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MAPGERMS INFINITELY DETERMINED WITH
RESPECT TO RIGHT-LEFT EQUIVALENCE

LESLIE C. WILSON

Mather has given both algebraic and geometric character-
izations of finitely determined germs. We conjecture
analogous characterizations of infinitely determined germs
and prove parts of this conjecture. Recall that two mapgerms
/ and Q are (right-left) equivalent if there are germs of
diffeomorphisms I and r such that / = I ° Q ° r. A mapgerm
/ at x is finitely determined if there is a & such that every
germ having the same /c-jet as / at x is equivalent to /; /
is infinitely determined if every germ having the same
Taylor series at x as / is equivalent to /.

Let En denote the space of germs at 0 in Rn of C°° real
valued functions and let mn denote the unique maximal ideal
in En. Let El denote the set of ^-tuples of elements of En;
ΎΪI\ may denote /otuples or may be the &th power of mn—
which should be clear from context. If / is analytic, let fc
denote its complexification.

THEOREM 1.1. (Mather; see [2] and [4]). For f in ml, the
following are equivalent:

(1) f is finitely determined]
(2 ) dfE: + f*E* => m\El for some k > 0;
(3 ) (assuming f analytic) fc is locally multistable in a deleted

neighborhood of 0.

Since fc is a germ, (3) is to be interpreted as saying that, for
each representative F of the germ fc, there is a deleted neighbor-
hood U of 0 on which F is locally multistable (i.e., for each finite
SdU the germ of F at S is stable).

Since dfml + /*m? represents the tangent space to the orbit
of /, the motivation for (2) is clear (except for the replacement of
m by E). Also clear is that the analogous condition for infinite
determination is gotten by replacing k by ©o.

Gaffney (see [2]) explains the motivation for (3) as follows: "It
is relatively easy to understand why a finitely determined germ
should have this property. Any perturbation at zero, whose Taylor
expansion vanishes to sufficiently high order there, can be removed
by a coordinate change in source and target. However, by a
suitable high order perturbation at zero, one can obtain any kind
of a perturbation at some fixed x different from zero. This low
order perturbation at x is also removed by the induced change in
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source and target at the origin. Thus, one would expect the germ
at x to be stable."

If the perturbation at zero is by polynomial terms, the effect is
felt at x whether complex or real. If the perturbation at zero is by
flat functions, the quote still applies for real x. Thus we are led to:

(3a) (assuming / is analytic) / is locally multistable in a deleted
neighborhood of 0.

However, it is not known whether infinitely determined germs
need be equivalent to analytic germs. Since there are flat functions
which satisfy (3a)—aside from analyticity—we need to repace (3a)
by a condition which guarantees that / becomes unstable at a finite
rate as we approach 0.

We write Rpr x Jk(n, p)r for the space of r-tuples of &-jets of
elements of El. If / maps U into Rp, we define a map (jkf)r into
the above jet space in the obvious way. If the germ of / at a
finite set S is unstable, then there is a subset of p + 1 or fewer
points on which it is also unstable. Further, its stability on this
set depends only upon its p + 1 jet. Thus, if / is unstable at
{xlf -' ,xr}f we call (jp+1f)r(xlf ••-,»,.) a n unstable multijet, and let
Uns denote the set of unstable multijets. If / is unstable at 0,
then (jp+1f)r is necessarily unstable at D, the set of r-tuples
satisfying:

(a) at least one component is zero, or
(b) two or more component points are the same and are critical

points of /.

Conjecture 1.2. For / in mζ, the following are equivalent:
(1) / i s infinitely determined;
(2) dfE; + f*E*^>mZEl;
( 3 ) d((jp+ιf)p+\x), Uns) ^ Cd(x, D)r, for some C, r > 0.

Suppose / is analytic and (3a) holds. Then F = (jp+1f)p+1 is
analytic and F~\Uns) = D. We will show later that Uns is the
zero set of some analytic map P. Since P°F is analytic, it satisfies
a Lojasiewicz inequality. By Lemma 1.3 of [11], (3) holds. Of
course, (3) implies (3a) even if / isn't analytic.

In [11], we prove the corresponding conjectures to be true
when left-right equivalence is replaced by C, R, K or L equivalence.
We will henceforth assume the notation and terminology of that
paper. The present conjecture is an order of magnitude more
difficult than those proved in [11]. We prove the following partial
results.

THEOREM 1.3. (1) implies (3).
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The proof, which is carried out in §2, is entirely different from
that of "(1) implies (3)" in theorem 1.1, where powerful algebraic
techniques are employed.

THEOREM 1.4. // / is finitely K-deter mined, then (2) implies
(1).

The proof is carried out in §3. The requirement that / be
finitely if-determined is a real restriction: (x2 + y2)2 is not finitely
i£-determined, but is oo-j?-determined, hence infinitely A-determined.
Nevertheless, the restriction is not too great, as finitely determined
germs are plentiful (see [10] for a discussion of this point).

THEOREM 1.5. If f is analytic and finitely K-determined, then
(3a) implies (2).

EXAMPLE 1.6. Let f(x, y) = (x, y4 + xy2). The critical set C(f)
is 2y(2y2 + x) = 0; 0 is the only nonfold point of / in C2. / is two-
to-one on 2y2 + x = 0 and df has the same image at these double
points, so / is not stable on R2 — {0}. Thus / is not infinitely
determined.

EXAMPLE 1.7. Let f(x, y) = (x, y'+ xψ). C(f) is 2y(2y2+ x2) = 0
and 0 is the only nonfold point in C2. Since C(f) f] R2 is the α?-axis,
on which / is an embedding, /1 (R2 — {0}) is stable. Note that the
points (xf ±xi/21/2) e C(f) have a common real image. The image of
df at both these points is spanned by eι + 2xy2e2 (where e1 and e%
form the standard basis). Thus fc is not stable on fc\R2 — {0}). In
particular, / is not finitely determined, but is infinitely determined.

Belickii, in [1], establishes a sufficient condition for a germ to
be infinitely determined. However, his condition is very restrictive—
it implies that, on a deleted neighborhood of 0, the germ has only
fold singularities and is an embedding on its fold set. There is also
a mistake in the statement of his sufficient condition; for a dis-
cussion of this see [11]. (One should add that his principal result
concerns germs of diffeomorphisms infinitely determined with respect
to conjugation.) He also gives examples of infinitely determined
germs.

There is a useful reformulation of condition (3). First we prove
that Uns is an algebraic variety. Given a mapgerm /: (Rn, S) —> Rp,
define

A: (Rn x J\n, n) x Rp x Jp(p, p))τ > Rvr x J%n9 p)r

to be the real linear map induced by
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(dfff*):ESxΰfi8) >Eξ .

A depends only upon z — (jp+1f)r e Rpr x Jp+1(n, p)r and is surjective
iff z is stable. Considered as a matrix, the coefficients of A are
polynomials on Rpr x Jp+1(n, p)r. Let / be the polynomial ideal
generated by the determinants of the maximal minors of A. Then
Uns is the zero set of I.

Let /(/) = (((jp+1f)p+YιI)Eip+1)n. Then condition (3) is equivalent
to requiring that /(/) be a Lojasiewicz ideal at D, which is equi-
valent to I(/)z>mS (see V. 4.3 of [10]).

2* Proof of Theorem 1*3. We assume that / does not satisfy
condition (3). We will prove that two representatives of the Taylor
series Tf of / at 0 exist which are inequivalent.

We need a method to prove that two maps are inequivalent. If
they are equivalent, their singularity sets of each type are diffeomor-
phic. The strategy then is to find one representative whose singu-
larities of some type are very nice, and another whose singularities
of that type are demonstrably bad.

The nice representative will be found using a consequence of the
Multijet Transversal Extension Theorem (see [11]). First some
terminology and notation. The generalized diagonal in Rnr is
{(xlf , xr): XiΦXj for some iΦj}. Let (Rn){r) denote ^-(generalized
diagonal) and let rj

kf denote (jkf)r\(Rn){r). A deleted neighborhood
of 0 in (RnYr] means a neighborhood of 0 less those points, at least
one component of which is 0.

LEMMA 2.1. Given a formal power series z and a countable
collection of submanifolds of Rpr X Jk(n, p)r, there is a residual set
of representatives f of z for which rj

kf is transverse on a deleted
neighborhood of 0 to each of the submanifolds.

We have two devices for constructing bad representatives. The
first was proved in [11], and is used to construct a representative
having singular jets along a given sequence.

LEMMA 2.2. Suppose there exist wt in Rpr x Jk(n, p)r (k <£ co),
#i — (#ί, •••,#*) w Rnr converging to 0, and f in Ep such that qt —
wi ~ (jkf)r(%i) is flat along | x\ \ for each s and along \ x\ — x\ \ for
each s Φ t. Then there is a g such that Tg = Tf and {jkg)r(Xi) — wt

holds for a subsequence of {#J.

The second device is used to construct a representative which
fails to be transverse to some given singularity.
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LEMMA 2.3. Let {Sό} be a collection of manifolds whose union
is a closed set SczJk(n, p). Let f be a C°° map restricted to a closed
disk D centered at 0. Assume V = (iVT 1^ contains 0. Suppose
there is a sequence xt converging to 0 such that d(jkf(xi)1 S) is flat
along d(xi9 V). Let Dt be a closed disk centered at Xi such that
V, Dl9 D2, are mutually disjoint. Then there is a ϊji in the open
disk D°i and a g such that:

( i ) Tf=Tg and, on D - \jD°i9 g = /;
(ϋ ) Jkg(.Vi) £ Sj for some j and jkg is not transverse to Sd at yt.

Proof. By assumption, there exist Wi£jk, flat along d(xi9 V),
such that jkf{xx) + w^e S. Let pt be the polynomial of degree k
with jkp%{Xi) = wt. For each I ^ k, the Cι norm I p J ^ = i^i*, is
flat along d(xif V) — d^

Using Lemma IV. 3.3 of [10], there is, for each i, a C00 at such
that α* = 1 on a neighborhood of xi9 at = 0 off A0 and, for each
multi-index /, a constant C7 independent of i such that

\Dτat(x) II11

Thus, \aiPi\o is flat along cί, for each I. Thus, for any sequence
of numbers tt between 0 and 1, / + Σ ^%^Φi converges in the C°°
topology to some C°° map g. This </ satisfies (i).

Fix an i. Let gt denote the map g as defined above with tt = t
(hold the other tά fixed). jkgt(x) depends smoothly on both x and t.
Thus the set of t such that jkgt{D%) 0 S = 0 is open and contains 0.
Hence there is an s, 0 < s ^ 1, and a ^ 6 ^ such that

(iii) jkgt(Di) Π S - 0 for all t < s and jkgs{y%) e S, for some j .
However, by (i), ifc^s(A — A0) misses S. Thus yt is in A° If jkgs

were transverse to S3 at 2/<, then for each t near s there would be
some x in A0 with jkgt(x)eSά. But this contradicts (iii). •

First we describe the stratification to which we'll apply Lemma
2.1. By a stratification, we mean a locally finite partition into
embedded submanifolds. Let A - Diff (Rn, 0) x Diff (R*) act on Rpr x
Jk(n, p)r in the usual way.

From Mather's results in [6], it follows that there is a stratifi-
cation S^ of Rpr x Jk{n, p)r such that each stratum S is A-invariant
and semialgebraic, S/A is an analytic manifold each compoent of
which has the same dimension c, and π: S —> S/A is analytic. If
c > 0 and Q is an A-orbit in S, then a chart on S/A is given by
any sufficiently small direct transversal L to Q in S—in particular,
each A-orbit sufficiently near to Q in S intersects L exactly once.
If c > 0, we call S an A-moduli stratum.

Assume / does not satisfy condition (3). By Lemma 2.1, there
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is an h with Th = Tf such that, on a deleted neighborhood of 0,

rj
p+ίh is transverse to the above-defined Sf for r = 1, •• ,J> + 1

and j#1fc is transverse to the stratification of J\n, p) by rank.

Case A. h is not locally multistable on any deleted neighborhood
of 0.

In this case, there is a smallest r between 1 and p + 1 such that

rj
p+1h has unstable values on every deleted neighborhood of 0.

Suppose z = rj
p+1h(x) is in Uns. Since multitransversality to A-

orbits is equivalent to stability (of a germ on a finite set), and h
is multitransverse to all A-orbits except those in the A-moduli strata,
it follows that z lies in an ^.-moduli stratum S. Let x = {xu , xr).
By the minimality property of r, if r is greater than 1, then h
is stable at each xt (in fact at each proper subset of {xlf , #r})
and h(xt) has the same value for each i. It follows from a result
in [12] that the A-orbit Q of z has codimension larger than nr
(when r = 1, this is easy: an orbit is stable iff it has a transverse
representative iff it has codimension ^n). At any point y such
that rj

p+1h(y) e S, rj
p+1h is transverse at y to S; for a sufficiently

small neighborhood [7̂  of y, rj
p+1h(Uy) f]S is a manifold of dimension

less then the codimension of Q in S. Thus π(ίmrj
p+1hΓ)S) is nowhere

dense in S/A. Thus we can choose a w in S arbitrarily near z which
is inequivalent to every jet rj

p+1h(y).
There is a sequence xt in a deleted neighborhood of 0 which

converges to 0 such that 2t = rJ
p+1h(Xi) is unstable. Then we can

choose wt inequivalent to every jet rj
p+1h(y) such that wt — zt is flat

along |a?J| for all s and along \x] — x\\ for every s Φt. By Lemma
2.2, there is a map g such that Tg = Th and rj

p+1g(xt) = wc. Clearly
g is not equivalent to h.

If Case A doesn't hold, then h is locally multistable on some
deleted neighborhood of 0. Since / doesn't satisfy (3), there is a
sequence xt converging to zero such that (letting zt = (jp+1f)p+1(Xi))
d(zif Uns) is flat along d(xi9 D). This implies that d(zif Uns) is flat
along

where et is the minimum of | x\ — c \ + \ x\ — c \ over all s Φ t and
critical points c of /.

Let Wi be the nearest element of Uns to zt. Form w[eRpr x
Jp+1(n, p)r by omitting from Wi all noncritical components. Form
x'i and «I by omitting from xt and zt the corresponding components.
Define d[ by omitting from (*) all the omitted components of &,.
From now on, we write wt for tc?I, etc.
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Case B. \zt — wt\ is also flat along \x\ — x\\, for all s Φ t.
Then, by Lemma 2.2, there is a g such that Tg — Tf and

(jp+1g)r(χ.) = Wf Thus # and h are inequivalent.

Case C. For some s =£ t, \zt — Wt\ is not .flat along \x\ — x\\.
Then (passing to a subsequence of xt if necessary, and renum-

bering) \x\ — x\\ is flat along \x\\, \x\\ and |a?J — c,| + |α?< — c<|, for
some c,eC(/). Then |&J — c,| + |a?{ — c,| is approximately 2 |# — ct\
for i large. So | «J — wj | is flat along d(x', C(f)) and w\ is a critical
jet. By Lemma 2.3, there is a # with T<7 — ϊ 7 / such that g is not
transverse to the stratification of J\n, p) by rank on any deleted
neighborhood of 0. Thus g and h are inequivalent. •

3* Proof of Theorem 1Λ. We are given that / is finitely un-
determined and

(3.1) dfE; + f*E* 3 mΐE* .

Let g(χ, t) = /(a;) + ίw(a ), it flat, let F = (/, ί) and (? = (^, ί), and
let / α , ^α, Fa and Gα denote the germs of these maps at (0, a) (where
f(x, t) — fix) for all t). Via translation we identify the germs at
(0, a) with those at (0, 0). Thus g* - fa is in m%Eζ+1. We fix a
and henceforth will suppress the superscript α, writing F for Fa

9

etc.

Let mk

τ denote the germs which vanish to order k along the
ί-axis in either Rn+1 or Rp+1. Then m~En+1 = mψ and mpEp+1 = m?.

It is clear that d(g - f)E;+ι c (m?)p. If F is in J5tf+1, then
Γ(FoG - F O J P ) = 0 on the ί-axis, so V<>G - V<>F is in

We will later prove:

(3.2) dfE;+1 + F*E*+1 ID

Assuming this, we have

Our goal is to prove equality in (3.3). It then follows that
)p C dgE£+1 + G*Ef+1. Multiplying both sides by G*mΓ, we have

)p c dgG*mτE:+1 + G

Since / is °o-i£-determined, it follows from the remark immedi-
ately following Lemma 2.1 of [11] that (mτ)p a dg(mΐ)n + (?*(
Thus,



242 LESLIE C. WILSON

(m?)p c dgmn

τ + G*(mξ) .

Then the argument of Mather in §6.3 of [4] shows that gt is
equivalent to g0 = f for all t, and the diffeomorphisms depend smoothly
on t.

Proof o/3.2. Recall that we assumed / is finitely iΓ-determined.
Choose al9 , a8 in En whose projections into EJJf + (f*mp)En form
a real vector space basis. Since

(F*mp+1)En+1 z> f*(m,)En + tEn
+1

En+1/(Jf)En+1 + (F*mp+ι)En+ι is also generated as a real vector space
by the projections of alf- ',a8. By the Malgrange Preparation
T h e o r e m , En+1/(Jf)En+1 i s g e n e r a t e d b y alf - ,as a s a n F*EP+1

module. In particular,

n+1

(3.4) (Jf)En+1 + (F*Ep+1)En - En+

Since dfE:+1Z) JfE£+1 and

dfE:+1 + F*Eϊ+1

=> ( W + f*E*)F*E9+ι

ZD{m~yF*Ep+ι by (3.1),

it follows that

d/Bn"+1 + F * # ; + 1 => (m~Y(JfEn+1 + F*Ep+1En)

= (m~YEn+1 by (3.4) . D

Proof that equality holds in (3.3). Let ίG denote dgE%+1 and
wG denote G * ^ (etc. for F). Then (3.3) says

(3.5) tG + wGQtF + wF= tG + wG + (m°°Γy .

Since G is oo-if-determined,

(m?)' = (tG + G*mp+1E;+1)m?
{ ' } dtG + G*mp+1{tF + ^ ί 7 ) .

By (3.5) and (3.6),

w(τ) + G*mp+1(tF + wF) = tF +wF .

Let A = (tί 7 + wF)/tG. We will show: (3.7) A is finitely generated
as a G*EP+1 module. Then, by Nakayama's lemma,

(tG + wG)/tG = (tF + wF)/tG , so

tG + wG = tF + wF ,
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which is what we want to prove.
To prove (3.7), it suffices by Gaffney's Preparation Theorem (see

[2]) to show that (3.8) A is f .g. as an (Ff G)*E2p+2 module, and (3.9)
A/(G*mp+1)A has finite real dimension.

By (3.5), A/(G*mp+ι)A is isomorphic to

(tG + wG + (mψ)p)/(tG + G*mp+1(tG + wG + (m?)')) .

Since the denominator contains (G*mp+1)
p and tG + (G*mp+1)(m,τ)p

9

which contains (m?)p, the numerator is spanned by the denominator
and the constant vector fields, proving (3.9).

Next we check that (tF + wF)/tG is an (F, G)*J£2p+2 module.
Pick h in E2pW Then I = h(F, G) - h(F, F) is in m?. Since tF + wF
contains

h(F, G)(tF + wF) = ft(F, F)(£F + wF) + Z(ίF + wF)atF + wF .

£G is an En+1 module, hence an (Ff G)*E2p+2 module, and is a sub-
module of tF + wF by (3.5).

Finally, we must prove (3.8). wF is f.g. over F*Ep+ί9 hence
over (F, G)*E2p+2. tF is generated over En+1 by dt = 3//3α?,, i =
1, , n. tG contains JGE*+1. Thus

(tF + wF)ltG = itF+^ UEnJJG) ,

where the bar denotes the projection into the quotient space. Since
we assume / is finitely jfiΓ-determined, so are F and G. Thus
En+1/JG is finite as a G*EP+1 module by the Malgrange Preparation
Theorem. Thus A is finitely generated as an (F, G)*Eίp+2 module.

This completes the proof that equality holds in (3.3) and hence
completes the proof of Theorem 1.4. •

4. Proof of Theorem 1*5* The proof that "(3) implies (2)" in
Theorem 1.1 depends essentially on the coherence theorem for push-
forward sheaves. Merrien in [9] (summarized in [7] and [8]) has
developed a notion of semicoherence which plays a role for real
analytic maps and semianalytic sets analogous to that of coherence
for complex analytic maps and varieties. The two theorems below
were communicated to me by Merrien. They generalize Theorems
II. 7.1 and IV. 7.3 of [9], and are proved in the same way. Let έ?
and £? be the sheaves of real analytic and C°° functions on Rn (or
Rp; which will be clear from context). For any sheaf ^ let
denote its restriction to U and ^{ U) the ring of sections into
over U. If '^f = i? p A^ then ^{V) is given the quotient topology
of the compact-open C°° topologies, and ^€{JJ) is, by definition,
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THEOREM 4.1. Let f: U-+V, UaRn, VaRp, be analytic and
let ^ be an analytic semicoherent sheaf on U suck that

( i ) /1 Supp Λ€\ Supp ̂  —>V is proper,
(ii) for all xeU, ^x is a finite d?f(X) module. Then

is semicoherent over V.

THEOREM 4.2. Let f and ^ be as above. Suppose ^Sf is a
locally finitely generated sheaf on V and r: ^ ' —>f*(*s£) is a

morphism; ?: ^€"®^ F ξ?v -* f*(^t) ®<?v &v is the induced map.

Then Imτ(F) is closed m/*(^)®X &V(V) = / * ( ^ ® X &u)(V) =
( * ^ ® ^ &u)(U) (all three of which have the same topology).

Now let f0: Rn, 0-+Rp,0 be analytic and finitely i£-determined.
Then there are neighborhoods U and 7 of 0 in Rn and Rp and a
representative /: U -> V of f0 such that / and ^ f = ^S/df^S satisfy
the hypotheses of Theorem 4.1. Let ^ £ " = ^ and r: *^# ' —> f*^
be the map induced by /*: έ?$ -> ̂ . Then Im τ(V) is the projection
of f*&'(V) into &*(U)ldf&\U) (note that df^n(U) is closed in

by VI. 1.5 of [10]). Theorem 4.2 implies that

(4.3) dfϊ?n(U) + /*gf*(V) is closed in ξ

Now assume that /0 in addition satisfies condition (3a) (as a
germ). Then /, U, and V of the above paragraph can be chosen
so that, for any finite SaU — {0}, the germ of / at S is stable.
Let ϊ?p(U)z = {0eg**(ϊ7):flr = 0 in a neighborhood of 0}. Then
ϊ?p(U)* c df&n(U) + f*&p(V); this is proved by a partition of unity
argument just like that on pp. 316-317 of [5]. Clearly 8^(17)* is
dense in the set of mappings infinitely flat at 0. Thus the latter
are all in dft?\U) + f*&*(V). Passing to germs, m^EpadfQE: +
fΐEp. •
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