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AUTOMORPHISMS AND NONSELFADJOINT
CROSSED PRODUCTS

KICHI-SUKE SAITO

We are interested in the invariant subspace structure
of the nonselfadjoint crossed product determined by a finite
von Neumann algebra M and a trace preserving automorphism
α. In this paper we investigate the form of two-sided in-
variant subspaces for the case that a is ergodic on the
center of M.

1. Introduction* In this paper, we consider the typical finite
maximal subdiagonal algebras which are called nonselfadjoint crossed
products. These algebras are constructed as certain subalgebras of
crossed products of finite von Neumann algebras by trace preserving
automorphisms. Recently, McAsey, Muhly and the author studied
the invariant subspace structure and the maximality of these algebras
(cf. [4], [5], [6], [7]).

Let M be a von Neumann algebra with a faithful normal tracial
state τ and let a be a *-automorphism of M such that τ°α = r. We
regard M as acting on the noncommutative Lebesgue space L2(M, τ)
(cf. [10]) and consider the Hubert space

Π - {/: Z >L\M, τ)\Σ\\f(n)\\l < <*>}

which may be identified with l\Z) (x) L\M, τ). Let 2 (resp. 31) be
the left (resp. right) crossed product of M and a, and let £+ (resp.
9t+) be the left (resp. right) nonselfadjoint crossed product of S
(resp. 3t) (cf. §2). In [6], we showed that the following three
conditions are equivalent; (i) M is a factor; (ii) a conditioned form
of the Beurling-Lax-Halmos theorem is valid; and (iii) 2+ is a maximal
<7-weakly closed subalgebra of S. Furthermore, in [7], we proved
that a fixes the center $(M) of M elementwise if and only if the
Beurling-Lax-Halmos theorem is valid. However, if a does not fix
the center Q(M) of M elementwise, then the form of invariant
subspace is very complicated. Considering the reduction theory with
respect to the abelian subalgebra {z e Q(M): a(z) = z} of &(M), it
seems to be sufficient to investigate the case that a is ergodic on
3(M). Therefore, our aim in this paper is to study the invariant
subspace structure of L2 when a is ergodic on £>(M). We now
suppose that a is ergodic on S(Λf). Then every two-sided invariant
subspace of U which is not left-reducing is left-pure, left-full,
right-pure and right-full (Theorems 3.2 and 4.5). Further, if S is a
factor, then every proper two-sided invariant subspace of U is of
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the form {feI2: Σt=_~ekf(n) = f(n), neZ}, where {*»}£,_„ is a
family of mutually orthogonal central projections of M such that
Σn=-ooen = 1 and a{en) <̂  Σίί-«>e* (Theorems 3.3 and 4.6). However,
if 3(M) is atomic and there is some k > 0 such that ak is inner,
then we present a two-sided invariant subspace of L2 which is not
the above form (Example 4.7). In case M— L°°(X), McAsey in [4]
and [5] studied about these results.

In the next section, we define the nonselfadjoint crossed
products. In §3, we consider the case that &(M) is nonatomic.
Finally, in §4, we study two-sided invariant subspace of L2 when
&(M) is atomic.

The author would like to thank the referee for his valuable
suggestions.

2 Preliminaries. We suppose that M is a von Neumann algebra
with a faithful normal tracial state τ and a is a ^-automorphism
of M which preserves τ; i.e., τoa = τ. Let L2(M, τ) be the noncom-
mutative Lebesgue space associated with M and τ in Segal [10]. We
denote the operators in the left regular representation of M on
L\M, τ) by lx, xeM, and those in the right regular representation
by rx. Put l(M) = {lx: xeM} and r{M) = {rx: xeM}. Since τoa = τ,
there is a unitary operator u on L\M, τ) induced by α. To construct
a crossed product, we consider the Hubert space 12 defined by

fiZ >I2{M, τ) >||i<~f
where |[ |jl is the norm of I2(M, τ). For xeM, we define operators
Lx, Rx, Lδ and Rδ on L2 by the formulae (Lxf)(n) = xf(n), (Rxf)(n) =
f(n)a\x), (Lδf)(n) = w/(n- 1) and {Rδf){n)f{n-l),geL\ neZ. Put
L{M) = {Lx:xeM} and R(M) = {.B̂ : a? e ilf}. We set 8 = {L(M)f Lδ}"
and 31 = {R(M), Rδ}" and define the left (resp. right) nonselfadjoint
crossed product 2+ (resp. 31+) to be the σ-weakly closed sub-
algebra of 2 (resp. 31) generated by L(M) (resp. R(M)) and Lδ

(resp. Rδ).

The automorphism group {βt}teR of S dual to a in the sense of
Takesaki [9] is implemented by the unitary representation of R,
{Wt}teBf defined by the formula (Wtf)(n) = e2πintf(n), feL2; that is,
βt(T)= WtTWt*> Te2, by definition. Similarly, we define βt(T) =
WtTW*, Te3t. It is elementary to check that the spectral resolu-
tion of {Wt}teB is given by the formula Wt = ^^-^e27tintEny where
15̂  is the projection on L2 defined by the formula

|0

(0 , kΦ n
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We also define the integral
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εn{T) = Te2.

Furthermore, we define H2 = {/ 6 L2: f(n) = 0, w < 0}. We refer the
reader to [6] and [7] for discussions of these algebras including
some of their elementary properties.

DEFINITION 2.1. Let 3K be a closed subspace of ZΛ We say-
that m is: left-invariant, if &+Wl Q Wl; left-reducing, if S2JI c SK;
left-pure, if ΓϊnezLM = {0}; and left-full, if \/nezLm = L\ The
right hand versions of these concepts are defined similarly, and a
closed subspace which is both left and right is called two-sided
invariant. If Tt is both left-reducing and right-reducing, Wl is said
to be two-sided reducing.

Throughout this paper, we suppose that a is ergodic on the
center $(M) of M. By the ergodicity of a on 3(Λf), 8(M) is either
nonatomic or atomic. Therefore, in §§3 and 4, we consider the
invariant subspaces of L2 in two cases, respectively.

3* Case &(M) is nonatomic* In this section we investigate
the structure of two-sided invariant subspaces of L2 for the case
when S(M) is nonatomic. To prove this, we need the following
lemma. We believe that it is known. But, for completeness, we
have included a proof.

LEMMA 3.1. {L(ikf), R(M)}' = {L(3(M)), {En}ϊ^}".

Proof. On L2, which we identify with a direct sum of copies
of L2(M,τ), the operators Lx and Rx, xeM, have these matricial
representations;

0"

0

and
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0

0
Any operator A in {L(M\ R{M)}r is in L(M)r and so has a matricial
representation A = [rXn w] for suitable xni7n in Λf. In order for A
to commute with R(M), it is necessary and sufficient that for each
pair (n, m), the equation an{y)xn,m — xn,mam(y) holds for all y in M.
This is equivalent to the validity of the equation

(3.1) V<*-n(xn,J = oc-n(xntm)am~n(y) , for all y in Λf.

If n = m, #n)7l lies in 3(ikf). Suppose that n Φ m and #ra,m =£ 0. Let
g be the central support projection of a~n(xn>m). Since a is ergodic
on 3CM), it is well-known that an is freely-acting on 3(M) for nΦO.
Thus there exists a nonzero projection p e 3(-M") such that am~n(p)p =
0 and 0 < p ^ q. By (3.1), pα"n(a?nfJ = a-n(xntm)am~n(p) = 0. This is
a contradiction and so #w,m = 0. Therefore {L(M), R(M)}' c {L(&(M))t

{En}™^_J\". The converse is clear. This completes the proof.

By [5, Corollary 4.3], every two-sided invariant subspace which
is left- (or right-) reducing is two-sided reducing. Therefore, since S
is a factor by the ergodicity of a on 3(M), such a space is {0} or ZΛ

THEOREM 3.2. Every proper two-sided invariant subspace of L2

is left-pure, left-full, right-pure and right-full.

Proof Put 2RX = f|ϊ=i £?2ft and let P be the projection of L2

onto Sftj. Since 20̂  is left-reducing, P e S ' = 31. Since 3Rλ is right-
invariant, RδPRf ^ P and PeR(M)'. By the finiteness of 31, P 6
£ n 31 = 3(8). Since S is a factor and P Φ 1, ίΰt1 = {0}. The rest
are analogously proved.

Let {en}SU-co be a family of mutually orthogonal central projections
in M such that Σϊ=-o- β» = 1 and α(en) ^ Σmt1-. em. Put

fc-oo) - j /eL 2 : Σ for all

Then it is clear that L2({en}̂ _c«) is a two-sided invariant subspace
of Lr which is not left-reducing. Conversely, we have the following
theorem.
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THEOREM 3.3. Suppose that S(M) is nonatomic. Then every
proper two-sided invariant subspace of L2 is of the form L2({en}n=-oo)
where {en}«=_oo is a family of mutually orthogonal central projections
in M such that Σn=-co en = 1 and a(en) ^ Σmt-co em.

Proof. Let Wfl be a proper two-sided invariant subspace of L2.
By Theorem 3.2, SOΪ is right-pure. Put % = Έl θ Λδ2K and let P
(resp. P^) be the projection of L2 onto § (resp. 331). It is clear that
P e {L(M), R(M)Y. By Lemma 3.1, there is a family {en}~=_oo of central
projections of M such that (Pf)(n) — enf(n). Thus we have for all n,

enf(0) = en(Rif)(n) = (PRϊ/)(n) = (R

and so, for every m, w(m ^ w),

= {{RΓPR7){RΓPmf)Φ) = 0 ,

because RfnPR" and RfmPRf are orthogonal. This implies that eΛeΛ =
Q,mΦn. Further, since (R\PRff)(ri) = en_kf(n), for all & and w,
we have

= Σ^βfc/Cw).

Hence feίΰlii and only if f(n) = Σ ^ — ekf(n). Now, if / e L2, then

{LtP*Lff)(n) = u(P,L*f)(n - 1) = u Σ ek(Lff)(n - 1)
& = — oo

n - 1 n - 1

= w Σ eku^f{n) = Σ oc{ek)f(n) .
Since L,SK S SW, this implies that ΣK1— α(e*) ^ Σ^=-oo e*. Since α is
ergodic on 3(2R) and α(Σ:=-. βn) ^ Σ«=-oo βn, Σ^-« βfc = 1. Therefore
2K = L2({en}~=_oo). This completes the proof.

4 Case 3( W) is atomic* In this section we investigate the
structure of two-sided invariant subspaces of L2 for the case when
3(λf) is atomic. We suppose that a is ergodic on &(M) and Q(M)
is atomic. Since M is finite, there is a family {pn}%=o of mutually
orthogonal minimal projections in BCikf) such that Σ S pΛ = 1, &(pn) =
^n+1> ^ = 0,1, , N — 2, and a(pN_^ = p0. Hence Λfpw is a factor
and α*ΛΓ|JfPn is a *-automorphism of Λfpn. In this section we keep
the notations.

To prove Theorems 4.5 and 4.6, we need the following lemmas.
As may be well-known, we include them for completenss in our
version. At first, we have the following lemma easily and so the
proof will be omitted.
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LEMMA 4.1. The following conditions are equivalent.
( i ) ak is outer for all k Φ 0;
(ii) for every n = 0, 1, , N — 1, akN\Mp% is outer for all kφO;

and
(iii) for some n, akN\MPn is outer for all k Φ 0.

As in Lemma 3.1, we have the following lemma.

LEMMA 4.2. If ak is outer for all kΦO, then {L(M), R(M)}' =
U {EX^X.

Proof. As in the proof of Lemma 3.1, take A = [rXnm] e L(Λf)'fΊ
R(M)'. Then yorn(xn,J = a~\xn>m)am~\y\ yeM. If ή - m, αn,n e
S( Λf) and, it m — n Φ kN, then #re,m = 0. Thus, suppose that xn>m Φ
0, m — n = kN. Put z = α"*̂ (fl5«,»+fĉ ) Then there is a j such that
^P3 ^ 0 and so yz = zakN(y), y e Mpd. Hence lylz = lzvlyv*, where v =
uhN, and so Zfi; 61{M)' = r(M). Since (l.vXhv)* e Z(Λf) n r(Λί) - l(3(M))>
zz*e3(M). Hence we have zz*pd = ||«Py||2Pi. If w is then chosen
w — zPil\\zPs\\f t ^ e n w is a partial isometry which is an element of
Mpj. Since Mp3- is finite, tc; is a unitary operator when viewed as
an element of Mps and implements a"hN\Mpr By Lemma 4.1, this
is a contradiction and so z = 0. This completes the proof.

It is well-known that if Λf is a factor and α* is outer for all
k Φ 0, then S is a factor. In this case, the converse is true and
we have the following.

LEMMA 4.3. ak is outer for all k Φ 0 if and only if 8 is a
factor.

Proof. (<—). If akN is inner for some k Φ 0, then there is a
unitary operator veifef such that akN(x) = vxv*. Thus we have
va(x)v* = αfciNΓ+1(α0 = α(/y)α(α;)α(/y*). Hence we have that, for all
n, an(v) and v induce the same automorphism by conjugation. So
^aniυ)LfχLa^(v*) = La

kNiχ)> hence LxLan{v*) = La%{^)LakNlx). F r o m LfLxLδ =

Lβ-i(.Jf LakN{x)L
kN = Irί^Ir.. Thus LxLa«^LkN = Lu*mLa*»wIJl* =

La«wI/a*Lβ and Len(^Li*eL(Jtf)\ Since L.L.L* = Lα(a;), for all α e
ikf, we have LkNLxLfkN = LαkN{x). Since αkN(v) = v, we have also
αfcΛΓ(αn(v)) = αw(v) and αfciV"(αn(v*)) = αn(t;*). Hence L ^ commutes with
Lα^(ί;) and L^^. Put w — vα(v) αfcΛΓ~"1(i;). Since α(w)=w, we have
L^(LiN)kNeL(My. On the other hand, since α(w*) = w*, Lw* com-
mutes with Lδ and Lw*(LkN)kN commutes with Lδ. Thus we have
Lw*(Lk

δ

N)kNe3(%). Therefore S is not a factor. This completes the
proof.
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(->). Suppose that ak is outer for all k Φ 0. Take A e 3 ( 8 ) c
L(M)' Π R(M)'. By Lemma 4.2, there is a sequence {#n} e S(M) such
that A = [1XJ. Since A commutes with Lδ and i?3, a?n = x0 and α(#0) =
x0. Since α is ergodic, A = λl for some λ. Therefore 8 is a factor.
This completes the proof.

Next we investigate the center of crossed products when ak is
inner for some k Φ 0.

LEMMA 4.4. Suppose that 8 is not a factor. Then there are a
unitary operator veM and k > 0 such that 3(8) = {LυL

kN}".

Proof. Put βt — /3ti3U). Then {βt}teB is a cx-weakly continuous
one-parameter group of *-automorphisms of 3(8) with period 1 and
is ergodic on 3(8) in the sense that, if Te3(8) such that βt{T) =
T,teR, then T = λl for some complex number λ. For every %eZ,
put Kn=; {Te3(2): βt(T) = e2π[ntT,teR}. Then it is clear that
e«C8(S)) = JBΓn. Let Zx = {neZ:KnΦ {0}}. We claim that Z, is a
subgroup of the additive group Z. Let jΓn be a nonzero element
in Iζ, such that | |Γ n | | = 1 for a fixed neZt. Then JtTn1 TnT% is
nonzero elements of Ko (cf. [9, Lemma l(a)]). Since {βt}tBR is ergodic
on 3(8), Tn is a unitary operator. By [9, Lemma l(a)], we have
Kn = CTn for every neZ^ Therefore, Zγ is a subgroup of Z. Let
m be the smallest positive integer in Zx. By the group property
of Z l f we have ^ = mZ. Hence, by [9, Lemma l(a)], Knm = CΓ^,
^ e Z . By [9, Theorem 1], 3(8) is generated by Tm. Since εm(8) =
L{M)Lf (cf. [3, Corollary 4.3.2]), there is a unitary operator v in
M such that Tm = L,L?. Since Γm e 3(8), we have, for xeM,

La^{x) - L?LβLΓ - L*TmL.(L*TJ* = L^LβL. - L ^ v

and so αw is inner. Since an is not inner for all n Φ jN, there is
a k > 0 such that m = kN. This completes the proof.

The following theorem is proved by McAsey [5] in case M —
l°°(X), (X) = {xo, xl9 , ̂ _i}. We present the simple proof in more
general setting.

THEOREM 4.5. Every two-sided invariant subspace which is not
left-reducing is left-pure, left-full, right-pure and right-full.

Proof. If ak is outer for all k Φ 0, by Lemma 4.3, 8 is a factor.
Then we have this theorem as in the proof of Theorem 3.2. Suppose
now that 8 is not a factor. Let 3ft be a two-sided invariant subspace
which is not left-reducing and let P be the projection of L2 onto
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Πn>0L
n

δm- Put B= {TeZiTMam}. As in the proof of Theorem
3.2 and [6, Theorem 4.1], PeBn 3(8). Since 3(8) Π S+ is a maximal
σ-weakly closed subalgebra of 3(8) ([6, Theorem 2.3]), we find 3(8) Π
B = 3(8) n »+, in which case P = 0, or 3(8) Γ\ B = 3(2). But if 3(8)
were contained in B, by Lemma 4.4, LυLfkN eB for some unitary
veM and some & > 0. Since ffll is left-invariant, L? e B and so 5 =
8. This is a contradiction. Therefore we conclude once more P = 0
and so 3JΪ is left-pure.

Next, let P be the projection of U onto n*>o #?3ft Put B =
{Ten: TWlczm). As before, Pe8(β)f)B and we find that 3(8) Π
B = 3(8) Π 31+, in which case P = 0, or 3(8) f l δ = 3(8). But if 3(8)
were contained in B, then there exists a unitary veM and A > 0
such that #„#?** e 3(8), as in the proof of Lemma 4.4. Thus B =
3t. Therefore 3ft is right-reducing. By [6, Corollary 4.3], ffll is two-
sided reducing. This is a contradiction. The rest is analogously
proved. This completes the proof.

As in §2, we define L2({enfc_J = {/ 6 U: Σ ϊ = — emf(n) = f(n), for
all n} for a family {en}"=-«> of mutually orthogonal central projections
in M such that Σn=-oo en = 1 and α(en) ^ Σϊt-oo em. Then it is clear
that L\{en}n=-oo) is a two-sided invariant subspace of L2 which is not
left-reducing. Observe that all but finitely many of en are zero.
Conversely, we have the following theorem by Lemmas 4.2, 4.3 and
Theorem 4.5.

THEOREM 4.6. Suppose that ak is outer for all kφQ. Then
every proper two-sided invariant subspace of L2 is of the form
£2({0jn=-oo) where {en}~=_oo is a family of mutually orthogonal central
projections in M such that Σn=-«, en = 1 and a(en) ^ Σmΐ-oo em.

Finally, if 8 is not a factor, then Theorem 4.6 is not valid.
That is, there is a two-sided invariant subspace of L2 which is not
of the form L2(K}Γ=-oo).

EXAMPLE 4.7. Suppose that 3(8) = {LvL
k

δ

N}" for some unitary v
in M and some k > 0. Let θ be a finite Blaschke product with zeros
{Xu λ2, , λ j such that 0 < |λ,| < 1. This θ has the form

Let V = θ(LvL
k

δ

N) be the unitary operator in 3(8) defined by θ and
the operator LυL

k

δ

N via the functional calculus. Let ΣΓ=o &%& be the
power series for θ. Since the power series converges absolutely,
the series ΣΓ=o α* (LvL

kNY converges in norm to the operator V.
Observe that α0 Φ 0 and F e S , . Put SK = VH2. It is clear that 9ft
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is a two-sided invariant subspace of H2 which is not left-reducing.
We now suppose that 23Ϊ is of the form L2({βn}«=-oo). Since VfeW,
feH\ we have Σ?=-~e«(V/)(m) - (F/)(m), (F/)(-m) = 0, m > 0,
and

(F/XO) = Σα,((Wn7)(0) = ±anvV»f(-nkN)

- αo/(O) .

Thus this implies that ΣSU-«> e» = 1 and Σm=-°°e™ — 0. Therefore
e0 — 1 and en — 0, n Φ 0. Hence 2K = H2 and so it is clear that F * 6 S+

which is clearly impossible for V constructed above. Hence SK Φ
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