TWISTING TO ALGEBRAICALLY SLICE KNOTS

STEVE J. KAPLAN

It is shown that every knot with zero Arf invariant can be made algebraically slice by a (-1, -1)-twist.

Suppose K is a knot in S^3 . For each integer k, consider the homeomorphism $H_k: D^2 \times I \to D^2 \times I$ defined by $H(re^{i\theta}, t) = (re^{i(\theta + 2\pi kt)}, t)$. Orient S^3 by the right-hand rule.

DEFINITION. A knot $K' \subset S^3$ is obtained from K by a (k, l)-twist if there exists a smooth embedding $f: D^2 \times I \to S^3$ preserving orientation such that:

(i) K intersects $f(D^2 \times \{0\})$ transversely and algebraically l times;

(ii) $K \cap f(D^2 \times I) \subset f((\operatorname{int} D^2) \times I);$ and

(iii) $K' = K - (K \cap f(D^2 \times I)) \cup fH_k f^{-1}(K \cap f(D^2 \times I)).$ Example:

DIAGRAM 1

In [4], Akbulut and Kirby made the following three-tiered conjecture:

CONJECTURE 1. Suppose $K \subset S^3$ is a knot with zero Arf invariant. Then there exists a knot K' obtained from K by a (-1, -1)-twist such that

A: K' is algebraically slice

B: K' is slice (or ribbon)

C: K' is the unknot.

Suppose K is a knot with Arf invariant zero. If Conjecture 1B is valid for K, the homology 3-sphere obtained by surgery on K with +1 framing must bound an acyclic manifold W with $\pi_1(\partial W) \rightarrow$

 $\pi_1(W)$ onto. A partial converse also holds. For a given K, if a manifold W as above exists and a certain homotopy CP^2 is genuine, K is concordant to a knot for which Conjecture 1B is true [2]. If Conjecture 1B were known for the (2, 7)-torus knot it would be easy to construct a smooth, closed, simply connected, almost parallelizable 4-manifold with index and second Betti number equal to 16. This is considered unlikely.

Suppose K and K' are knots such that K' is obtained from K by a (-k, -1)-twist, It follows from a result of Tristram [5] that if $k \ge 2$ the k-signatures of K and K' coincide. The k-signatures need not be invariant under a (-1, -1)-twist. Akbulut [1] has provided an example of a knot K for which Conjecture 1B is true such that $\sigma_k(K) \ne 0$ for every $k \ge 2$. In light of this example it is not surprising that Conjecture 1A is true. A proof is supplied below.

THEOREM. Suppose $K \subset S^3$ is a knot with Arf invariant zero. Then there exists a knot K' such that K' is obtained from K by a (-1, -1)-twist and such that K' is algebraically slice.

REMARK. A. Casson has obtained the following related result: If K is a knot with Arf invariant zero, there exist knots K' and K" such that K' is concordant to K, K" is obtained from K' by a (-1, -1)-twist, and the Alexander polynomial of K", $\Delta(t) = 1$. (A knot with $\Delta(t) = 1$ must be algebraically slice.)

Proof of the Theorem. Let F be a Seifert surface for K and $a_1, b_1, \dots, a_n, b_n$ a system of canonical curves for F. Since $\operatorname{Arf}(K) = 0$, we may assume that the diagonal entry of the Seifert matrix arising from a_i is even for each $i = 1, \dots, n$ (see [3]).

For each $i = 1, \dots, n$ be c_i and d_i be the cores of the handles pictured in Diagram 2:

DIAGRAM 2

Let \overline{F} be the union of F with these 2n additional handles. Plainly $\partial \overline{F}$ is isotopic to ∂F . (By abuse of notation we write $\partial \overline{F} = K$.) The matrix describing the restriction of the Seifert form to the generators $a_1, \dots, a_n, c_1, \dots, c_n$ is $\begin{bmatrix} A & I \\ I & 0 \end{bmatrix}$ where $A = (\alpha_{ij})$ corresponds to the a_i . (Recall that the value of the Seifert form on the pair of curves (x, y) of \overline{F} is defined to be $lk(x, i^*y)$ where i is a normal vector field to \overline{F} .) For each $i = 1, \dots, n$ define classes $[a'_i] \in H_1(\overline{F})$ by $[a'_i] = [a_i] + \sum_{j=1}^i (1 - \alpha_{ij})[c_j] + (\alpha_{ii}/2)[c_i]$. The class $[a'_i]$ can be realized by a connected sum of a_i with push-offs of the c_j . Thus there exist disjointly embedded curves a'_1, \dots, a'_n which represent the $[a'_i]$ and are disjoint from the c_j . A simple calculation shows that the values of the Seifert form on $a'_1, \dots, a'_n, c_1, \dots, c_n$ are described by the matrix $\begin{bmatrix} B & I \\ I & O \end{bmatrix}$ where the diagonal entries of B are +2 and the off-diagonal entries +1.

Choose additional curves $b'_1, \dots, b'_n, d'_1, \dots, d'_n$ on \overline{F} so that $\{a'_1, b'_1, \dots, a'_n, b'_n, c_1, d'_1, \dots, c_n, d'_n\}$ form a system of canonical curves and regard \overline{F} as a disk with bands with these curves as cores. Let $l \subseteq \overline{F}$ be an arc whose intersection with $\partial \overline{F}$ is one of its endpoints and which misses each of the canonical curves (see Diagram 3). Consider the 2-disk $D \subset S^3$ pictured in Diagram 3 where the strands in the box $\begin{bmatrix} l_i \\ n_i \end{bmatrix}$ run parallel to an arc $l_i \subset S^3 - \overline{F}$ and perform $n_i (\in Z)$ full

twists about l_i . The (transverse) intersection of D and \overline{F} consists of the co-cores of the bands with cores a'_1, \dots, a'_n together with l. We will show that for certain choices of (l_i, n_i) , the knot K' obtained from K by a (-1, -1)-twist along D is algebraically slice.

A portion of the knot K' and a portion of a genus 3n Seifert

DIAGRAM 3

DIAGRAM 4

surface G for K' are pictured in Diagram 4. (G is orientable because the n_i are integral.) The part of (G, K') absent from Diagram 4 agrees identically with the part of (\overline{F}, K) not in Diagram 3. Thus the curves $b'_i, c_i, d'_i, i = 1, \dots, n$ represent generators of $H_1(G)$. Define b''_1, c''_1, d''_1 resp. to be the same curves regarded as curves on G.

Additional curves $a_i'', e_i'', f_i''i = 1, \dots, n$ completing a symplactic basis are shown in Diagrams 4 and 5. The curve a_i'' is obtained as the twist of a_i' along D except near l where a_i'' follows a sheet of G through two left half-twists. The curves e_1'', \dots, e_n'' generate the homology of the part of G near l and are shown in Diagram 5. The curve f_i'' is dual (in $H_1(G)$) to e_i'' . It is obtained as the union of an arc which runs once along $l_j, 1 \leq j \leq i$ (and is shown in Diagrams 4 and 5) with an arc outside Diagram 4 which misses each of the other canonical curves.

Suppose that choices of (l_i, n_i) have been made so that the entries of the Seifert matrix of G are defined. We shall later modify these choices. Let $\Lambda \subset H_1(G)$ be the subgroup generated by the classes of $a_1'', \dots, a_n'', c_1'' \notin e_1'', \dots, c_n'' \notin e_n''$. (The connected sums are taken along G.) Let $\Gamma \subset H_1(G)$ be the subgroup generated by the elements of Λ together with the classes of $f_1'' \notin (-d_i''), \dots, f_n'' \notin (-d_n'')$. It follows from the calculations above and the nature of the linking in Diagram 4 that the intersection form of $H_1(G)$ vanishes on Γ and the Seifert form vanishes on Λ .

Let C_1, \dots, C_n be disjoint curves in $S^3 - G$ satisfying

(i) $lk(C_i, x) = -lk(f''_i \# (-d''_i), x)$ for each generator x of Λ , and (ii) $lk(C_i, C_j) = -lk(f''_i \# (-d''_i), f''_j \# (-d''_j))$ for each $j \neq i$.

Replace l_i by $l_i \# C_i i = 1, \dots, n$. The entries of the Seifert matrix on Γ are now zeros except possibly for the diagonal entries corresponding to the $f''_i \# (-d''_i)$. Clearly, these can be made zero by

DIAGRAM 5

rechoosing the n_i . This completes the proof.

References

1. S. Akbulut, On 2-dimensional homology classes of 4-manifolds, (preprint).

2. S. Akbulut and R. Kirby (private communication).

3. C. McA. Gordon, Knots, homology spheres and contractible 4-manifolds, Topology, 14 #2 (1975), 151-172.

4. R. C. Kirby, ed., Problems in Low Dimensional Manifold Theory, Proc. AMS Summer Inst. in Top.-Stanford (1976).

5. A. G. Tristram, Some cobordism invariants for links, Proc. Camb. Phil. Soc., #66(1969), 251-264.

Received January 8, 1979 and in revised form April 17, 1979.

UNIVERSITY OF KENTUCKY LEXINGTON, KY 40506