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BEST SIMULTANEOUS DIOPHANTINE APPROXIMATIONS
II. BEHAVIOR OF CONSECUTIVE BEST

APPROXIMATIONS

J. C. LAGARIAS

It is well-known that the best Diophantine approxima-
tions to a single real number θ are exactly the convergents
of the continued fraction expansion of θ. The properties of
one-dimensional best approximations that make this true are
shown not to hold in general for best simultaneous Diophantine
approximations to a e Rn when n ^ 2. They do hold in a
weak form for all badly approximate vectors a e Rn.

1- Introduction* In this paper we study properties of the set
of best simultaneous Diophantine approximations to a vector ae Rn

with respect to a norm || || on Rn. We recall the basic definitions.
For a = (al9 , aN) and a denominator q > 0 the quantity

(1.1) δq = δq(a) = M I N || (qa, - pL, - ,qan- p n ) \\

measures the degree of approximation to a possible by rationals of
denominator q. The best simultaneous approximation denominators
(BSAD's) qk = qk(a) to a with respect to the norm || || are inductively
defined by q1 = 1 and by qk being the least positive integer such that
δqk < δαfc_1. The corresponding best simultaneous approximations
(BSA's)ι?fc are the integer vectors

(1.2) vk = vk{a) = (qk, pk,u , pkj

in Zn+ι where (pktl9 •• ,2?ΛfJ attains the minimum in (1.1) for qk.
(In case the minimum in (1.1) for a BSAD is attained by more than
one such veZn+1, we select one such in (1.2) arbitrarily. There
are only finitely many possible BSAD's for which this may happen,
c.f. Proposition 2.1. In general we call any vector v = (qf pu , pn)
minimizing (1.1) an approximation vector and

(1.3) R(v) = (qa, - pl9 , qan - pn)

its approximation remainder vector.

It is well-known that the best approximations to a single real
number θ are exactly the convergents of the continued fraction
expansion of θ (Lang [6], p. 10). The following properties of these
(one-dimensional) best approximations form the basis of the continued
fraction algorithm.
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( i ) The determinants

(1.4) Dk = = = ± 1
^fc+1 Qk+1 Pk+1

(ii) If i;fc_x, vk are two successive best approximation vectors,
then

(1-5) vk+1 = αι?fc + i ? ^

for some positive integer α.
In this paper we consider to what extent analogues of these proper-

ties hold for best simultaneous approximations in higher dimensions.
Higher-dimensional analogues of property (i) involve the N + 1

by N + 1 kth. best approximation matrix defined by

(1.6) Mk = Mh(a,

Qk PkΛ

Pk+1,1

Pk+n

Pk+l,n

Λk+n Pk+nΛ * ' ' Pk+n,n-

and the kth best approximation determinant defined by

(1.7) Dk = det Mk

In §3 we show that there is a two-dimensional analogue of
property (ii), which is related to the case that three consecutive
best approximation vectors vk, vk+lf vk+2 are linearly dependent, i.e.,
when Dk — 0.

THEOREM 1.1. For any aeR2 — Q2 and any norm on R2,
there is a k0 — fco(|| ||) such that for k ̂  k0 the following are equi-
valent.

( i ) A = 0.
(ii) vk = αp*_i + ι̂ fc-2 /or som^ positive integer a.

For the sup norm \\ - \\s we may take k0 = 1.

The absence of an exact higher-dimensional analogue of the
continued fraction algorithm is reflected in the failure of property
(i) in all higher dimensions. In §4 we prove the following result
concerning zero determinants.

THEOREM 1.2. For any given norm || || on Rn with n ^ 2 there
exists an aeRn with dimρ [1, al9 , an] — n + 1 such that for any
positive integer L there exists an integer k (depending on L) such
that the best approximation determinants of a with respect to || ||
have the property
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(1.8) Dk = Dk+ι = . . . - Dk+L - 0 .

The proof of Theorem 1.2 actually shows in addition that we
can force the corresponding best approximation matrices Mkf Mk+U

••-,Mk+L in (1.8) to all have rank exactly 2. Concerning nonzero
determinants, we show in the two-dimensional case for the sup norm
that arbitrarily large determinants can occur.

THEOREM 1.3. Let || | | s be the sup norm on Rz. There exist
ae R2 having the property that for any positive integer L there exists

( i ) an integer k such that

Dk = Dk+1 = . . . = Dk+L - 0 .

(ii) an integer m such that

\Dk\>L.

Theorems 1.2 and 1.3 show that higher-dimensional analogues of
the continued fraction algorithm must include other approximations
than just the best simultaneous approximations with respect to a
fixed norm || ||. General discussions of multi-dimensional continued
fraction algorithms and their properties are given in Brentjes [1]
and Szekeres [8].

In §5 we consider the behavior of best simultaneous approxi-
mations to badly approximable vectors. A vector a in RN is said
to be badly approximable with approximation constant C if there
are only finitely many solutions to the inequality

(1.9) MAX\qat-pi\<C\q\-1'*.

The main results of § 5 show that badly approximable vectors cannot
exhibit the pathological behavior of the vectors a constructed in
Theorems 1.2 and 1.3. Applied to the two-dimensional case with
the sup norm we obtain the following result.

THEOREM 1.4. Let a be a badly approximable vector in R2 with
approximation constant C. For the sup norm || ||8 on R2 there are
only finitely many solutions k to both of:

( i ) |Z>fc| > L with L = 12C~\
(ii) Dk = Dk+1 = = Dk+L = 0 with

L = [5 + 10|logC|] .

More general theorems are stated in § 5.
Certain of the results of this paper were announced in [4],

which contains relevant numerical examples.
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2 Preliminaries* We collect here some preliminary results
about norms and best approximations.

The first fact is that an arbitrary norm || || on Rn is compatible
with the sup norm || ||β on Rn

| |x | | . = MAX |s,I

in the sense that there are positive constants cx and c2 (depending
on || ||) such that

(2.1) C l | | * | | £ | | * | | . ^ c 2 | | * | | .

The norms || || and λ| | || for λ > 0 determine the same sets of best
approximation vectors. Consequently we may deal without loss of
generality in the rest of this paper with scaled norms having the
properties

( i ) xeZn and * =£ 0 = > || * || ^ 1.
(ii) There is an xeZn with | | * | | = 1.

The Euclidean and sup norms are scaled norms.
We also recall Dirichlet's theorem.

DIRICHLET'S THEOREM. For any aeRn and any M there is a
denominator q <Z M and integers pt such that

(2.2) MAX I qat - Pi | < ([M"17*])-1 .

Dirichlet's theorem implies that for sup norm best simultaneous
approximation denominators q to a given α,

Γ1 / n(2.3) δq(a) < (

We also recall ([5], Lemma 2.1) a simple result which shows that
best approximation vectors are well-defined except possibly for a
few small denominators.

PROPOSITION 2.1. (i) For any norm || || on Rn and any ε > 0
there is a bound kQ = ko(\\ ||, e) such that

δq(a) < ε

holds for all aeRn and all best approximation denominators q to a
with respect to || || for which q > fc0.

(ii) For a scaled norm || ||, a vector aeR71 and any deno-
minator q for which

8,(a) < i- ,
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there is a unique approximation vector v — (q, plf , pn) with
denominator q.

3* Z-linear dependence relations* As a first step in analyzing
the behavior of consecutive best approximation vectors, we consider
the restrictions that Z-linear dependencies among [1, alf , an] impose
on the best approximation vectors to α, and we show there are
restrictions on the form of Z-linear dependencies that may occur
among consecutive best approximation vectors.

We use a result of Mack [7] to show that any Z-linear de-
pendence among [1, au , an] is satisfied by all sufficiently large
best approximation vectors v(qk). This is a property not only of
best approximation vectors, but of all sufficiently good approxima-
tions. We say a vector v = (q, plf , pn) is a X-good approximation
provided

(3.1) MAXlqcίi-Pil <X\q\-lfn

Dirichlet's theorem implies that all sup norm best approximation
vectors are 1-good approximations. Then (2.1) implies that all best
approximation vectors to a norm || || are λ-good with X = cϊ1.

THEOREM 3.1. {Mack). Suppose the components of aeRn satisfy
the Z-linear dependence relation

(3..2)

where at

(3.

If

(3.

.3)

' (Q, PI,

.4)

then

: 6 Z. Set

A

• , Pn) is a X-good

% = Σ ditti

approximation to a for which

q > (nAX)n

(3.5) aoq = Π UiPt

Proof. Let (#, p l f , pn) be an approximation vector satisfying
(3.4) and find keZ so that

n

Σ UiPi — UQQ. + k .

Subtracting q times (3.2) from this equation yields
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(3.6) Σ <*ΊPI ~ QOίi) = k .

Using (3.1), (3.3) we have the bound

(3.7) Σ UiiPi - ^ nAλq~1/n .

The hypothesis (3.4) then gives

n

Σ ajj>t -

Since keZ in (3.6) this forces k = 0, establishing (3.5).
COROLLARY 3.2. Le£ dim^ [1, al9 , an] = r, so

module R of ZΊinear dependence relations among [1, alf

rank n + 1 — r. Let rlf , rn+1_r be a Z-basis of R {which exists
because R is a subgroup of the free abelian group Zn+1) and write

rt = (α<0, ail9 •••, ain) .

Set

A =

[*// ιv = (Q, Pi, , Pn) is a X-good approximation with

q > (nAX)n

then w satisfies the entire module of relations R. Π

COROLLARY 3.3. // dimρ [1, alf , an] = r with r ^ 2 £/̂ w /or
α î/ worm || || on Rn there is a k0 — kQ(a, || ||) ŝ cfe that for all
k > kQ, the best approximation matrices Mk have

rank* Mk<>r . •

Corollary 3.3 allows the possibility that for r ^ 3 there can
be infinitely many k such that rank* Mk < r for a given a. We
believe the converse of Corollary 3.3 is true, and state this as a
conjecture.

CONJECTURE 3.4. When aeRn — Qn, then the following are
equivalent.

( i ) d i m j l , α l f . . . , α n ] ^ r .

(ii) There is a k0 = fco(α, || ||) swcfe ίfcαί /or k^k0,
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(3.9) rank* Mk <> r .

We will prove this conjecture when r = 2.

THEOREM 3.5. When aeRn — Qn, the following are equivalent.

(3 10) ( i )

( i i ) There is a k0 = (α, || ||) sue/?, £ftα£ /or k ^ k0 ,

(3.11) rank* ikffc^ 2 .

REMARK. Equality must hold in both inequalities in (i) and (ii)
above. This is true for (i) because aeRn — Qn. For (ii) this is true
because two consecutive best approximation vectors vk, vk+1 are linearly
independent over R. To see this, if vk+1 = Xvk for some λ > 1, then

dqk+1 = \\R(vk+1)\\ = | λ | \\R(vk)\\ > \\R(vk)\\ = δqjc

a contradiction.

Proof of Theorem 3.5.

( i ) -> ( i i ) This is Corollary 3.3.
( i i ) —> ( i ) By (2.11) and the remark above for k ^ k0,

d i m ρ (vk, vk+1) = dimρ(i7Λ, ι?Λ + 1, ι?A+2) = 2 .

Hence the Q-vector space W spanned by [vk+1, vk+2] is a subspace of
that spanned by [vkf vk+1], so by dimension counting they are identical.
Hence W = [vkf vk+1] for all A? ̂  A?o. Let F denote the Q-vector space
orthogonal to W, of dimension n — 1. Then iϋ = 7Π Z is a free
Z^-module of rank n — 1, consisting of the Z-linear dependence
relations satisfied by all vk for k ^ fco Then

satisfies all the relations of R. But

Km— υh = (1, α2, •••, αn) .

Consequently [1, a19 , α J also satisfies all the relations of i?. Since
i£ has rank n — 1,

d imj l , αx, . . . , α j ^ 2 . Q

We next consider Z-linear dependencies among best approximation
vectors a in the two-dimensional case. In order to prove Theorem
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1.1, we first prove the following lemma, wnich is analogous to Lemma
2.1 of Davenport and Schmidt [3]. (See also [2].)

LEMMA 3.6. Let aeR2 — Q2 and || || be any norm on R2. There
is a k0 = ko(\\ ||) such that for k ^ k0 any two consecutive best
approximation vectors vk and vk+1 are a Z-basis for the Z-vectors in
the Q-vector space they span.

Proof. We may assume || || is a scaled norm. Suppose vk9 vk+1

are not a Z-basis, so there exist rational ay β not both integers such
that

(3.12) w = (w0, wlf w2) = avk + βvk+1

has II? e Zs. By translation we may assume | α | 5* 1/2, | β | ^ 1/2, not
both zero. The denominator w0 satisfies

(3.13) \wo\ ^ \a\qk

On the other hand by the triangle inequality

29k 2 + ι k *

Now (3.13) and (3.14) contradict vk+1 being a best approximation
vector, provided \wo\ Φ 0. Suppose w0 = 0, so that R(w)eZn+1. By
the remark after Theorem 3.5, vk and vk+1 are U-linearly independent,
hence w Φ 0 by (3.12). Since || || is a scaled norm,

(3.15) | | Λ ( w ) | | ^ l .

Now choose kQ = kQ(\\ ||) using Proposition 2.1 so that δk < 1 for all
k > k0. Then (3.14) and (3.15) contradict each other, completing the
proof. •

REMARK. For the sup norm || | | s on R2 we can take fco(|| [\s) =
1 in Lemma 3.6.

Proof of Theorem 1.1.
(i i) —> ( i ) Immediate, since rank Mk <̂  2.
( i ) — > ( i i ) By the remark after Theorem 3.5, vk and vk+1 are

linearly independent over Q, so Dk = 0 implies vk+2 is a Q-linear
combination of vk+1 and vk. By Lemma 3.6, for k ^ fco(|| ||) we can
write vk+2 as a Z-linear combination

(3.16) vk+2 = αr fc+1 + δι?fc .
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By the same reasoning vk can be written as a Z-linear combination

(3.17) vk = cvk+ι + dvk+2 .

Substituting this in (3.16) gives

(3.18) vk+2 = (α + bc)vk+1 + bdυk+2 .

Since vk+2, vk+1 are Q-linearly independent, this forces bd = 1 so b =
± 1 and we have

(3.19) vk+2 =

To complete the proof we must show

(3.20) vk+2 = avk+1 - vk

cannot occur. Suppose (3.20) were true. Then qk+2 = aqk+1 — qk>qk+ι

so that a ^ 2. Consider

W? = (Wo, Wu W2) = Γ Λ + 1 - Γ fe .

The denominator ^ 0 satisfies

(3.21) 0 < w0 = ̂ &+

Also

(3.22) I* = l r 4 + t

Hence

(3.23)

Then (3.21) and (3.23) contradict ι?A+1 being a best approximation
vector. •

4* Best approximation determinants* We give constructions
of vectors exhibiting various pathological behaviors of the best
approximation determinants, as described by Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We will consider a = (α l f •••,««) having
the form

, = l/ 5 + Σ (*i-i)~/(i); 2 ^ i
i
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where tlf , tn_x are the first n — 1 primes and f(j) is an increasing
integer-valued fuction satisfying

(4.2) J U + 1) ^ j f o r a l l j ^ i t

fϋ)
We show such a have the properties required by Theorem 1.3,
provided f(j) increases sufficiently rapidly.

We first check that (4.2) implies that dimρ [1, al9 , an] = n + 1.
Suppose there were a linear dependence

(4.3) m0 + mxαx + + mnan = 0

with integer mt. We can rewrite this as βt — β2 where βι~mQ +

(mx + + mn)i/"5" and

(4.4) ft=-Σ^Σ («i-i)"/(i) -

Now & is algebraic, while we claim β2 is either a Liouville-type
transcendental number or zero, the latter occurring only when m2 =
. . . = mn — 0. Indeed, (4.4) clearly has a good rational approximation
with denominator (^ ίn_i)/(y). With the appropriate choice of
numerator H3, using (4.2) we have

^ 2M

(ίi ί,-i)/(y)

where m = MAX(|m<|). Now write tt - tn_! = eC3 and tx = βC4. Then
using (4.2),

2 ~ ^ f r r < e

This suffices to prove that β2 is transcendental unless all Hj — 0
from some point on. But Hd — 0 gives the relation

""=0

Take a system of equations of type (4.5) for N — 1 consecutive values
of j . Viewed as linear equations in my the determinant of this
system is a Vandermonde determinant, and since all (tt - tN)/tj are
distinct it is nonzero. This requires that m2 = m3 = = m^ = 0.
Finally βt — m0 + my" 5 = 0 hence m0 = mι = 0.

The idea of the remainder of the proof is that the vector a
quite closely approximates the vectors a{k) — (a[k\ •••, a{

n

k)) where
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aw — 1/ pί 4- V Γ/ )-fU) . o < ή < m

The vectors a{k) have

and hence have all Dk = 0 from some point on as described by-
Corollary 3.3. By choosing f(j) to grow fast enough the behavior
of the BSA's of a must mimic aik). The actual proof is complicated
by the problem that we cannot guarantee that a has the same set
of BSA's as ct{k) on any segment k <£ k09 no matter how close to a{k)

we make a. This is because the a{k) may be such that there is a
BSAD qt and a denominator q' with qι+ι>q'>qι such that δ^ = δβ/. In
this case an arbitrarily small perturbation of aιk) to a may make
qf a BSAD of a. We circumvent this problem by proving that for
sufficiently large f(k + 1) the BSA's of a will contain the BSA's of
a{k) on a long initial segment, and that new BSA?s of a that are
added in this initial segment will not affect a long chain of zero
determinants. The first step is to analyze the behavior of the
BSAD'sgw = q{k) to a{k). We claim that

( i ) There is a constant Ck such that for all m,

(4.6) δqm < CuiqJ'1 .

(ii) There is a constant C'k such that for all m,

(4.7) qm+1 < C'kqm .

To show (i) we recall the one-diminsional BSAD's qt of V~5 satisfy

(4.8) I ? : I / " 5 " - P

Now consider the denominator

(4.9) ? = & . - .

Using (4.6) it is clear that we can choose numerators tt so that for
all i,

\qalk) ~U\ < (*i

that is (using (2.1))

(4.10) δΐ < cfa - - t

On the other hand ]/5 is a badly approximable one-dimensional
number (see §5). Using \(plqf — 5| ^ 1/g2 we have
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(4.11) l t fVT-p| >37y«"' 1

for all denominators q. This implies by (2.1) that for approximations
to a{k) we have

(4.12) δq > -Ufa)-1 .
o

Now (4.8) and (4.11) imply the BSAD's of i/ΊΓ satisfy

(Dirichlet's theorem would be violated otherwise.) Then by (4.9)
for any BSAD qm of aa) we can find q with

(4.13) q ^ qm ^ 45? .

Then (4.10) implies (i) with

since <5gm < dq. To prove (ii), given qm we can find g satisfying (4.10)
with

45 *\8 *

Then (4.9) and (4.10) give

This proves (ii) with

c; = c,(i-»,)-.

We now inductively define the f(k). The condition (4.2) implies that

^ . x ί t y J| 6c — (X ]J \ 6* Δ

Suppose /(I), — ,f(k) are chosen. We will construct a block of at
least k consecutive zero best approximation determinants. First
consider a{k\ All BSA's to a{k) are (cj^-good approximations by
(2.1). Consider those denominators q for a{k) with

(4.15) δQm = δg- a n d qm < q < qm+1 .

Any such that occur are λ^-good approximations with

λfc = (CD^c,)-1,
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using (4.7). Now a set of Z-relations of rank n — 1 satisfied by the
coordinates of a(k) are

(4.16) (fitγ™aik) - t{{k)a[k) - [ Σ (**)/ (* }"/ ( i )l = 0

for 2 <s i ^ w. The coefficients of these relations are bounded above
by

By Corollary 3.2 all λ-good approximations to a{k) satisfy the relations
(4.16) and hence lie in a certain 2-dimensional Q-subspace Vk provided
that

(4.17) q > (nAkXky .

The following lemma guarantees that a suitable f(k + 1) can be
chosen.

LEMMA 4.1. Given any aeRn, any scaled || || and any finite
set S of BSA's of a whose largest BSAD is qL. Suppose δq < 1/2
for all q in this set. Then there is an ε = ε(α, L) > 0 such that if
α* has

(4.18) \af -cίjKe

for 1 ^ j ^ n then the BSA's in S are also BSA's of α*.

Proof. The condition δq < 1/2 guarantees that the BSA's in S
are unique, by Lemma 2.2. Any BSA has the property δg(a) < δq*(a)
for all <j* < q. This property for each pair (q, q*) is preserved for
small perturbations of a since δq(a) is a continuous function of a.
We can thus choose an ε small enough to preserve this property
for the finite set of pairs (q, q*) with q*, q <; qL and δq(a) < δq*(a).
This guarantees that when | at — af \ < ε for all i then

(4.19) δq(a) < δq*(a) — δg(α*) < ^(α*) ,

for all q, g* ^ qL. Π

To complete the proof of Theorem 1.2, pick an index L = Lk

such that the BSA's of a{k) satisfy

(4.20) qL > (nAkXk)
n

and

DL = DL+1 = = DL+k = 0 .
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Pick an ε = ε(α(fc), L*) guaranteed to exist by Lemma 4.1 and choose
f(k + 1) so large that

Then any f(k + 1) satisfying (4.20) and (4.2) has the properties
( i ) The set of BSA's of a includes the BSA's vm of a{k) with

L^m^L + k.
(ii) Any other BSA's of a with BSAD q satisfying qΐ] <q<

qΐlk lie in the 2-dimensional Q-subspace Vk.
Property (i) follows from Lemma 4.1, assuming L is large enough
that dq < 1/2. Property (ii) follows from the observation that (4.19)
implies that any new BSAD's q < qL+k that occur for a must satisfy
(4.15). But such approximations are λ -̂good by the choice of Xk.
Then (4.20) guarantees they lie in the subspace Vk.

Finally properties (i) and (ii) show that there is a block of at
least k + 1 consecutive BSA's of a lying in a 2-dimensional Q-subspace
Vk, and hence giving at least k consecutive zero best approximation
determinants. Theorem 1.2 follows by induction on k. •

Proof of Theorem 1.3. We will construct the desired vector a
inductively as the limit of a sequence a{k) e R2. All the a{k) and a
will sit in the unit square I = [0, 1] x [0, 1]. In this construction
we want a{k+1) to leave unchanged a block of the first Lk BSA's of
a{k). To this end we prove the following lemma.

LEMMA 4.2. The set S of a in the unit square I of R2 having
the following two properties is dense.

( i ) dim* [1, alf a2] = 3.
(ii) For the sup norm

δq(a) Φ δq,(a)

whenever q Φ q'.

Proof. It suffices to show S has Lebesgue measure one, which
implies denseness. In order for (i) to fail, there must be integers
mlf m2, m3 such that

= 0 .

In order for (ii) to fail, there must be integers qlf q'2, m4, ra5 with
#i Φ qΊ such that one of

L + m4 = q2a2 + m5

+ m4 = q[a2 + m5
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holds. Each set (ml9 m2, ra3) or (qlf q2, m4, mδ) gives a constraint
intersecting I in a set of measure zero. There are only countably
many such constraints, so the total removed has Lebesgue measure
zero. •

In the construction, we will choose each a{k) eS. For any aeS
and any positive integer L, by Lemma 4.1 we can find an e = εL > 0
such that all vectors α* in the sup norm open ball of radius ε, i.e.,

\\a-a'\\8<ε

all have the exactly same first L BSAD's as a. In this case (4.19)
becomes for q, q* < qL that

(4.21) δq(a) > δq*(a) — δq(a*) > δq*(a*) .

In the construction, we alternate back and forth between pro-
ducing long blocks of zero determinants and large determinants.
The zero determinants case is relatively easy and we merely sketch
the proof. We first observe that the set

T = {(a + hV 5, c + dV 5 ) | α, b, c, d e Z and bd Φ 0}

is dense in I. Suppose a2k e S is constructed and the first L2k BSA's
are fixed. We pick a small open neighborhood iV2/m of a2k whose
closure N2k+1 sits inside the previously constructed open neighborhood
N2kf and which is so small that the first L2k BSA's of any a'eN2k+1

agree with α2fc. Since T is dense, we can find a member α* of T in
N2k. We choose a2k+ι to be a member of S sufficiently close to α*.
Proceeding exactly as in the proof of Theorem 1.3, we can find a
block of N + 2k consecutive BSA's of α* starting with ΌL(QL*) each
of which sits in a 2-dimensional Q-subspace V2k, and such that all
denominators qr with

(4.22) Km^K>, Qm<q'<qk+i

and m 5̂  L + 2k + 2 have associated approximation vectors v(qf)
lying in V2k. We can then show that any a sufficiently close to α*
will include all its BSA's vm with L ^ m ^ L + 2fc + 2 and possibly
some other BSA's v(qf) from the set (4.22), and hence has a block
of ^2fc consecutive zero determinants. Choosing a2k+ίeS to satisfy
this, set L2k+1 = L* where

The interesting case is that of producing large determinants.
Suppose a21c+1 e S and L2k+1 are given. Pick an open ball N2k+2 around
a2k+1 so small that all points a! in it have the same first L2k+1 BSA's
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as a2k+1 and so that N2k+2 Q N2k+1. Since the set

' P l ) ί > 2 e Z ί Q is prime, and 0 < Pu P2 <

is dense in I, we may choose β0 = (PJQ, PJQ) from T* which lies
in N2k+2. The set of BSA's of β0 is finite since β0eQ2. The first
Lik+1 of these agree with those of a2k+1, and the last one is (Q, Pl9 P2).
Of course

(4.23) δQ(β0) = 0

and δg(β0) Φ 0 for 0 < q < Q. Then

(4.24)
Q

when 1 ^ q < Q and r e Z, so that

for all q, Q.

We next consider

(4.25) ft = (ft

^ i for i = l , 2 ,

where fcx and k2 will be large positive integers. We will show that if

then there is a determinant

(4.27) | i

To check this, we first claim that (Q, Pl9 P2) is a BSA of fr, so that
there is an integer I for which

i) = (Q, Pi, P.) .

Indeed using (4.25) we have

(4.28) a,(A) <

while for 1 ^ g ^ Q we have (using (4.24))

δq(β
(4.29)
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proving the claim.
Now we can write

(4.30) Mx =
Qi

Q

Pι,2

.Ql + 1 Pl+1,1 Pl+1,2_

Now suppose that there is a nonzero determinant Dι+m = A+mGSi) f° r

some m ^ 0. We will prove such an m must exist later. Consider
the least such m. Then by Theorem 1.2 there are positive integers
a3- such that

(4.31)

for 2 <

(4.32)

where

(4.33)

and

(4.34)

with

(4.35)

m — 1. Hence

T =
ft

Q P i

= UT

^ Z , 2

w,2_

ί/ =

Ό
1

0

1

0

0
0

1

for ^ j < m — 1 .

It is clear that det A, = — 1, det U = ± 1 . Hence

(4.36) I det 2Ί = I det Mι+m_2\ = | A+»-2 | ^ 0 .

Our goal is to show | det T\ ^ Q.
Before doing this, we turn back to show the existence of an

m ^ 0 with Di+m Φ 0. Suppose it did not exist. Now βt 6 Q2, so βt

has a finite sequence of BSA's. Examining (4.25), we see that the
last one is clearly

(4.37) vι+n = (kAQ, kAPi + K kJciPz + 1)

where n :> 2 is the appropriate integer. By hypothesis Dι+n = 0 and
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(4.31) holds for 2 ^ j ^ n. Then the formulae (4.32)-(4.35) hold with
m = n. Thus

(4.38)

where

(4.39)

Λ+J = IdβtΓ l

Qi Pι,i PI.Ϊ

Q Pi P 2

Jll+n Pl+n,l Pl+n,'.

det T* =
Qi

Q

0

= -k.

PlΛ

Pi

ΓV2

Qi

Q

Pi, 2

p 2

1

Pι.t

P2

+
Qi Pui

Q Pi

But subtracting kjc2 times the second row of Γ* from the third and
using (4.37) gives

(4.40)

Since Q is prime and P2, qt < Q we have Q | ^^2 so that

Qi Vι.% , n

and the first term on the right of (4.40) is at least Q3 in absolute
value. The second determinant on the right is bounded in absolute
value by 2Q2, hence det Γ* Φ 0, so Dι+n Φ 0, the required contra-
diction.

To show I det ΓI ^ Q we use (4.36). By subtracting appropriate
multiples of the second row from the first and third row of T in
(4.33) we obtain

(4.41)

where

(4.42)

det Γ =

0 bι ό2

Q Pi P 2

0 -Li ϋ
Q Q

= PIΛ - Qι4t> { =' !» 2 »

(4.43) g = p I + I l l 4 - 9ί+M-^-; i = 1, 2 .

Note the r4 are integers. We first bound the δt. We have
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(4.44)

where (4.24) gives the right hand side, and the left side follows
from plti being the nearest integer to q^PJQ).

The key part of the proof is the estimation of the rt. We claim
that rt = k2r2 and that r2 Φ 0. If this is so, then using the integrality
of r2,

(4.45)

detϊΊ£|rAI-|t AI
^ \r2\(k2

!> 2 1

using (4.41) and (4.26). To prove the claim, we start from (4.25),
and obtain

Now let q = qι+m so that

(4.46)

This certainly implies that

(4.47)

_2

2

Substituting the definition (4.25) of βx into (4.47) and using (4.43)
yields

(4.48)

(4.49)
A/jΛ/2

2Q

These two inequalities give

|

2Q
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Then (4.26) gives further

(4 50) I t - 5kt 5fc2

±
h

But rx and r2 are both integers, so (4.50) forces rx = 0(mod&2) and
then

(4.51) * 1 '— iv%i £

Now r2 — 0 gives rx = 0 which makes the bottom row of T in (4.41)
identically zero so det T = 0, contradicting (4.36). Hence | r 2 | ^ 1,
proving the claim.

We now make the important observation that the argument
above actually shows the stronger result that any approximation
v = v^βj with §,(&) < 2/fc and with

(4.52)

must have D(v) > 4Q2.
To complete the proof, we now choose kx and k2 satisfying (4.26)

and (4.27) to be so large that β^^^ Then any a e S sufficiently
near β1 will have the desired property. First we can guarantee a e
N2k+2. Second, if a is close enough to β19 by Lemma 4.1 we can
guarantee it includes all the BSA's vό of β1 with qό <̂  kλk2Q. Now
it may contain some extra BSA's v with q < qι+m. Since vι+m(β^) is
Z-independent of ι̂ (/3i) and ι̂ +1(/3i), there will be some k with

(4.53)

where

We have now for a small ε,

so for q = qk+2(a) also

Dk{a) =

vk(a)

vk+ί(a)

< i + ε

< -^ + e .

For α sufficiently close to /3i, this implies
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2
q k

Then Dk(a) = D(v) in (4.52) and so D(v) > 4Q2. Hence we may choose
a2k+2 = a, and L2k+2 equal to that L for which qL(a) = kJc2Q.

We are done by induction on k, since the ak tend to a limit a.
The initial Lk BSA's of a agree with those of ak because aeNk for
all k. •

5* Badly approximable vectors* We recall that a vector a in
R* is said to be badly approximable with approximation constant
C if there are only finitely many solutions to the inequality

(5.1)

By Dirichlet's theorem 0 < C < 1.
This section shows that the best approximation vectors of badly

approximable vectors a cannot behave as pathologically as the
examples constructed in § 4. Throughout this section we abbreviate
δgk to δk.

THEOREM 5.1. Let aeRn — Qn be a badly approximable vector,
with approximation constant C. For a given norm \\ || on Rn there
is a constant Λo depending on || || such that there are only finitely
many k for which

(5.2) \Dk\>J0(C)-n2 .

Proof The basic principle used is that the best approximation
denominators with respect to a given norm || || cannot be too far
apart or Dirichlet's theorem will be violated. Suppose a is badly
approximable with approximation constant C and that (5.1) has no
solutions for q > Qo. Let qk > Qo be a sup norm best approximation.
Then

(5.3) {qkY^ ^δk

By Dirichlet's theorem using (2.3) applied with q — qk+1 — 1 gives

(5.4) δk ^ (qk+1 - I ) " 1 ' * .

Combining this with (5.3) yields the bound

(5.5) qk+1 - 1 £ C-nqk .

Using (2.1) we derive analogous inequalities for the best approxima-
tions qk in another norm || ||, which state that
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(5.6)

(5.7)

h ^ c2(qk+1 -

qk+1 - 1 ̂  (ϊή

Now consider for the approximations qk with respect to the general
norm II II the determinant

(5.8)

' Qk Pk,l ' * Pk.n '

Qk+1 Pk+1,1 Pk+l,n

-Qk+n Pk+n,l ' ' ' Pk+n,n.

Subtract at times the first column from the (ΐ + l)8 ί column, for
1 ^ i ^ n. This leaves the determinant unchanged, and yields

(5.9)

Qk ζh,l ' ' ' ζk,n

Qk+n ζk+n,l * ' ' ζk+n,n

where

(5.10) ξiιm = qtam - p i > m .

Note ξitm is the mth entry in /?(#*), so that

(5.11) | £ < f W | <δι£δk.

Estimating (5.8) by absolute value estimates we obtain

(5.12) <^f Q γ

using (5.6), (5.11). Repeated use of (5.7) with Co = (cJc2)C gives

Applying this to (5.12) when qk > MAX(Q0, n) we obtain

(5.13)

where

(5.14) i

depends only on D
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We next bound the number of consecutive Dk = 0 that can occur
in the two-dimensional case.

THEOREM 5.2. Let a e R2 — Q2 be a badly approximable vector,
with approximation constant C. For a given norm || || on R2 there
are constants Jlf Δ2 depending on || || such that there are only finitely
many k for which

(5.15) Dk = Dk+1= - . . = Dk+L = 0

where

(5.16) L = [Λ + 4

Proof. By Theorem 1.1 Db = 0 for a given k^ko(\\ ||) implies that

(5.17) vh = avk^ + i?ft_2 ,

for some positive integer a. In what follows we assume that k Ξ>
&0(|| 11) satisfies (5.15) and (5.16). From this hypothesis we derive a
contradiction, proving the theorem. By (5.17) we may write

(5.18) vk+j = a3vk^5_1 + vk+j_2

for 0 <£ j ^ L, where the a3- are positive integers.
We examine to what extent this mimicry (5.18) of the continued

fraction algorithm carries over to the components of the approxima-
tion remainder vectors JB(gAfi) We use the notation

(5.19) R(qt) = (q^ - plfl, cua2 - ph2) = (ξltl, ζlt2) .

Then (5.18) implies

(5.20) ξlti - aιξι_1>i + ζt_2ti

for I = k,k + l, - ,k + L and ί = 1, 2. We shall call £ M OCF-like
if in the relation (5.20) we have

(5.21) ( i ) 0 < | £ M | < |f,_M|,

(5.22) (ii) ξι-1Λ and ξlΛ have opposite signs.

Otherwise we shall call ξhi non-OCF-like. The key facts we need
are the following.

Fact 5.3. If ξlti is non-OCF-like, then

(5.23)

/or all i ^ 1 /or which (5.20)
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Proof of Fact 5.3. If (ii) fails, then £ι_lf< and ξlΛ have the same
sign, or one of them is zero. In that case for all I + j with j ^ 1
the two terms on the right side of (5.20) have the same sign, so
(5.23) holds for j ^ 0. If (i) fails then (5.20) applied with I + 1
shows ξι+lyi and ξlfi have the same sign, and as before (5.23) holds

Fact 5.4. There is a value of i = 1, 2 and m = 0, 1, 2 or 3, such
that the following both hold.

(5.24) ( i ) δk+L_m=\ξk+L_m,i\

(5.25) (ii) ξk+jti is OCF-lίke for 0 ̂  j ^ L - m.

Proof o/ Fact 5.4. Pick i + such that

If ?fc+i,ί+ is not OCF-like for some j with j" <̂  L — 2 then by Fact 5.3

(5.26) |f*+L,i+l ^ lf*+L-l,i+| = ί*+L-l ,

which contradicts

δk+L-l > δjc+L ^ I ζk+L,ί+ I

Hence ξk+Sti+ is OCF-like for 0 ̂  j ^ L - 2. If &+,,, is OCF-like for
^ = L — 1 we are done with m = 1, i — i+, so suppose not. We must
also have

(5.27) lf*+£-if*+l^lf*+i-2,i+l

in this case, otherwise (5.23) would hold m — k + L — 1 and the
proof of Fact 5.3 yields the same contradiction (5.26). Let i~ Φ i+

denote the other value of i. Then (5.27) forces

(5.28) δk+L_2 = |ft+L_ϊfi-| > \ξk+L-2,i+\ .

If ίfc+ί ,i- is non-OCF-like for some j with j ^ L — 3 then by Fact 5.3

O/fe+L-i ^ I ίfc+L-l,i-I ^ |f/b+X-2,ϊ-| — Vk+L-2 f

a contradiction. Hence ξk+jti- is OCF-like for 0 ̂  j ^ L — 3 in this
case. Now choose m = 3 and i to make (5.24) true. •

We continue the proof of Theorem 5.2. Recall that the ordinary
continued fraction (OCF) expansion of a number ΘQ proceeds with
partial quotients qk and partial remainders θk satisfying the recursion
(for nonintegral θk)
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= ak
' f c+1

where θk > 1 for k ^ 1 and

(5.30) θk-l<ak<θk

for all fc. Let

—*- = [α0, α l f , ak]

denote the λ th convergent to θ0. Two well-known properties of the
continued fraction algorithm which we will use are

1

Q l
(5.31) 0n -

and

(5.32)

for all k ^ 1.

Consider those values L* = L — j and i for which Fact 5.4 holds.
Since each ξk+jΛ is OCF-like for 0 5ί j 5S L*, each £ i + i > < is nonzero.
We define

(5.33) θ, = - |»±ί=ω

for 0 ^ j ^ L*. Dividing (5.20) by ζt+^j, and rearranging yields

, 1(5.34)
θ 5+1

T h e c o n d i t i o n s ( 5 . 2 1 ) , ( 5 . 2 2 ) o f b e i n g O C F - l i k e s h o w t h a t

θj ^ 1 f o r 0 ^ j ^ L * ,

a n d w i t h ( 5 . 3 4 ) t h i s i m p l i e s

0 , - 1 < a s < θj f o r 0 ^ i ^ L * .

H e n c e t h e α & ' s o f ( 5 . 2 0 ) a g r e e w i t h t h e first L * + 1 O C F p a r t i a l
q u o t i e n t s t o θ 0 .

N o w w e c a n a p p l y ( 5 . 3 1 ) , ( 5 . 3 2 ) t o d e r i v e t h e final c o n t r a d i c t i o n .
W e o b t a i n

( 5 . 3 5 ) J

Q L

1
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The definition (5.33) of θ0 then shows that

(5.36) L* k-2,ι L* k-l,l L* ^ fc-Ml

On the other hand, the identity (5.20) and the continued fraction
recurrence easily lead to

(5.37) ,

Using (5.24) and (5.36) we obtain

(5.38) δk+L. < (Q**)- 1 ^ .

This will turn out to be too small to be compatible with the constraint
(5.6), which asserts that

(5.39) δk+L* > Cc^q^Y^ ,

since a is a C-badly approximable vector. Indeed by (5.18)

(5.40) qk+L* = PL*qk^ + QL*qk-2

in a similar way to (5.37). The bound

PL* £ ( ? 0 + 2)QL*qk_1

for continued fraction convergents is easy to establish by induction.
We then obtain from (5.40) the bound

(5.41) qk+L. ^ (α 0 + 2)QL*qk+1 .

We can bound α0 by observing that for the BSAD's

Qk = αoffjfc-i + Qk-2 > aoQk-i

To avoid contradicting (5.7) we must have

(5.42) α o < ( ^

where c2 and cλ are constants associated to the norm || || by (2.1).
So (5.41) becomes

(5.43) qk+L* ̂  ((f

and (5.39) becomes

(5.44) δk+L* >
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Using (5.6) in (5.38) yields

(5.45) dk+L* < 2c2(QL*r\qk-ίr
m .

These last two inequalities are contradictory whenever

(5.46) c2 <

which is certainly true whenever

(5.47) QL* > 2&

But by (5.32)

(5.48) QL* ̂  ζ)L_3

Hence (5.48) shows that (5.47) holds whenever

L ^ Λ + 4 | l o g C | ,

where

(5.49) A = (log— y\\og 2 + 4 log c2 - 2 logej + 3 ,

(5.50) Δ2 =

This completes the proof. •

Proof of Theorem 1.4. For the sup norm cλ = c2 = 1. The theorem
then follows from Theorems 5.1 and 5.2 using (5.14), (5.49) and (5.50).

D

REMARK. For the special case of the sup norm on R2, by taking
more care in the estimates of Theorem 5.1 we can improve (i) of
Theorem 1.4 to

(5.51) \Dk\>L with L = 2 + 2C"2 + 2C"4 .

Using more detailed arguments involving the geometry of the sup
norm, sharper bounds than (5.51) can be proved for badly approx-
imable vectors with large approximation constants.
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