TWISTING TO ALGEBRAICALLY SLICE KNOTS

Steve J. Kaplan

It is shown that every knot with zero Arf invariant can

 be made algebraically slice by a ($-1,-1$)-twist.Suppose K is a knot in S^{3}. For each integer k, consider the homeomorphism $H_{k}: D^{2} \times I \rightarrow D^{2} \times I$ defined by $H\left(r e^{i \theta}, t\right)=\left(r e^{i(\theta+2 \pi k t)}, t\right)$. Orient S^{3} by the right-hand rule.

Definition. A knot $K^{\prime} \subset S^{3}$ is obtained from K by a (k, l)-twist if there exists a smooth embedding $f: D^{2} \times I \rightarrow S^{3}$ preserving orientation such that:
(i) K intersects $f\left(D^{2} \times\{0\}\right)$ transversely and algebraically l times;
(ii) $K \cap f\left(D^{2} \times I\right) \subset f\left(\left(\operatorname{int} D^{2}\right) \times I\right)$; and
(iii) $K^{\prime}=K-\left(K \cap f\left(D^{2} \times I\right)\right) \cup f H_{k} f^{-1}\left(K \cap f\left(D^{2} \times I\right)\right)$.

Example:

Diagram 1
In [4], Akbulut and Kirby made the following three-tiered conjecture:

Conjecture 1. Suppose $K \subset S^{3}$ is a knot with zero Arf invariant. Then there exists a knot K^{\prime} obtained from K by a ($-1,-1$)-twist such that

A: K^{\prime} is algebraically slice
B: K^{\prime} is slice (or ribbon)
C: K^{\prime} is the unknot.
Suppose K is a knot with Arf invariant zero. If Conjecture 1B is valid for K, the homology 3 -sphere obtained by surgery on K with +1 framing must bound an acyclic manifold W with $\pi_{1}(\partial W) \rightarrow$
$\pi_{1}(W)$ onto. A partial converse also holds. For a given K, if a manifold W as above exists and a certain homotopy $C P^{2}$ is genuine, K is concordant to a knot for which Conjecture 1B is true [2]. If Conjecture 1B were known for the (2, 7)-torus knot it would be easy to construct a smooth, closed, simply connected, almost parallelizable 4 -manifold with index and second Betti number equal to 16 . This is considered unlikely.

Suppose K and K^{\prime} are knots such that K^{\prime} is obtained from K by a $(-k,-1)$-twist, It follows from a result of Tristram [5] that if $k \geqq 2$ the k-signatures of K and K^{\prime} coincide. The k-signatures need not be invariant under a ($-1,-1$)-twist. Akbulut [1] has provided an example of a knot K for which Conjecture 1B is true such that $\sigma_{k}(K) \neq 0$ for every $k \geqq 2$. In light of this example it is not surprising that Conjecture 1A is true. A proof is supplied below.

Theorem. Suppose $K \subset S^{3}$ is a knot with Arf invariant zero. Then there exists a knot K^{\prime} such that K^{\prime} is obtained from K by a ($-1,-1$)-twist and such that K^{\prime} is algebraically slice.

Remark. A. Casson has obtained the following related result: If K is a knot with Arf invariant zero, there exist knots K^{\prime} and $K^{\prime \prime}$ such that K^{\prime} is concordant to $K, K^{\prime \prime}$ is obtained from K^{\prime} by a ($-1,-1$)-twist, and the Alexander polynomial of $K^{\prime \prime}, \Delta(t)=1$. (A knot with $\Delta(t)=1$ must be algebraically slice.)

Proof of the Theorem. Let F be a Seifert surface for K and $a_{1}, b_{1}, \cdots, a_{n}, b_{n}$ a system of canonical curves for F. Since $\operatorname{Arf}(K)=0$, we may assume that the diagonal entry of the Seifert matrix arising from a_{i} is even for each $i=1, \cdots, n$ (see [3]).

For each $i=1, \cdots, n$ be c_{i} and d_{i} be the cores of the handles pictured in Diagram 2:

DiAgram 2

Let \bar{F} be the union of F with these $2 n$ additional handles. Plainly $\partial \bar{F}$ is isotopic to ∂F. (By abuse of notation we write $\partial \bar{F}=K$.) The matrix describing the restriction of the Seifert form to the generators $a_{1}, \cdots, a_{n}, c_{1}, \cdots, c_{n}$ is $\left[\begin{array}{cc}A & I \\ I & 0\end{array}\right]$ where $A=\left(\alpha_{i j}\right)$ corresponds to the a_{i}. (Recall that the value of the Seifert form on the pair of curves (x, y) of \bar{F} is defined to be $l k\left(x, i^{*} y\right)$ where i is a normal vector field to \bar{F}.) For each $i=1, \cdots, n$ define classes $\left[a_{i}^{\prime}\right] \in H_{1}(\bar{F})$ by $\left[a_{i}^{\prime}\right]=\left[a_{i}\right]+\sum_{j=1}^{i}\left(1-\alpha_{i j}\right)\left[c_{j}\right]+\left(\alpha_{i i} / 2\right)\left[c_{i}\right]$. The class $\left[a_{i}^{\prime}\right]$ can be realized by a connected sum of a_{i} with push-offs of the c_{j}. Thus there exist disjointly embedded curves $a_{1}^{\prime}, \cdots, a_{n}^{\prime}$ which represent the $\left[a_{i}^{\prime}\right]$ and are disjoint from the c_{j}. A simple calculation shows that the values of the Seifert form on $a_{1}^{\prime}, \cdots, a_{n}^{\prime}, c_{1}, \cdots, c_{n}$ are described by the matrix $\left[\begin{array}{cc}B & I \\ I & O\end{array}\right]$ where the diagonal entries of B are +2 and the off-diagonal entries +1 .

Choose additional curves $b_{1}^{\prime}, \cdots, b_{n}^{\prime}, d_{1}^{\prime}, \cdots, d_{n}^{\prime}$ on \bar{F} so that $\left\{a_{1}^{\prime}, b_{1}^{\prime}\right.$, $\left.\cdots, a_{n}^{\prime}, b_{n}^{\prime}, c_{1}, d_{1}^{\prime}, \cdots, c_{n}, d_{n}^{\prime}\right\}$ form a system of canonical curves and regard \bar{F} as a disk with bands with these curves as cores. Let $l \subseteq \bar{F}$ be an arc whose intersection with $\partial \bar{F}$ is one of its endpoints and which misses each of the canonical curves (see Diagram 3). Consider the 2-disk $D \subset S^{3}$ pictured in Diagram 3 where the strands in the box $\left[\begin{array}{l}l_{i} \\ n_{i}\end{array}\right]$ run parallel to an arc $l_{i} \subset S^{3}-\bar{F}$ and perform $n_{i}(\in Z)$ full twists about l_{i}. The (transverse) intersection of D and \bar{F} consists of the co-cores of the bands with cores $a_{1}^{\prime}, \cdots, a_{n}^{\prime}$ together with l. We will show that for certain choices of $\left(l_{i}, n_{i}\right)$, the knot K^{\prime} obtained from K by a ($-1,-1$)-twist along D is algebraically slice.

A portion of the knot K^{\prime} and a portion of a genus $3 n$ Seifert

Diagram 3

Diagram 4
surface G for K^{\prime} are pictured in Diagram 4. (G is orientable because the n_{i} are integral.) The part of (G, K^{\prime}) absent from Diagram 4 agrees identically with the part of (\bar{F}, K) not in Diagram 3. Thus the curves $b_{i}^{\prime}, c_{i}, d_{i}^{\prime}, i=1, \cdots, n$ represent generators of $H_{1}(G)$. Define $b_{1}^{\prime \prime}, c_{i}^{\prime \prime}, d_{i}^{\prime \prime}$ resp. to be the same curves regarded as curves on G.

Additional curves $a_{i}^{\prime \prime}, e_{i}^{\prime \prime}, f_{i}^{\prime \prime} i=1, \cdots, n$ completing a symplactic basis are shown in Diagrams 4 and 5. The curve $a_{i}^{\prime \prime}$ is obtained as the twist of a_{i}^{\prime} along D except near l where $a_{i}^{\prime \prime}$ follows a sheet of G through two left half-twists. The curves $e_{1}^{\prime \prime}, \cdots, e_{n}^{\prime \prime}$ generate the homology of the part of G near l and are shown in Diagram 5. The curve $f_{i}^{\prime \prime}$ is dual (in $H_{1}(G)$) to $e_{i}^{\prime \prime}$. It is obtained as the union of an arc which runs once along $l_{j}, 1 \leqq j \leqq i$ (and is shown in Diagrams 4 and 5) with an arc outside Diagram 4 which misses each of the other canonical curves.

Suppose that choices of $\left(l_{i}, n_{i}\right)$ have been made so that the entries of the Seifert matrix of G are defined. We shall later modify these choices. Let $\Lambda \subset H_{1}(G)$ be the subgroup generated by the classes of $a_{1}^{\prime \prime}, \cdots, a_{n}^{\prime \prime}, c_{1}^{\prime \prime} \# e_{1}^{\prime \prime}, \cdots, c_{n}^{\prime \prime} \# e_{n}^{\prime \prime}$. (The connected sums are taken along G.) Let $\Gamma \subset H_{1}(G)$ be the subgroup generated by the elements of Λ together with the classes of $f_{1}^{\prime \prime} \#\left(-d_{i}^{\prime \prime}\right), \cdots, f_{n}^{\prime \prime} \#\left(-d_{n}^{\prime \prime}\right)$. It follows from the calculations above and the nature of the linking in Diagram 4 that the intersection form of $H_{1}(G)$ vanishes on Γ and the Seifert form vanishes on Λ.

Let C_{1}, \cdots, C_{n} be disjoint curves in $S^{3}-G$ satisfying
(i) $l k\left(C_{i}, x\right)=-l k\left(f_{i}^{\prime \prime} \#\left(-d_{i}^{\prime \prime}\right), x\right)$ for each generator x of Λ, and
(ii) $l k\left(C_{i}, C_{j}\right)=-l k\left(f_{i}^{\prime \prime} \#\left(-d_{i}^{\prime \prime}\right), f_{j}^{\prime \prime} \#\left(-d_{j}^{\prime \prime}\right)\right)$ for each $j \neq i$.

Replace l_{i} by $l_{i} \# C_{i} i=1, \cdots, n$. The entries of the Seifert matrix on Γ are now zeros except possibly for the diagonal entries corresponding to the $f_{i}^{\prime \prime} \#\left(-d_{i}^{\prime \prime}\right)$. Clearly, these can be made zero by

rechoosing the n_{i}. This completes the proof.

REFERENCES

1. S. Akbulut, On 2-dimensional homology classes of 4-manifolds, (preprint).
2. S. Akbulut and R. Kirby (private communication).
3. C. McA. Gordon, Knots, homology spheres and contractible 4-manifolds, Topology,

14 \#2 (1975), 151-172.
4. R. C. Kirby, ed., Problems in Low Dimensional Manifold Theory, Proc. AMS Summer Inst. in Top.-Stanford (1976).
5. A. G. Tristram, Some cobordism invariants for links, Proc. Camb. Phil. Soc., \#66(1969), 251-264.

Received January 8, 1979 and in revised form April 17, 1979.
University of Kentucky
Lexington, KY 40506

