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A NOTE ON THE GAUSS CURVATURE OF
HARMONIC AND MINIMAL SURFACES

GIORGIO TALENTI

We present some inequalities for the Gauss curvature
of embedded surfaces in euclidean 3-space, which are either
graphs of harmonic functions or minimal. The proofs exploit
the following facts: (i) a partial differential equation con-
strains the curvature of the surfaces in question; (ii) the
differential equation constrains in a significant way, via an
isoperimetric inequality, the level lines of the curvature.

l Introduction* Let u be a (real-valued) harmonic function
of two (real) variables x and y, and let K be the Gauss curvature
of the graph of u. The following lemma is the starting point of
our arguments.

LEMMA. The following equation

(1) K(KXX + KJ - K* - Ki = 8K>

holds (here subscripts stand for differentiation, e.g., Kx = dKjdx,
etc.).

Proof. The Gauss curvature of the graph of u is given by

(2) K=(l + uϊ + u\Y\uxxuyy - uly) .

We have to show that formula (2) provides us with a kind of
general solution of equation (1), i.e., formula (2) produces a solution
to equation (1) whenever it is a harmonic function.

Indeed, our harmonic function can be represented (at least
locally) as the real part

(3) u(x, y) = Re f(z) = hf{z) + /(£)]
Δ

of some holomorphic function / of the complex variable z — x + iy.
Using (2) and (3) one easily finds the following alternative formula

(4) K= -(l + | / T Π / " i 2 ,

where primes denote differentiation with respect to z.
The right-hand side of (4) involves a holomorphic function

(namely /') and the first derivative of it. We want to eliminate
this holomorphic function from (4) and equations involving deriva-
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tives of K. In other words, we seek a partial differential equation
which is satisfied by any expression of the form

(5) K= -(l + \h\Y2\h'\2 ,

where h is an arbitrary holomorphic function. Such a differential
equation is very close to one considered by Liouville [16] [17] and
is easily found with the help of the complex derivatives

dz 2\dx dyJ dz 2\dx dy

Bearing in mind the usual rules (e.g., dh/dz = h', dh/dz=0, dh/dz = 0,
dh/dz = hf where h is any holomorphic function of z = x + iy), in
few steps one arrives at the following conclusion

( 7 ) *
dzdz dz dz

an equivalent form of (1). The lemma is proved.
Observe that formula (4) implies the following property: K is

nonpositίve and may have only isolated zeros. In a sense, this
property is related to the maximum principle for harmonic func-
tions: indeed, it tells us that the graph of u cannot lie on one side
of any of its tangent planes. •

One aim of the present paper is to point out that equation (1)
is a tool for deriving properties of K. In fact our results on the
curvature of harmonic and minimal surfaces are inferred from the
quality of such a curvature of being a nonpositive solution to a
special second order partial differential equation, and are obtained
by partially decoding the information comprised in that equation
in an appropriate way. Thus our point of view coincides with a
usual one in classical differential geometry, where differential equa-
tions often play the role of devices for storing information on
geometric objects. Also, our investigations are similar in spirit to
those on partial differential equations, made when the existence of
solutions is obvious or taken for granted and a priori bounds for,
or qualitative properties of solutions, are considered of primary
interest.

By way of an example, let us prove the following property.
The negative of K cannot achieve a minimum at an interior point,
unless the minimum is zero. In fact, suppose that K is free from
zeros. Then we can put

-K= 4w"2
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and equation (1) yields the equation

Wyy) = 1 + Wl + W\ ,

showing that w = 2/i/—K is subharmonic. •

As is well known, some a priori bounds for harmonic functions,
and for combinations of their derivatives, automatically hold in the
whole of the domain when the same bounds are available on the
boundary. In fact, the maximum principle comes in whenever
quantities, suitably related to those under estimation, are sub-
harmonic functions. For instance, the above remark applies if the
maximum of expressions such as

u\ u\ ,

2u

is to be estimated. Indeed, the expressions (8) obviously are sub-
harmonic.

The last assertion can be strengthened. For one may check
that each of the expressions (8) is a solution to the following equa-
tion

(9) ?>(9>..+ ?>„)-9* - ?>J = 0 .

Of course, other more sophisticated objects might enrich the
list (8), that share with the previous ones the property of signifi-
cantly involving derivatives of u and being solutions to equation
(9). For the sake of completeness, let us quote

(10) H+ih ,

a complex-valued function having

H = (1 + u\ + u\)-z/\{l + u\)umm - 2uyuxuxy + (1 + uϊ)uyy) ,

the mean curvature of the graph of uf and

h = (1 + < + ul)-3/\uxuy(uxx - uyy) + (u* - ul)uxy) ,

the mean curvature of the conjugate harmonic surface, as real and
imaginary parts. From the representation (3) of u we get

H+ίh= - ( l + l/'f

hence we see that H+ih satisfies the equation
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dzdz dz dz

The last equation is nothing but (9), because of (6). A simple cal-
culation shows that the modulus of any complex-valued solution of
(9) is a solution too. Observe, in fact, that the left-hand side of
(9) formally agrees with φ2((ln φ)xx + (In φ)yy). We conclude that

is a further example of a subharmonic function associated with u.
The above considerations, together with related strategies, seem

to fail if the Gauss curvature K is taken under examination.
Although our basic equation (1) is reminiscent of (9), the (negative)
term on the right-hand side makes the situation worse. Note that
K is not subharmonic (nor superharmonic) in any domain. For
instance the (negative of the) Gauss curvature of the harmonic
surface

u = Re (a — ib)~ι exp ((a — ib)(x + iy) + c) (α, 6, c — real const.)

has the value

-K = — (a2 + 62)(cosh (ax + by + c))~2

4

and achieves its maximum value on the line ax + by + c = 0.
Another pair is

u = xs - 3xy2 -K= 36r2(l + 9r4)"2

here r2 = x2 + y2, —K achieves its minimum at r = 0 and its maxi-
mum on the circle r — 3~3/4. •

The main concern of the present paper is to relate

(11) A = max {-K(x, y): (x, y)eG},

the global maximum of \K\, with

(12) a = max {-K(x, y): (x, y) e dG} ,

the maximum of |JBL| on the boundary. Here G is any domain of
the euclidean (cc, i/)-plane such that K is smooth on the closure G
of G.

THEOREM 1. The following alternative holds. Either

(13) A - area {(x, y) e G: -K(x, y) > a} < —^— ,
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or

(14) A <ί — 3 γ [ J

If (14) holds, then

(15) area {(x, y) e G: -K(x, y) > a) ^ Γ-2-1| KII^T*'*"""
Lπ J

holds too.
Here p is any number > 1 and || \\PιOO denotes the norm in

Lorentz L(p, oo)space (also called weak Lv-space), namely

II-BΓII,,* = l.u.b. \C: \ \K\dxdy < C(areaEy~1/P for every
(16)

measurable EaGϊ .

Equality holds in (14) if G is the whole of the plane and

(17a) K = -C 2 ( l + CV)-2 (r2 = x2 + y\ C = const.),

ίfcβ Gauss curvature of the hyperbolic paraboloid

(17b) u = £-(x2 - y2) .

Theorem 1 is a corollary of the following.

THEOREM 2. Let

(19) iT(s) - A l.u.b. ί( \K\dxdy:EaG, area JS = βl .

following inequality

(20) -J- ^ -I" + ~

for any s such that

(21) 0 ^ β ̂  area {(a?, y)eG:- K(x, y) > a) .

Equality holds in (20) for every s ^0 if G is the whole of the plane
and (17) is valid.

Proof of Theorem 1. Prom (16) and (19) we get

(22) | | i Γ | U = l.u.b. {s1/pK(s): s > 0} ,
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hence (20) yields

(23) (l/AJβ-1" + (I/TΓ)*1-"' ^

for every s that obeys (21). Suppose (13) is violated. Then we can
put

(24) 8 =

( p -

into (23), thus we obtain

(25) p(p - i)-ι+vpπ-υpA-

namely inequality (14). Observe that the left-hand side of (25) is
exactly the maximum value of the left-hand side of (23). The
assertion about the equality sign in (14) follows, thanks to (22).
Finally, (15) follows from (14) and the converse of (13). •

Let us conclude this section with the following corollary of
Theorem 2. Suppose that G is the entire plane R2 and K(x, y) —> 0
as x2 + y2 —> °o then

[ (-K)dxdy ^ π ,
J-K2

and equality holds in the case (17).

2* A proof of Theorem 2* We can suppose A > α, otherwise
there is nothing to prove.

Fix any number t such that

a < t < A

and consider the level set

(26) {(x,y)eG:-K(x,y)>t}.

Clearly, (26) is an open nonempty subset of G, having a positive
distance from the boundary of G. The boundary of (26) coincides
with

(27) {(x,v)eG: -K(x,y) = t},

provided that the latter is a regular curve, i.e., no critical point of
K lies on (27). Sard's theorem tells us that the last-mentioned
circumstance occurs for almost every t, hence we shall neglect
those values of t for which (27) is not the boundary of (26). •

Integrating both sides of equation (1) on the level set (26) gives
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- 4 \DK\\Zdx2 + dy2 -2\ \DK\2dxdy

(28) J " * = t ]-K<t

= S\ K'dxdy ,
J-K>t

for the left-hand side of (1) is

div (KDK) -2\DK\2

and

DK/\DK\

is exactly the outer normal to the boundary of (26). Here DK
denotes the gradient of K, so that \DK\ = (Kζ + Kϊ)m.

We claim that the following equation

(29) ( \DK\]/dx2 + dy2 = 8ί( (-K)dxdy
J-K=t J-K>t

is a consequence of (28). In fact Federer's coarea formula [6] tells
us that the function of t, defined for a < t < A by

(30a) Φ(t) = ( \DK\2dxdy
J-K>t

is absolutely continuous and

(30b) φ'(t)=

for almost every t. In terms of Φ, equation (28) takes the form

hence an integration gives

Φ{t) - 8έ2(V3ώ ί {-Kfdxdy .

The last equation can be rewritten this way

(31) ί \DK\*dxdy = 4ί[ {-K){K2 - t2)dxdy
J-K>t J-K>t

after a straightforward use of Fubini's theorem on the right-hand
side. Inserting (31) into (28) yields (29). •

Let us introduce the distribution function

(32) μ{t) = area {(a, y) 6 G: -K(x, y) > t}

and K*, the decreasing rearrangement of K in the sense of Hardy
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and Littlewood. As is well known (see [9], [14], [19], [20]), K*
is a kind of inverse function of μ, more precisely, K* is the smallest
decreasing function from [0, +oo] into [0, +°°~\ such that

(33) K*(β(fi)) ̂  t

for every t ^ 0. Equivalently, K* can be defined as the decreasing
function from [0, +°°] into [0, +oo] such that the level sets {s ^ 0:
K*(8) > t} are intervals with end points in 0 and μ(t). The latter
statement is summarized by

(34) K* = Γ"l[o,,((,idί ,
JO

where 1 stands for characteristic function and the integral is taken
in the Bochner sense.

The integral at the right-hand side of (29) can be rewritten
this way

S
Cμ(t)

_κ>t(-K)dxdy = Jo K*{s)d8 ,

since both sides of (35) obviously agree with

On the other hand, the left-hand side of (29) obeys the follow-
ing inequality

(36) ( \DK\Vdx2

y^4π
—μ(t)

for almost every t from ]a, A[. In fact

Γt \DK\dxdyl ^ [μ(jt) - μ(fi + h)]\[ \DK\2dxdy]

for any positive and sufficiently small h, because of Schwarz's
inequality. Hence

[length {(x, y) e G: -K(x, y) = t}]2

( 8 7 ) ^ ί \DK\\/dx2 + dy2 ,

for μ is almost everywhere differentiate, (30) holds and

_ J L ( \DK\dxdy ^length {(x, y)eG: -K(x, y) = ί}
dt j-κ>t

thanks to Federer's coarea formula. Now the standard isoperimetric



THE GAUSS CURVATURE 485

inequality (see e.g., [23]) comes in and gives

(38) [length {(x, y) e G: -K(x, y) = t}]2 ^ 4πμ(t) .

Thus, the wanted inequality (36) follows from (37) and (38).
The triple (30)(35)(36) yields

(39) 1 <ί [-^(fl]-2* P K*(8)ds

for almost every t from the range a < t < A.
We claim

(40a) - π 8 J*£L.( 8) ^ 2K*(s)
ds

for almost every s such that

(40b) 0 < β < μ(a) = area {(x, y) e G: -K{x, y) > a) .

In fact, (34) gives

\+~K*(s)φ'(s)ds = \+C°φ(μ(t))dt .
Jo Jo

for every compactly supported smooth function φ. Suppose that
φ is nonnegative and the support of φ is concentrated in ]0, μ(a)[.
Then (39) and (33) give

\+~<P(μ(t))dt
Jo

^ \+°°φ(μ(t)) 2K*^t)) \[μW κ*{S)ds\-μ\t))dt,
Jo πμ(t) LJo J

hence w e h a v e

\+°°K*(s)φ'(s)ds ^ Γ°V(β) 2 i Γ * ( 8 ) \['κ*(8')d8f ~}ds ,
Jo Jo Tts LJo J

since I (—μ'(t))dt ^ \ "(—dμ(t)). As if* is absolutely continuous

(see [25] for instance), inequality (40) follows. •

A convenient device for discussing inequality (40a) is to use
(19). One may already know or easily check (see e.g., [14], [19], [20])
that K is the maximal function associated with if*, namely

(41) K{s) = M'K*(8'W .
S JS Jo

In terms of K, (40a) reads as follows
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Hence πs2(dK(s)/ds) + (sK(s))2 is an increasing function of s. As
such function vanishes at s = 0 (note that K(s) —> if*(0) = A,
s(dK(s)/ds) = JSΓ*(s) - ΐΓ(s) -> 0 as 8 -»0), we must have

+ (K(s)T ^ 0 ,π
as

that is

(43)

Inequality (43) holds for s in the range (40b). Integrating (43)
gives the wanted conclusion (20), provided s is restricted by (40b)
and the formula

(44) K(0) = K*(0) = A

is used again. •

When does the formula

(45) K(s) = ( i- + ^-

hold for every s? A glance at the previous arguments shows that
(45) holds if, and only if, equality holds for almost every t both in
isoperimetric inequality (38) and in (37). Equality in (38) leads to
the conclusion that: (i) every level set (26) is a disk. Equality in
(37) holds if and only if: (ii) \DK\, the magnitude of DK, is con-
stant along almost every level line (27). Properties (i) and (ii) are
valid if (and actually imply that, as the arguments from [1] should
show) K is circularly symmetric, namely

(46) -K(x,y)=f{r),

and / decreases as r increases. Here r is the distance from some
fixed point, r = i/#2 + y2 say.

Let us lock for those solutions of equation (1), that have the
form (46) (circular weaves). We find the following equation

rff" - r{fj +ff' + 8r(/)3 = 0 (' = d/dr) ,

whose general solution (cfr. [15], part 3, Chapter 6, ex. no. 172) is

(47) /(r) = {Cnrn-ι)\l + CV")'2 (C, n = const. ^0) .

Functions K, given by (46) (47), actually are weak solutions
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(i.e., solutions in the sense of distributions) to equation (1) if and
only if n ^ 1. Incidentally, these solutions are not smooth if n is
not an integer. A decreasing function of r is gotten from (47)
only by choosing n = 1. Note that the negative of (47) is the Gauss
curvature of the harmonic surface

u = — — Έ L e ( x - iy)n+1.
n + 1

In conclusion, the pair

K = -C 2 ( l + CV)"2 u = — Re (x + iy)2

Δ

must lead to formula (45).
Our theorem is fully proved.

3* Minimal surfaces* Estimates for the Gauss curvature of
minimal surfaces have been given by several authors. Heinz [10]
proved that, if u is a solution to the minimal surfaces equation

(50) (1 + u\)uxx — 2uyuxuxy + (1 + ul)uyy = 0

in a disk x2 + y2 < R2, then the Gauss curvature of K of the graph
of u (cfr. formula (2)) satisfies

(51) I#(0,0)I ^c-R-2 ,

where c is an absolute constant. Finn and Osserman [8] proved
that the best constant in (51) satisfies (ττ2/2) ^ c < 6, and (51) holds
with c = π2/2 if the gradient of u vanishes at the origin. Other
improvements on Heinz' result have been proposed by E. Hopf
[11] and J. C. C. Nitsche [18]. For instance, Nitsche proved that
(51) can be replaced by

(52) I K(0, 0) I ̂  ^R~2[l + ul(0, 0) + u\φ, 0)]"2 .
4

Further generalizations are in Osserman [21]. See [22], § 11, for
a discussion on this matter. Let us mention that estimates for
the Gauss curvature of surfaces, having a constant mean curvature,
are in Spruck [24]. Π

In this section we briefly discuss the following theorem.

THEOREM 3. Let M be an embedded minimal surface in euclidean
3-space and let K be the Gauss curvature of M. The following
inequality



488

(53)

holds

(54)

Here

(55)

for every

K(s) =

s such

o < : 8

-ί l.u.b

GIORGIO TALENTI

1 ^ 1 ... 8
K(s) ~ A ' 2π

that

£Ht{xeM:\K(x)\

.{[ K(x)\H2(dx):E

a).

s

(56) A = l.u.b. {\K(x)\:xeM}

(57) α = l.u.b. {\K(x)\:xedM}9

and H2 denotes the two-dimensional Hausdorff measure.

REMARKS. ( i ) Theorem 3 yields a number of estimates for
the Gauss curvature of minimal surfaces. Such estimates are the
exact analogs of those presented in Theorem 1 (but are omitted
here for the sake of brevity). Note that Theorem 3 involves rear-
rangements of the curvature on the surface itself This is the
main difference between Theorems 2 and 3. Note that in the
present context formulas (33) (34) (41) still match (55), while formula
(32) for the distribution function must be replaced by

(58) μ(t) = H2{x e M: | K{x) \>t) .

(ii) Whether equality in (53) may actually be achieved by some
minimal surface is not discussed here. However, a minimal surface
can easily be shown such that the power series expansion of 1/K(β)
near s = 0 begins with the right-hand side of (53). A surface
having this property is Enneper. As is well known (see e.g., [5],
§§ 3-5), the surface of Enneper has the following parametric repre-
sentation

( ) = Cv(l + u* -ψ) x3 = C(u2 - v2) ,

hence the following metric

dx\ + dxt + dx\ = C\l + u2 + v2)\du2 + dv2)

and the curvature

K= -4C- 2 (1 + u2 + v2)-'.

Here C is any real constant, that is related to the maximum A of
I JBΓ| by: 4C"2 = A. Using (58) one finds



THE GAUSS CURVATURE 489

μ(t)=\a o β j C2(l + u>-

hence from (41) and (34) one gets

A ' 2π '

(iii) Some assumptions on the topology of M should be made
for Theorem 3 to hold in the form stated. For instance, we might
assume that M is simply connected. Double connectivity might also
suffice. As a matter of a fact, Theorem 3 holds if the level sets
of the curvature

(59) {xeM:\K(x)\ > t)

obey the isoperimetric inequality

(60) (perimeter)2 ^ 4ττ (area)

whenever t exceeds the maximum a oί \K\ on BM. Theorems assert-
ing the validity of isoperimetric inequality (60) for subdomains of
minimal surfaces are in Carleman [4], Beckenbach-Radό [2], Huber
[13], Hsiung [12], Feinberg [7]. See [23], Theorems 4.2 and 5.3. •

Our proof of Theorem 3 is entirely analogous to that of Theorem
2 and consists of a suitable treatment of a special partial differen-
tial equation. The only change is that we are now faced by a
partial differential equation on a manifold.

The Gauss curvature K of a smoothly embedded surface M in
euclidean 3-space satisfies

(61) KΔK- \DK\2 = AK3

if and only if M is either minimal or locally isometric to a minimal
surface. See e.g., [3], vol. 1, §211. Equation (61) holds on the
surface itself; that is D and Δ are the covariant derivative (or
intrinsic gradient) and the Laplace-Beltrami operator on M. If
u, v are local coordinates on M and

(62) Edu2 + 2Fdudv + Gdv2

defines the metric tensor on M, one has

//>q\ n i τ\m i2 _ r( dφ V • o w dφ dφ , π ( dφ V
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(64) G ψ F ψ +
g\ on ov I ovv g

for every smooth scalar field φ on M. As usual, g denotes EG—F2.
Incidentally, a proof of (61), in the case where the relevant

surface is minimal, is easily obtained from the Weierstrass repre-
sentation. In fact, let a minimal surface have the parametric repre-
sentation

(65a) xk = Re (*+V*(ζ)dζ Φ = 1, 2, 3)

where

(65b) <p1 =

Δ Δ

f is holomorphic, h is meromorphic, and fh2 is free from poles
(cfr. e.g., [22], Lemma 8.2). Then u, v are isothermal coordinates;
the coefficients of the first quadratic form satisfy

(66a) E=G = VJ = hf\2(l + \h\2)2, F = 0
4

we have the formula

(66b) K = -161 /1"21 h' |2(1 + | h |2Γ4

for the Gauss curvature of our surface. As in the proof of Lemma
1, one can check that any expression K of the form (66b) satisfies

κd
2K 3K dK ^w-K*
dζdζ 3ζ dζ

where ζ denotes the complex variable u + iv and g is given by
(66a). The last equation is nothing but (61), thanks to (63) (64) and
(66a). •

Let us sketch a proof of Theorem 3. The basic steps are as
follows.

( i ) An integration of both sides of equation (61) over the
level set (59) gives

t[ \DK\Hadx) + 2ί \DK\2H2(dx)
J-K=t J-K>t

K*Ht(dx) = 0 ,
-K>t

for almost every t such that a < t < A. Here Ht stands for
1-dimensional Hausdorff measure.
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(ii) The coarea formula [6] gives

M \DK\*H2{dx) = - ί \DK\Hx{dx)
at j-κ>t }-κ=t

for almost every t such that a < t < A.
(iii) From the previous steps we get the formula

= 4ί ( (~K)H2(dx) ,

where a < t < A.
(iv) Formulas (58) and (34) give

S Γμ(t)
(-K)Ht(dx) = K*(s)ds .

-κ>t Jo

(v) The formula from step (ii), Schwarz inequality and formula
(58) give

Ax e l - K{%) = t)Y ^ - μ'(t) ( [
J-K=t

provided a < t < A.
(vi) The isoperimetric inequality (60) tells us that the left-hand

side of the inequality from step (v) is estimated from below by
Aπμ(t).

(vii) A collation of previous steps gives

S μ(.t)

K*(s)ds ,
0

for almost every t such that a <t < A.
The conclusion follows from step (vii), via the same argument

we used in the discussion of inequality (39).

Added in proof. Prof. R. Osserman has pointed out that the
inequality we have stated in the corollary of Theorem 2 can be
derived from the representation (5) of K (provided the relevant
harmonic function n is not linear), without using any assumption
on the behaviour of K at infinity. We are indebted to him for
drawing our attention to his paper Some geometric properties of
polynomial surfaces (Comm. Math. Helvetici, 37 (1963), where some-
what related results are proved.
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