column) of A is omitted.

Given an $n \times n$ matrix A and nonnegative integers $\alpha_{1}, \cdots, \alpha_{n}$, $\beta_{1}, \cdots, \beta_{n} \quad$ satisfying $\quad \alpha_{1}+\cdots+\alpha_{n}=n, \quad \beta_{1}+\cdots+\beta_{n}=n$, let $A\left(\alpha_{1}, \cdots, \alpha_{n} ; \beta_{1}, \cdots, \beta_{n}\right)$ denote the $n \times n$ matrix obtained from A by repeating its first row α_{1} times, \cdots, its nth row α_{n} times and also its first column β_{1} times \cdots its nth column β_{n} times. Again $\alpha_{i}=0$ or $\beta_{i}=0$ means that the i th row or the i th column of A is omitted.

Given the integers $\alpha_{i}, 1 \leqq i \leqq n$, such that $\sum_{i=1}^{n} \alpha_{i}=n$, let $R_{\alpha_{1}, \cdots \alpha_{n}}=\left(j_{1}, \cdots, j_{n}\right)$ represent the nondecreasing sequence of nonnegative integers (j_{1}, \cdots, j_{n}) where i occurs with multiplicity α_{i}.
2. Two identities involving permanents. Let A be an $n \times n$ matrix and

$$
Z=\prod_{i=1}^{n} Z_{i}
$$

with

[^0]$$
Z_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \cdots, n
$$

Since Z is an homogeneous polynomial of degree n in x_{1}, \cdots, x_{n} we can write

$$
\begin{equation*}
Z=\sum_{\beta_{1}, \cdots, \beta_{n}} x_{\beta_{1}, \cdots, \beta_{n}} \frac{x_{1}^{\beta_{1}}}{\beta_{1}!} \frac{x_{2}^{\beta_{2}}}{\beta_{2}!} \cdots \frac{x_{n}^{\xi_{n}}}{\beta_{n}!}, \tag{2.1}
\end{equation*}
$$

where the summation is over all sequences ($\beta_{1}, \cdots, \beta_{n}$) of nonnegative integers satisfying $\beta_{1}+\cdots+\beta_{n}=n$. The coefficient $x_{\beta_{1}, \cdots, \beta_{n}}$ is equal to

$$
\frac{\partial^{n} Z}{\partial x_{j_{1}} \partial x_{j_{2}} \cdots \partial x_{j_{n}}}, \quad\left(j_{1}, \cdots, j_{n}\right)=R_{\beta_{1}, \cdots, \beta_{n}}
$$

as can be seen from the following

$$
\begin{aligned}
\frac{\partial^{n} Z}{\partial x_{j_{1}} \partial x_{j_{2}} \cdots \partial x_{j_{n}}} & =\frac{\partial^{\beta_{1}+\cdots+\beta_{n} Z}}{\partial x_{1}^{\beta_{1}} \cdots \partial x_{n}^{\beta_{n}^{n}}} \\
& =x_{\beta_{1}, \cdots, \beta_{n}}\left(\frac{1}{\beta_{1}!} \frac{\partial^{\beta_{1}} x_{1}^{\beta_{1}}}{\partial x_{1}^{\beta_{1}}}\right) \cdots\left(\frac{1}{\beta_{n}!} \frac{\partial^{\beta_{n}} x_{n}^{\beta_{n}^{n}}}{\partial x_{n}^{\beta_{n}^{n}}}\right) \\
& =x_{\beta_{1}, \cdots, \beta_{n}} \frac{\beta_{1}!}{\beta_{1}!} \cdots \frac{\beta_{n}!}{\beta_{n}!} \\
& =x_{\beta_{1}, \cdots, \beta_{n}} .
\end{aligned}
$$

We now compute $\partial^{n} Z / \partial x_{j_{1}} \cdots \partial x_{j_{n}},\left(j_{1}, \cdots, j_{n}\right)=R_{\beta_{1}, \cdots, \beta_{n}}$. We begin by assuming $\left(j_{1}, \cdots, j_{n}\right)=R_{1,1, \cdots, 1}$. Since Z_{i} is a linear function of the x_{i} 's we have

$$
\begin{equation*}
\frac{\partial^{2} Z_{i}}{\partial x_{k} \partial x_{k}}=0 \tag{2.2}
\end{equation*}
$$

for any k and h and by differentiation

$$
\begin{aligned}
\frac{\partial^{n} Z}{\partial x_{j_{1}} \partial x_{j_{2}} \cdots \partial x_{j_{n}}} & =\frac{\partial^{n} Z}{\partial x_{1} \partial x_{2} \cdots \partial x_{n}} \\
& =\sum_{\sigma} \frac{\partial Z_{o(1)}}{\partial x_{1}} \frac{\partial Z_{o(2)}}{\partial x_{2}} \cdots \frac{\partial Z_{o(n)}}{\partial x_{n}},
\end{aligned}
$$

where $\sigma \in S_{n}$. But

$$
\frac{\partial Z_{o(t)}}{\partial x_{i}}=a_{\sigma(i) i}
$$

and therefore

$$
\begin{equation*}
\frac{\partial^{n} Z}{\partial x_{1} \cdots \partial x_{n}}=\sum_{o \in S_{n}} \prod_{i=1}^{n} a_{\sigma(i) i}=\operatorname{per}(A) . \tag{2.3}
\end{equation*}
$$

Let now (j_{1}, \cdots, j_{n}) $=R_{\beta_{1}, \cdots, \beta_{n}}$. Again by differentiation and recalling (2.2) we have

$$
\begin{align*}
\frac{\partial^{n} Z}{\partial x_{j_{1}} \partial x_{j_{2}} \cdots \partial x_{j_{n}}} & =\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} \frac{\partial Z_{\sigma(i)}}{\partial x_{j_{i}}} \\
& =\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{\sigma(i) j_{i}} \tag{2.4}\\
& =\operatorname{per}\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right)
\end{align*}
$$

From (2.1), (2.3) and (2.4) we obtain the following identity

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)=\sum_{\beta_{1}, \cdots, \beta_{n}} \operatorname{per}\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right) \frac{x_{1}^{\beta_{1}}}{\beta_{1}!} \cdots \frac{x_{n}^{\beta_{n}}}{\beta_{n}!} \tag{2.5}
\end{equation*}
$$

where the summation is over all the sequences $\left(\beta_{1}, \cdots, \beta_{n}\right)$ of nonnegative integers satisfying $\sum_{i=1}^{n} \beta_{i}=n$.

Now we shall deduce from (2.5), the following identity expressing the nth power of a bilinear form as a polynomial with permanents as coefficients,

$$
\begin{align*}
\frac{1}{n!}\left(\sum_{i, j=1}^{n} x_{i} \alpha_{i j} y_{j}\right)^{n}= & \sum_{\alpha, \beta} \operatorname{per}\left(A\left(\alpha_{1}, \cdots, \alpha_{n} ; \beta_{1}, \cdots, \beta_{n}\right)\right) \frac{x_{1}^{\alpha_{1}}}{\alpha_{1}!} \\
& \times \cdots \frac{x_{n}^{\alpha_{n}}}{\alpha_{n}!} \frac{y_{1}^{\beta_{1}}}{\beta_{1}!} \cdots \frac{y_{n}^{\beta} n_{n}}{\beta_{n}!}, \tag{2.6}
\end{align*}
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$, with $\alpha_{i}, \beta_{i} \geqq 0 i=1, \cdots, n$ and $\sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{i}=n$.

Indeed, by the multinomial expansion we have

$$
\begin{equation*}
\frac{1}{n!}\left(\sum_{i, j=1}^{n} x_{i} a_{i j} y_{j}\right)^{n}=\sum_{\alpha} \prod_{i=1}^{n}\left[\frac{x_{i}^{\alpha_{i}}}{\alpha_{i}!}\left(\sum_{j=1}^{n} a_{i j} y_{j}\right)^{\alpha_{i}}\right] \tag{2.7}
\end{equation*}
$$

where $\alpha_{i} \geqq 0, i=1, \cdots, n$ and $\sum_{i=1}^{n} \alpha_{i}=n . \quad$ Let $\left(h_{1}, \cdots, h_{n}\right)=R_{\alpha_{1}, \cdots, \alpha_{n}}$. We have

$$
\begin{aligned}
\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} y_{j}\right)^{\alpha_{i}} & =\left(\sum_{\left.j_{j=1}^{n} a_{1 j} y_{j}\right) \cdots\left(\sum_{j=1}^{n} a_{1 j} y_{j}\right) \cdots\left(\sum_{j=1}^{n} a_{n j} y_{j}\right) \cdots\left(\sum_{j=1}^{n} a_{n j} y_{j}\right)}^{\alpha_{n} \text { times }}\right. \\
& =\left(\sum_{j=1}^{n} a_{h_{1} j} y_{j}\right) \cdots\left(\sum_{j=1}^{n} a_{h_{n} j} y_{j}\right) \\
& =\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{h_{i} j} y_{j}\right) .
\end{aligned}
$$

Substituting (2.8) into (2.7), applying the identity (2.5) to $\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{h_{i} j} y_{j}\right)$ and noting that the matrix $A=\left(a_{i j}\right)$ has been replaced by the matrix $A\left(\alpha_{1}, \cdots, \alpha_{n}\right)=\left(a_{k_{i} j}\right)$ we obtain

$$
\begin{aligned}
& \frac{1}{n!}\left(\sum_{i, j=1}^{n} x_{i} \alpha_{i j} y_{j}\right)^{n}=\sum_{\alpha} \prod_{i=1}^{n} \frac{x_{i}^{\alpha_{i}}}{\alpha_{i}!\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{h_{i} j} y_{j}\right)} \\
& \quad=\sum_{\alpha} \prod_{i=1}^{n} \frac{x_{i}^{\alpha_{i}}}{\alpha_{i}!} \sum_{\beta} \operatorname{per}\left(A\left(\alpha_{1}, \cdots, \alpha_{n} ; \beta_{1}, \cdots, \beta_{n}\right)\right) \frac{y_{1}^{\beta_{1}}}{\beta_{1}!} \cdots \frac{y_{n}^{\beta_{n}}}{\beta_{n}!} .
\end{aligned}
$$

This proves (2.6).
3. About the Binet-Minc formula. As we have seen per $A=\partial^{n} Z / \partial x_{1} \cdots \partial x_{n}$ which is equivalent to per $A=\operatorname{coef}_{x_{1} \cdots x_{n}} \prod_{i=1}^{n} \times$ ($\sum_{j=1}^{n} a_{i j} x_{j}$). This result for the case $n=3$, is due to Muir. Let us evaluate $\partial^{n} Z / \partial x_{1} \cdots \partial x_{n}$. Let again $Z=\prod_{i=1}^{n} Z_{i}$ and $Z_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$, $i=1, \cdots, n$. Let T_{1}, \cdots, T_{k} be a partition of $\{1, \cdots, n\}$ such that

$$
\begin{equation*}
T_{j}=\left\{w_{i}^{(j)}, \cdots, w_{s}^{(j)}\right\} \in Q_{s, n} \tag{3.1}
\end{equation*}
$$

where $s=t_{j}, j=1, \cdots, k$ and $t_{1} \leqq \cdots \leqq t_{k}$.
We define

$$
\begin{equation*}
\phi^{\left(w_{1}^{(j)}\right)}=\sum_{h=1}^{n} \frac{1}{Z_{h}} \frac{\partial Z_{h}}{\partial x_{w_{1}^{(j)}}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\phi}^{\left(T_{j}\right)}=\frac{\partial^{t_{j}-1} \dot{\phi}_{1}^{w_{1}^{(j)}}}{\partial x_{w_{2}^{(j)}}^{(j)} \cdots \partial x_{w_{s}^{(j)}}^{(j)}} \tag{3.3}
\end{equation*}
$$

with $s=t_{j}, j=1, \cdots, k$.
It is clear that

$$
\begin{equation*}
\phi^{\left(w_{1}^{(j)}\right)}=\sum_{h=1}^{n} \frac{a_{h w_{1}^{(j)}}}{Z_{h}} . \tag{3.4}
\end{equation*}
$$

On the other hand, it is easy to show (by induction) that

$$
\begin{equation*}
\phi^{\left(T_{j}\right)}=(-1)^{t_{j}-1}\left(t_{j}-1\right)!\sum_{h=1}^{n} \frac{a_{h w_{1}^{(j)}} \cdots a_{h w_{s}^{(j)}}}{Z_{h}^{t_{j}}} \tag{3.5}
\end{equation*}
$$

$s=t_{j}, j=1, \cdots, k$. In fact, suppose

$$
\begin{equation*}
\phi^{\left(T_{j}-w_{s}^{(j)}\right)}=\frac{\partial^{s-2} \dot{\phi}^{\left(w_{1}^{(j)}\right)}}{\partial x_{w_{2}^{(j)}}^{(j)} \cdots \partial x_{w_{s}^{(j-1}}^{(j)}}=(-1)^{s-2}(s-2)!\sum_{h=1}^{n} \frac{\alpha_{h w_{1}^{(j)}} \cdots a_{h w_{s}^{(j)}}}{Z_{h}^{s-1}}, \tag{3.6}
\end{equation*}
$$

where $s=t_{j}$, and $T_{j}-w_{s}^{(j)}$ denotes the set $\left\{w_{1}^{(j)}, \cdots, w_{s-1}^{(j)}\right\}$. By differentiating (3.6) with respect to $x_{w_{s}^{(j)}}$ we obtain

$$
\begin{aligned}
\frac{\partial^{s-1} \dot{\phi}^{\left(w_{1}^{(j)}\right)}}{\partial x_{w_{2}^{(j)}} \cdots \partial x_{w_{s-1}}^{(j)} \partial x_{w_{s}^{(j)}}^{(j)}} & =(-1)^{s-1}(s-1)!\sum_{h=1}^{n} \frac{a_{h w_{1}^{(j)}} \cdots a_{h w_{s-1}^{(j)}}}{Z_{h}^{s}} \frac{\partial Z_{h}}{x_{w_{s}^{(j)}}} \\
& =(-1)^{s-1}(s-1)!\sum_{h=1}^{n} \frac{\alpha_{h w_{1}^{(j)}} \cdots a_{h w_{s-1}}^{(j)} a_{h w_{s}^{(j)}}}{Z_{h}^{s}}
\end{aligned}
$$

and (3.5) holds.
We finally prove (by induction) that

$$
\begin{equation*}
\frac{\partial^{n} Z}{\partial x_{1} \cdots \partial x_{n}}=Z \sum_{k=1}^{n} \sum_{T_{1}, \cdots, T_{k}} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)}, \tag{3.7}
\end{equation*}
$$

where the summation $\sum_{T_{1}, \cdots, T_{k}}$ is over all the partitions T_{1}, \cdots, T_{k} of $\{1, \cdots, n\}$.

For $n=1$ it is trivial to verify (3.7). Suppose that

$$
\begin{equation*}
\frac{\partial^{n-1} Z}{\partial x_{1} \cdots \partial x_{n-1}}=Z \sum_{k=1}^{n-1} \sum_{T_{1}, \cdots, T_{k}} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k j}\right)} \tag{3.8}
\end{equation*}
$$

where T_{1}, \cdots, T_{k} is a partition of $\{1, \cdots, n-1\}$. Differentiating (3.8) with respect to x_{n} we get

$$
\begin{align*}
\frac{\partial^{n} Z}{\partial x_{1} \cdots \partial x_{n-1} \partial x_{n}}= & \sum_{k=1}^{n-1} \sum_{T_{1}, \cdots, T_{k}}\left(\phi^{\left(T_{1}, n\right)} \cdots \phi^{\left(T_{k}\right)}+\cdots+\phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}, n\right)}\right. \tag{3.9}\\
& \left.+\phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)} \phi^{(n)}\right) Z
\end{align*}
$$

where $\phi^{\left(T_{h}, n\right)}=\left(\partial \phi^{\left(T_{h}\right)} / \partial x_{n}\right), \phi^{(n)}$ is defined by (3.4) and T_{h}, n is a shorthand notation for $T_{h} \cup\{n\} h=1, \cdots, k$. We observe that in (3.9) the summation over T_{1}, \cdots, T_{k} refers to the partition of $\{1, \cdots, n-1\}$. It is obvious that (3.9) is equal to

$$
Z \sum_{k=1}^{n} \sum_{T_{1}, \cdots, T_{k}} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)}
$$

where $\sum_{T_{1} \cdots T_{k}}$ is now over all the partitions T_{1}, \cdots, T_{k} of $\{1, \cdots, n\}$, and (3.7) holds.

Theorem 3.1. Let $A=\left(A_{i j}\right)$ be an $n \times n$ matrix over C. Then

$$
\operatorname{per}(A)=Z \sum_{k=1}^{n} \sum_{T_{1}, \cdots, T_{k}} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)},
$$

where $\phi^{\left(T_{j}\right)}$ is defined by (3.5).
Remark. The theorem is also true for matrices defined over an arbitrary field if we use formal differentiation.

Now we cast (3.7) into another equivalent form. Then we shall see that $\operatorname{per}(A)$ is in fact independent of x_{1}, \cdots, x_{n}. We need the following additional notation. Let $r_{w_{1} * \cdots * w_{s}}$ denote the sum of the entries in the Hadamard product of columns w_{1}, \cdots, w_{s} of A, i.e.,

$$
r_{w * \cdots * w_{s}}=\sum_{j=1}^{n} a_{j w_{1}} a_{j w_{2}} \cdots a_{j w_{s}}
$$

Definition 3.1. For $\left(t_{1}, \cdots, t_{k}\right) \in G(n)$ we define the R function,
$R\left(t_{1}, \cdots, t_{k}\right)$, as the symmetrised sum of all distinct products of the $r_{w_{1}+\cdots, w_{s}}, s=t_{1}, \cdots, t_{k}$, such that in each product the sequences $\left(w_{1}, \cdots, w_{s}\right) \in Q_{s, n}, s=t_{1}, \cdots, t_{k}$, partition the set $\{1, \cdots, n\}$.

Definition 3.2. The permanent of an $m \times n$ matrix $A=\left(a_{i j}\right)$ $m \leqq n$, written $\operatorname{Per}(A)$, is defined by

$$
\operatorname{Per}(A)=\sum_{\sigma} a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{m \sigma(m)},
$$

where the summation extends over all one-to-one functions from $\{1, \cdots, m\}$ into $\{1, \cdots, n\}$.

The special case $m=n$ is of particular importance. In fact most writers restrict the designation "permanent" to the case of square matrices. However the permanent of a rectangular $m \times n$ matrix $A, m \leqq n$, can be obtained by evaluating the permanent of the $n \times n$ matrix

$$
B=\left[\begin{array}{l}
A \\
C
\end{array}\right],
$$

where C is the $(n-m) \times n$ matrix all of whose entries are 1 . Clearly $\operatorname{per}(B)=(n-m)!\operatorname{per}(A)$. In [2, 1] Minc states a formula for the computation of the permanent of an $m \times n$ matrix, $m \leqq n$, in terms of the R functions. This formula is an extension of Binet's formulas for $m \leqq 4$, which are based on the Principle of Inclusion and Exclusion.

If A is an $n \times n$ matrix, then

$$
\operatorname{Per}(A)=\sum_{\left(t_{1}, \cdots, t_{k}\right) \in G(n)} C\left(t_{1}, \cdots, t_{k}\right) R\left(t_{1}, \cdots, t_{k}\right)
$$

with

$$
C\left(t_{1}, \cdots, t_{k}\right)=(-1)^{n+k} \prod_{n=1}^{k}\left(t_{k}-1\right)!
$$

This is the formula of Binet and Minc of $m=n$. Let us show that (3.7) is precisely this formula.

Let $A^{\prime}=\left(\left(1 / Z_{i}\right) a_{i j}\right)$ be the matrix obtained from A by multiplying its i th row by $1 / Z_{i} i=1, \cdots, n$. Thus, we can write (3.5) in the following form

$$
\begin{equation*}
\phi^{\left(T_{j}\right)}=(-1)^{t_{j}-1}\left(t_{j}-1\right)!r_{w_{1}^{(j)}, \ldots, \ldots w_{s}^{(j)}}^{(j)}, \tag{3.10}
\end{equation*}
$$

where $r_{w_{1}()^{(j)} \ldots \ldots w_{s}^{(j)}}$ denotes the sum of the entries in the Hadamard product of the columns $w_{1}^{(j)}, \cdots, w_{s}^{(j)}$ of $A, s=t_{j}, j=1, \cdots, k$. On the other hand

$$
\sum_{k=1}^{n} \sum_{T_{1}, \cdots, T_{k}} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)}=\sum_{k=1}^{n} \sum_{\left(t_{1}, \cdots, t_{k}\right)} \sum_{T_{1}, \cdots, T_{k}}^{\prime} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)}
$$

where Σ^{\prime} denotes the summation over the partitions T_{1}, \cdots, T_{k} whose cardinals $t_{i}=\left|T_{i}\right|, i=1, \cdots, k$, are kept fixed. Substituting (3.10) into (3.11), applying (3.1) and the definition of R we obtain the formula of Binet and Minc for per (A^{\prime})

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{T_{1}, \cdots, T_{k}} \phi^{\left(T_{1}\right)} \cdots \phi^{\left(T_{k}\right)}= & \sum_{k=1}^{n} \sum_{T_{1}, \cdots, T_{k}}(-1)^{t_{1}-1} \cdots(-1)^{t_{k}-1}\left(t_{1}-1\right)! \\
& \times \cdots\left(t_{k}-1\right)!\prod_{j=1}^{k} r_{w_{1}}^{(j))_{*} \cdots * w_{t_{j}}^{(j)}} \\
= & \sum_{k=1}^{n} \sum_{t_{1} \cdots t_{k}}(-1)^{n-k} \prod_{j=1}^{k}\left(t_{j}-1\right) \prod_{j=1}^{k} r_{w_{1}^{(j)}}{ }^{(j) \cdots * w_{t_{j}}^{(j)}} \\
= & \sum_{\left(t_{1}, \cdots, t_{k}\right) \in G(n)} C\left(t_{1}, \cdots, t_{k}\right) R\left(t_{1}, \cdots, t_{k}\right)=\operatorname{per}\left(A^{\prime}\right)
\end{aligned}
$$

It is now clear that in fact (3.7) is independent of x_{1}, \cdots, x_{n} due to the multilinearity of the permanent, since per $(A)=Z_{1} \cdots Z_{n} \operatorname{per}\left(A^{\prime}\right)=$ $Z \operatorname{per}\left(A^{\prime}\right)$.
4. Ryser's formula. In this section we shall prove Ryser's formula [3] from the identity (2.5), without using the Principle of Inclusion and Exclusion.

THEOREM 4.1. Let $A=\left(a_{i j}\right)$ be a matrix of size n by n defined over a field F. Let $w=\left(w_{1}, \cdots, w_{k}\right) \in Q_{k, n}$ and $\bar{w}=\left(\bar{w}_{1}, \cdots, \bar{w}_{n-k}\right) \in$ $Q_{n-k, n}$ be sequences complementary to each other. We shall denote by A_{w} the matrix obtained from A by replacing columns $\bar{w}_{1}, \cdots, \bar{w}_{n-k}$ by zeros. Let $S\left(A_{w}\right)$ represent the product of the row sums of A_{w}. Then

$$
\begin{equation*}
\operatorname{per}(A)=\sum_{k=1}^{n} \sum_{w \in Q_{k}, n}(-1)^{n-k} S\left(A_{w}\right) \tag{4.1}
\end{equation*}
$$

Proof. Let $A^{\prime}=\left(a_{i j} x_{j}\right)$ be the $n \times n$ matrix obtained from A by multiplying its j th column by $x_{j}, j=1, \cdots, n$. From (2.5) it follows that

$$
\begin{align*}
S\left(A_{w}^{\prime}\right) & =\prod_{j=1}^{n}\left(\sum_{t=1}^{k} a_{j w_{t}} x_{w_{t}}\right) \\
& =\sum_{\beta} \operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right) \frac{x_{1}^{\beta_{1}}}{\beta_{1}!} \cdots \frac{x_{n}^{\beta_{n}}}{\beta_{n}!} \tag{4.2}
\end{align*}
$$

Note that if one of the $\beta_{\bar{w}_{t}}, t=1, \cdots, n-k$, is different from zero, the matrix $A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)$ will have columns of zeros and $\operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right)=0$. If the condition $\beta_{\bar{w}_{1}}=\cdots=\beta_{\bar{w}_{n-k}}=0$ holds, then $\operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right)$ will be independent of w.

From (4.2) we have

$$
\begin{align*}
& \sum_{k=1} \sum_{w \in Q_{k, n}}(-1)^{k} S\left(A_{w}^{\prime}\right) \\
& \quad=\sum_{\beta} \frac{x_{1}^{\beta_{1}}}{\beta_{1}!} \cdots \frac{x_{n}^{\beta_{n}}}{\beta_{n}!} \sum_{k=1}^{n} \sum_{w \in Q_{k}, n}(-1)^{k} \operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right) \tag{4.3}
\end{align*}
$$

where $\sum_{i=1}^{n} \beta_{i}=n$. In order to evaluate (4.3) we first prove that

$$
\sum_{k=1}^{n} \sum_{w \in Q_{k, n}}(-1)^{k} \operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right)=0
$$

provided that $\beta_{i} \neq 1$ for some i. For this purpose let $\left(\beta_{w_{1}}, \cdots, \beta_{w_{h}}\right)$, $w^{\prime}=\left(w_{1}, \cdots, w_{h}\right) \in Q_{h, n}$, are the only nonzero elements in $\left(\beta_{1}, \cdots, \beta_{n}\right)$. It is clear that $\beta_{\bar{w}_{1}}=\cdots=\beta_{\bar{w}_{n-h}}=0$ and $\operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right)=0$ unless $\bar{w} \subset \bar{w}^{\prime} \Leftrightarrow w \supset w^{\prime}$. Since there are $\binom{n-h}{k-h}$ different sequences $w, w \in Q_{k, n}$, such that $w \supset w^{\prime}$ for a fixed w^{\prime}, we have

$$
\begin{align*}
& \sum_{k=1}^{n} \sum_{w}(-1)^{k} \operatorname{per}\left(A_{w}\left(\beta_{1}, \cdots, \beta_{n}\right)\right)=\sum_{\substack{k=1 \\
w>w^{v}}}^{n} \sum_{\substack{v}}(-1)^{k} \operatorname{per}\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right) \\
& \tag{4.4}\\
& =(-1)^{h} \sum_{k=h}^{n}(-1)^{k-h}\binom{n-h}{k-h} \operatorname{per}\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right) \\
& \\
& =(-1)^{h}(1-1)^{n-h} \operatorname{per}\left(A\left(\beta_{1}, \cdots, \beta_{n}\right)\right) \\
&
\end{align*}
$$

if $n \neq h$. Consider now the case $n=h$, that is $\beta_{1}=\cdots=\beta_{n}=1$. Clearly $\operatorname{per}\left(A_{w}(1, \cdots, 1)\right)=0$ unless $w=\{1, \cdots, n\}$. From (4.3) and (4.4) it finally follows

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{w \in Q_{k}, n}(-1)^{k} S\left(A_{w}^{\prime}\right)=(-1)^{n} \operatorname{per}(A) x_{1} \cdots x_{n} \tag{4.5}
\end{equation*}
$$

Since $\operatorname{per}(A)=\left(1 / x_{1} \cdots x_{n}\right) \operatorname{per}\left(A^{\prime}\right)$, (4.5) gives Ryser's formula for the evaluation of $\operatorname{per}(A)$.

Acknowledgment. I wish to thank the referee for his careful reading of former versions of this paper. His valuable comments led to a clearer form of the present article.

I am also most greateful to Prof. G. N. de Oliveira for his interest in this work.

References

1. H. Minc, Evaluation of Permanents, Proceedings of the Edinburgh Mathematical Society, 22/1 (1979), 27-32.
2. Encyclopedia of Mathematics and its Applications, vol. 6, Permanents, Addi-son-Wesley Publishing Company Inc., 1978.
3. H. Ryser, Combinatorial Mathematics, Carus Mathematical Monographs, John Wiley and Sons, Inc., 1963.
4. J. K. Percus, Combinatorial Methods, Springer Verlag, New-York, 1971.

Received June 22, 1979 and in revised form April 21, 1981.
Universidade de Coimbra
Coimbra, Portugal

[^0]: * The author is a member of the Centro de Matemática da Universidade de Coimbra

