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EXPLICIT FORMULAE FOR A CLASS
OF DIRICHLET SERIES

DON REDMOND

In this paper we shall prove explicit formulae for Dirichlet
series satisfying functional equations involving multiple
gamma factors. We shall illustrate the general theorem by
giving a generalization of the von Mangoldt formula and
by proving the nonvanishing on the line of absolute conver-
gence for a subclass of the Dirichlet series considered in
the main theorem.

1* Introduction* Explicit formulae have been around nearly
as long as Dirichlet series. In 1895 C.J. de la Vallee Poussin [19]
proved an explicit formula for the Riemann zeta function and
from it deduced the prime number theorem with a good remainder
term. Later A. Weil [20] proved general explicit formulae for the
zeta function of Hecke with Grossencharakteren and used these
formulae to study the distribution of the zeros of the Hecke zeta
function. (See also S. Lang [13], Chapter 17.) More recently A. M.
Odlyzko [15], [16] has used explicit formulae for the Dedekind zeta
function to get lower bounds for the discriminants of the associated
algebraic number fields. (See also G. Poitou [17].) C. J. Moreno,
in [14], especially § 6, derives explicit formulae for automorphic
forms which he uses to study the distribution of the zeros of these
forms and the constant term of the associated Eisentein series.
Finally, H. -J. Besenfelder [3] derived explicit formulae for tempered
distributions in connection with the Riemann zeta function and later
[4] used them to give a short proof of the nonvanishing of the
Riemann zeta function on the line Re (s) = 1 that uses no properties
of the Riemann zeta function to the right of the line Re (s) = 1, as
is the case for most proofs (see, for example, [18], § 3.2).

In this paper we shall prove explicit formulae for Dirichlet
series satisfying functional equations involving multiple gamma
factors. Since we are not trying to get the most general theorems,
some of the assumptions that we make are not essential to the
argument, but are there to simplify the details. One could tackle
more general cases with minor modifications in the proof. After
proving the general explicit formula we shall give two examples
that allow us to prove a generalization of the von Mangoldt formula
and the nonvanishing on the line of absolute convergence for a
subclass of the Dirichlet series here considered.

In the sequel we write the complex variable s = σ + it, where
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both σ and t are real. We denote by

\ the integral I
J (α,Γ) J

and by
the integral 1

(α) Jα-ϊoo

Finally the letters cj9 j = 1, 2, , will denote positive absolute
constants.

2* The statement of the main result* Let

f(s) = Σ αfa>r and flr(
l

be two Dirichlet series that converge absolutely for a > r, where
r > 0. We assume that

(2.1) α(l)&(l) *= 0 .

Let

(2.2) Δ{s) = Π Π ^ s + A) ,

where, for 1 <L k ̂  N, we have ak > 0 and βk = μk + Wk complex.
Assume that J(s) has no poles in σ ^ r/2. Suppose that there exist
constants C > 0, Θ real and <? complex such that

(2.3) f(s)A(s) = C's+δA(r - s)g(r - s) .

We assume that f(s) has at most a finite number of poles in
the strip 0 < σ ^ r, say i? of them, and that all nontrivial zeros
of f(s) (i.e., those zeros that do not arise from the cancelling poles
of Δ(β)) lie in the strip 0 ̂  σ ^ r. We will denote a pole by wό

and its multiplicity by djf with 1 <; j <̂  J?. The nontrivial zeros of
f(s) we will denote by p = /3 + i7.

If α*"1^) and 6*-1(%) denote the Dirichlet convolution inverses
of a(n) and δ(tι), respectively, (which are well-defined due to assump-
tion (2.1)) let

(2.4) Λf(n) = Σ a(d)a*-\n/d) log d and Λg{n) = Σ b(d)b*-\n/d) log d .

For 1 ̂  k ̂  N we define

(2.5) m(&)= max |m a nonnegative integer: 0^ - m + R e ^ f e^ ^ rl .

Let ϊ(ίc) be a complex-valued function of a real variable whose
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Laplace transform,

L(s) =

exists and is analytic on —a^σ^r+a for some a > 0. Suppose
that l(x) satisfies the following two conditions.

(1) ϊ is continuous and continuously differentiable, except pos-
sibly at a finite number of points where the functions have jump
discontinuities and are then defined to take on the mean value.

(2) There is a constant b > max (1, a) such that l(x) and V(x)
are both O(e-{r/2+b)lxl) as |a?|-»+oo.

THEOREM 1. Let

N

A = Σaak
k=l

Then, if p runs over the nontrivial zeros of f(s) we have the follow-
ing explicit formula:

lim Σ L{p) = ΣhUwd) + Σ Σ W - βk + m

r + \I{)\<T j l k1 0 \ CC

(2.6)
- Σ {Λf(n)l(log n) + Λβ(n)l(-\og n)}n~r'

) !* ! - 1(0)

where 7 denotes Euler's constant.

We could relax the conditions on the Dirichlet series. For ex-
ample, one could allow r to be nonpositive. This could be done by
considering a new function, say /x(s), given by

fi(s) = f(s ~ U) ,

where u > r. Then /x(s) is easily seen to be absolutely convergent
for σ > u — r if /(s) converges absolutely for σ > r. If we defined

ΛO) = J(s - u) ,

then we have the functional equation

We would then work with /2 and Λ below. This brings in
added complications and so we will not pursue the matter.
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One could also relax the restriction that all the nontrivial zeros
of f(s) lie in the strip 0 ^ σ <Ξ r. By a theorem of Berndt [2],
Theorem 1, we know that there are numbers σt and σ2 such that
all the nontrivial zeros of /(s) lie on the strip σx <; σ ^ σ2. Thus
one could rearrange the proof to take into account nontrivial zeros
outside the strip 0 <L σ <; r.

Finally, one could relax the condition that the abcissa of
absolute convergence of f(s) and g(s) is <^r. Again, this would only
increase the details of the proof, but would add no additional com-
plications.

The proof of the main theorem is similar to the proof of the
explicit formulae for the Dedekind zeta function given in Lang [13],
with additions from Besenfelder [3] and Poitou [17].

3* Preliminary results* If

N m(k) / a _|_ ΛJ, \ R
P(<Λ — TT iy TT / Q _ι_ Pfc ~Γ fro \ T T / yj

JL \OJ — J[J^ IΛfc JLJL I o " I J[J^ \O (Ayj) ,

then P(s)Δ(s)f{s) is holomorphic on 0 <Ξ σ 5S r . Similarly, if

Q(,s) •=• Π Oik H ( r — s -\—^k ) Π (r — s — Wy)j3 ,

then

(3.1) Q(s) = P(r - s)

and so Q(s)Λ(s)sr(s) is holomorphic on 0 ^ ff ^ r. Let

m / , (P(β) if P(β) = P(r - s)

lQ(β)P(β) otherwise .

Then, by (3.1),

(3.2) T(s) - T(r - s) .

Let

(3.3) F(s) = T(s)J(s)f(s) and G(β) = T(s)Cθ(l-s)+M(s)sr(s) .

Then, by (3.2) and (3.3),

(3.4) G(r - s) = F(s) .

LEMMA 1. Let c>r and h>0. If —h^σSe, then as | ί | — > + o o

f(s) < Ce°\t\Mr+m''c+'l''~H'!-°) .

Proof. If σ 2; c, then f(s) is an absolutely convergent Dirichlet
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series and so bounded. Similarly for σ ^ — h g(r — s) is bounded.
Thus for σ = c we have

f(σ + it) < f

and for σ = — h we have

f(σ + it) « ^ ( ' + 2 W ,

by Stirling's formula and the functional equation. The result then
follows by a standard Phragman-Lindelof argument and so completes
the proof.

COROLLARY. For any fixed η we have, on the half-plane σ ^ η,
that F(s) is an entire function of order 1.

Proof. By Lemma 1 we see that O I K J ^

/ ( * ) < ! * I' 1.
Since T(s) is a polynomial in s we have that for any s

T(8)<\8\'*.

By Stir l ing 's formula we have

A(s) - Π eα'cl*11OB|β!

fc = l

= exp(A\s\ log \s\) .

Thus, for σ^η,

F(8)<ec*'^"

and so F(s) is of order 1 on σ ^ η.
Since Δ(s) has no poles in σ ^ r and f{s) converges absolutely

for σ > r we see that F(s) is holomorphic for σ > r. By the defi-
nition of T(s) we see that F(s) is holomorphic for Q <L σ ^.r.
Similarly G(s) is holomorphic for a Ξ> 0. Then by the functional
equation (3.4) we see that F(s) is holomorphic for σ < 0 and so is
an entire function. This completes the proof.

Since F(s) is an entire function of order 1 we may use the
Hadamard factorization theorem (see [5], Chapter 11) to write

F(8) - e«s+b Π ( l - •

where a and b are constants. Now the only zeros of F(s) are the
nontrivial zeros of f(s) which lie in the strip 0 <; σ S r> since the
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other zeros of f(s) are cancelled by the poles of J(s). If we let

(3.5) ™=^ «« = 1 .
then we have

Fi(s) = G l ( r - 8)

and also that

(3.6) F^s) - eas+bT-\s) Π (l - — V " .
(0 \ ^ /

Since Γ"1^) is a nonzero rational function we see that in the
strip 0 ^ σ ^ r the only zeros of ^(s) are the nontrivial zeros of

/(β).

From (3.5), we have

where

Now the infinite sum on p in (3.7) converges absolutely since F(s)
is of order 1 and so

fi \p\

is convergent. We also have, by (3.3) and (3.5), that

(3.8) J-ί-(s) = — (s) + -£-(s) .
F, Δ f

LEMMA 2. There exists an a > 0 sucfe ίfeαί /or every integer
m, I m I ̂  2, ίfeerβ exists a Tm in the open interval (m, m + 1)
ίfeαί /(s) feαs ^o zeros in the region {s = σ + iί: lί — Γ^l^α
0 ^ σ ^ r}.

Proo/. Let iVw = N(m + 1) - Mm), where iSΓ(Γ) is the number
of zeros of f(s) is \t\ <* T. Now divide the interval (m, m + 1) on
the ί-axis into Nm + 1 subintervals and extend these across the
vertical strip 0 <; σ ^ r. Then at least one of these rectangles
contains no zeros in its interior. Let Tm be the midpoint of the
corresponding subinterval on the ί-axis. By Berndt [2], Theorems
3 and 9, there exist constants c4 and c5 such that
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c4 log I m I <: Nm <̂  cδ log | m \ .

Thus if

\t - Γ J ^ (SiVJ-1 ^ (3c4log I ml)"1 ,

then there are no zeros of f(s) in the rectangle

{s = σ + it: \t - Tm\ ^ (3c4log \m\)~\ 0 ̂  σ ̂  r} .

This completes the proof.

LEMMA 3. Let 0 < a ̂  1 ami Zβέ m be an integer, \m\ ^ 2 . Let
s = σ0 + iTm, where Tm is as in Lemma 2 and —a^σo^r + a.
Then as m —> oo,

' < l o g 2 | m | .

Prao/. Let p = /3 + i7 run through the nontrivial zeros of
/0) in the strip 0 <^ σ <> r. Then by Theorem 5 of [2] we have

(3.9) -£(«)= Σ
!ί-rlέa s — p

+ O(log|ί|),

uniformly for — a £Ξ σ S r + α, since 0 < α ̂  1.
By definition of Tm we have, as |m|—*•+<»,

(3.10) log I T.I ~ l o g | m | .

Thus, by (3.9) and (3.10), we have

f
= ΣΣ

\r-τm\n s — p

O(log I m

Σ
alog-l\m\^\γ-Tm\Sl S —

O(log|m|) ,

since f(s) has no zeros with | τ — Tm\ ^ αlog"1 \m\, by Lemma 2.
Let δ0 be the distance from Tm to the nearest zero of f{s) in

the strip —a^Lσ^r + a. Then, by Lemma 2, δ0 > log^lml Let
δ = min (1, δ0), Then δ"1 < log |m|. Also, since δ<il and 0 < a ̂  1,
we have

- 7)2)

Thus, for the p being summed over in (3.11),
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(3.12) 1 ^ 1
| β — / o | v < § - 7)2)

< log21 m I .

Since σ0 is fixed, the sum in (3.11) contains only a finite number
of terms. Thus, by (3.11) and (3.12),

which completes the proof.

< l o g 2 | m | ,

LEMMA 4. Let 0 < a ^ 1 and m be an integer, \m\ ^ 2. Lei
s = σQ + iTm, where Tm is given in Lemma 2, and —a<*σo£r + a.
Then, as |m|—>+<*>, we have

(3.13) =M«) < log21 m I .

Proo/. By Stirling's formula (see [1], p. 259, (6.3.18)), we have

Il(z) = log z + θ(-±-
I \ Z

as \z\—> + oo off the negative ίc-axis. Thus, for the s in question,
we have

Σ < log I m ] .

The result, (3.13), follows from Lemma 3 and (3.8) and completes
the proof.

LEMMA 5. Let ψ{z) denote the digamma function. Let M{x) be
a continuous function, except for at most a finite number of jump
discontinuities, where it takes on the mean value, that satisfies the
estimates

AΓ(O) - M(x) < I a? |/(1 + x2), as \x\ -> + oo

and

M(t) = [+o°M(x)eitxdx < (1 + I ^ I Γ 1

J —CO

as 111 —> + oo. If a, r > 0 and β is a complex number such that
ar + 2 Re (β) > 0, then we have

it) + β)M(t)dt

= 2πM(0)ψ(ar/2 + β) + ^T
α Jo

- M{x)dχ _
1 — e~ I / α
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Proof. We prove this only for the case when M(x) is continu-
ous. The more general case can be obtained by approximating by
continuous functions, since for any ε > 0 we can find a continuous
function f(x) such that | M(x) — f(x) | < ε, uniformly for all x, and
M(x) = f(x), except on a finite number of intervals of arbitrarily
small total length.

Suppose first that Λf(O) = 0. For c > 0 let

Then,

(3.14)

Let

Then,

(3.15)

[9,

as

p(t) = i

P 19, (8)],

Q(x) = •

mt)

(+0° H(t)M(t)ώ

Γ2 sin

τr(c

2 ί and

1
- — a c2

2
0

= q(t)γ(a(rl2

?(«) =

\
a;!<

/

+ iί)

(r12 +

p(tc

C2C"1

i 2c" 1

+ β)

it) +

*).

β)M(t)dt .

By ParsevaΓs formula we have

(3.16) \+CX>H(t)M(t)dt - \+°°H(x)M(x)dx .

If x Φ 0, then

# = Γ°°f (α(r/2 + it) + β)q(t)eu*dt

id) + β)p(t)eutxdt .

Since ψ{a(r/2 + iί) + /SM0<ί~2Iog | ί | , as | ί | -^ +oo, we have

(3.17) H(x) « ^ c ,

since p1^) < r 3 and f 1^) < M"1 as \z\ -+ + oo (see [1, p. 260, 6.4.12]).

Now, for Re (z) > 0, we have (see [1, p. 259, 6.3.21])

o L % 1 — e"w J

Since Re (α(r/2 + ifc) + /3) = αr/2 + Re (/3) > 0, we have

*—- = \du .

o L u 1 — e u J

Thus, for \x\ > 10c"1, we have, since q(x) = 0 for |α?| > 10c"1,
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\du
f+oo/f+oor -u 0-ia{r/2+it)+β)u-\

H(x) =\ -2 ±- _ _ \
J-oo (Jo L u 1 — e~v J

_Π 5 (c - - ϊ — ^ c 2 W if x > i ϊ

by (3.14). Thus, a s c - ^ + » ,

(3.18) H{x) = - — e~{aWβ)x'" + Qίe-
{arn+neίβ))x/a) _

a 1 - e~'/a ( xe >

If we combine (3.17) and (3.18), we have

[+C°H(x)M(x)dx = -2-\+c° e~""" W ) * / a M(x)dx + O{
J—oo (X JO 1 — β

as c -> + oo. Letting c -> + oo the result follows by (3.15) and (3.16).
Now suppose that Λf(O) Φ 0. Then in the above argument we

replace M(x) by the function

M(0)e~*2/B - M(x) ,

where B > 0. Since the Fourier transform of e'χ2/B is ]/πBe~m2/\
which approximates the delta function, we have, as B —> + oo

\+C°ψ(a(r/2 + it) + β)V~πBerBt2/*dt >2πf(ar/2 + β).

This implies the result of the lemma and completes the proof.

The proof of this lemma is adapted from the proof of Odlyzko
for the case a — r = 1, β = 0. The result is also stated for a =
1|2, r = 1, β - 0.

In order to get the result in the form that we shall need later
we use the following identity [1, p. 259, 6.3.22]:

(3.19) ψ(z) + 7 - p 6 - β 7 dt

Jo 1 — e

In Lemma 5 let z = (l/2)αr + /3. We have

2πΓ+ o oβ-^(M(0)-ikΓ(x))^ = 2 π f+-β—(M(0)-M(ax))d χ

a Jo 1 - e"β/α Jo 1 - e" β

Also

(3 20) Γ°° g-' f-"*Af(«g) - Λf(O) d χ _ f+

^ Jo 1 - e 1 Jo
Λf(0)e -

1 - e~
,
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Thus, by (3.19) and (3.20),

r+co β -z*(M(0) ~ M(ax)) d χ _ QΛ+

Jo 1 — e~
x Jo

= 2πM(0)

1 — e~
x Jo 1 — ex

-ί-oo — ZX ( O — X

= -2πM(0)(ir(z) + 7) .

We rewrite this result as

- M(x))dχr/2 + β ) +

a Jo 1 — e~x/a

= -2πM(0)7 + 2π[-e-^^M(ax) - M(0)dχ

Jo 1 — ex

This gives the following corollary to Lemma 5.

C O R O L L A R Y 2. Under the hypotheses of Lemma 5 we have

(a(r/2 + it) + β)M(t)dt = -2τrAf(0)7

Jo 1 - e

x

4. Proof of Theorem 1* By the assumption that

(4.1) l(x) < e-{r/M)™, a s \x\ > +oo ,

we see that uniformly for —a^σ^i* + a,a<.h, we have

(4.2) L(σ + it) <\t\~1 ,

as 111 — >• + oo.
Let Γ > 2. Then the number of zeros whose imaginary part

is between T and the nearest Tm of Lemma 2 is < log T. Also
the number of zeros whose imaginary part is between — T and the
nearest Tι of Lemma 2 is < log T. Thus the snm^L(p) over those
zeros tends to zero as T—> +co, since the sum is <ζ^T~ι\ogT.

Let C be the rectangle with vertices — a + ΐΓw, — α + ΐΓj, r +
α + iTm and r + a + iTt. Then, by the residue theorem, for T
sufficiently large,

Σ Up) - Σ oMw,) - Σ Σ L ( - m + & )
I Ί ϊ r i l fc l 0

By Lemma 4 and (4.2), we have, as ϊ7—> +°°,
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(4.3) [+a+ιTιξL(s)L(s)ds < T-1 log2 T
J~a+iTι F1

and

(4.4) I ——(s)L(s)ds < T~~
}r+a+ίTm Fx

Thus, by (4.3) and (4.4),

R N mile) /

Σ Up) - Σ δiUv>i) - Σ Σ L( —
\r\<τ i=i fc=i w=o \

(4.5)
= - ^ | Γ - ί α+tΓml^-(s)L(s)ds + O(T~1log2Γ) ,

as T -• + oo.

Since F^s) = Gx(r — s) we have

Thus we may rewrite the right hand side of (4.5) as

g ί \ ±L(s)L(s)ds + -HL(r - β ) L ( # + O(T- log2 T) .

As we observed above the sums over L(p) over 7 between Tm and
T and Tx and - Γ are OCΓ-MogΓ). Thus we may shift the lines
of integration to T and —T, since, as in (4.3) and (4.4), the inte-
grals along the horizontals are O(T~Mog2 T). Thus (4.5) takes the
form

Σ UP) - Σ
IK71 i l Oίk

(4.6) = - U lL(s)L(s)ds + M -^-(r - β)L(β)<iβ
27Γ^ J ίr+a,T) Fx 2π ) G

By (3.3) and (3.5), we have

and

— L ( r — s) = — θ log C H (r — s) + —(r — s)

Thus
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(4.7) = M \*U8) + JL (β) \L(s)d
27ClMr + a,T) \ A f )f

^ A "f" i n

say, and

I f K(T _ 8)L(s)ds

2πιh-a,τ) Gx

(4.8) = — ( \-θ log C + — (r - a) + -£- (r - s) \L(s)ds
2πiU-a,τ)\ A g )

= -is + h + J5 ,
say.

We have

)-Lί L{s)ds.
Δ7Vlτ)

Since L(s) is holomorphic on σ — — a we can move the line of
integration to σ = r/2. Thus

^ 9 M Γ L ( r / 2 + i

2τrt J r

Since L(r/2 + iί) is the Fourier transform of i(a?), we have, by the
Fourier inversion formula, that, as T —» + oo,

(4.9) I3 > (θ log C)Z(O) .

We have

Thus, since f(s) converges absolutely for σ > r,

= — L Γ ( + t o Σ ^ / ( f t ) r -/!ί(tt + logn)eM2+a)«ettududt
2jΓ i-TJ-oo n=ι

ί1 f+oo +oo

Έ

say, where

iJ^Xu) = Λf(n)n-r/2l(u + log ^)β(r

By (4.1), we have
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\Hntf(u)\<\Λf(n)\n-ι'+b) .

Thus Σ2SL Hnyf(u) is absolutely and uniformly convergent and defines
an II function Hf(u). In a similar way we have that

-Lf jL(r -
-«,D g 2π J-rJ-oo

where Hn,g{u) = Ag(n)n'r/2l(u — log w)e~~(r/2+α)u and satisfies the esti-
mate l Hn.ΛtOI < M f f (^) |^~ ( r + 6 ) . Thus Σί=i H«.g(^) i s absolutely and
uniformly convergent and defines an II function Hg(u). If we let

H(u) = Hf(u) + i ϊ » .

Then we have

" 2π J-rJ-oo ^

Also we see that H(u) is continuous and differentiate since I is,
except at the points ± log n, where Af(n) ^ 0 or Ag(n) Φ 0. At
such points it only has jump discontinuities. Thus, by the Fourier
inversion formula, we have, as T —> +°°,

(4.10) I2 + Iδ >-fΓ(O),

where

(4.11) H(0) = Σ {Λf(n)l(\og n) + Ag(n)l(-\og n)}n~r/2 .

By assumption we see that Δ'/Δ(s) has no poles for σ > r/2 and
is O(log|ί|) in any vertical strip outside of neighborhoods of its
poles. In I1 and I4 we move the line of integration to the segment
σ - r / 2 , | ί | ^ T. Then, by (4.2),

\ JL(s)L(s)ds = [ Ar{s)L{s)ds + O(T~ι log T)
J (r + a,T) Δ J (r/2,Γ) Δ

and

( -^-{r - s)L(s)ds = ί — (r - s)L(s)ds + CKΓ"1 log Γ ) .
J (-α,Γ) J J (r/2,T) Δ

Thus

Σ a k \^r(aks + /3») + ̂ {ak{τ - s) + βk)\L(s)ds
=i ( Γ Γ )Γ

O(T"1 log T)
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Σ
k=l

where

r/2,τ)
^jrtekir - s) + βh) \L(s)ds .

As T , we have, by Proposition 4 of Lang [13, p. 347],

— 1—(<Xki"β + βk2πJ—I Γ

Γ'
(4.12)

Since L(r/2 + it) is the Fourier transform of l(x) and J(s) is assumed
to have no poles in the half plane σ > r/2, which is equivalent to
saying that akr/2 + μk > 0 for 1 <* k <L N, we see that the hypo-
theses of Corollary 2 are satisfied. Thus the right hand side of
(4.12) is

-ί(0)7
1 -

1 —

= -2ί(0)7 + p

By (4.1) we see that this infinite integral is convergent.
Thus combining (4.6), (4.9), (4.10) and (4.13), we have

explicit formula (2.6) and complete the proof of Theorem 1.
the

5* A generalization of the von Mangoldt formula* In this
section we give as an example of Theorem 1 a result that relates
the analytic behavior of / to the summatory function of the asso-
ciated von Mangoldt function Λf.

Let y > 1 and

1

if 0 < x < log y

if x = 0

—Vy, if x = logy

0 else .

Then it is easy to see that
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V ~ -, if s ^ O

0, if 8 = 0 .

We have

(5.1) Σ {Λf(n)l{log n) + Λg(n)l(- log w)}w-"* = Σ ' Λ,(») -

where the' indicates that if n = y we add only (l/2)Λ/(w), if we
note that by (2.4) Λg(l) = 0.

We have

Σ Σ!
(5.2)

— V * JLL.(IIWO "Π V */v VΣ* &( 1) Σ* Σ y \ ~

where the * indicates that if wy = 0, for some j, then the term is
δjlogy and if βk — —m, for some k, then the term is logy. We
have

f +o

J -
e— -dx + log (1 -

Jo 1 — ex

If we combine (5.1)-(5.3) we have the result of Theorem 2,
which is the generalization of the von Mangoldt formula.

THEOREM 2. With the notation as above, we have

Σ ' ΛAn) = Σ * •£*-&"' - 1) - Σ * a Σ y ~Σ

- lim Σ*J£-lJL ~ JL(© log C + 2AΎ)
T-*+oo \,\<T p 2

+ Σ ak log (1 - y~1!ak) + —Λ j±dx .
*=i I Jo 1 — e )

Knowing more about the location of the zeros of f(s) and the
Wjf 1 ^ j ^ R, would maybe allow one to prove a prime number
theorem for the coefficients of f(s). In the next section we will
prove a theorem relating to the location of the zeros of f(s).

6. The nonvanishing on the line of absolute convergence*
In this section we adapt the method of Besenfelder [4] to show
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the nonvanishing on the line of absolute convergence for a certain
subclass of the Dirichlet series being studied in this paper.

Let y > 0, ί be a real number and

} e m
2vπy

Then the corresponding Laplace transform is easily seen to be

L(s) = ey{s~r/2-it)2 .

Thus, by Theorem 1, we have

lim Σ ey{p-r/2-ίt)2

R
_- V § .eV(w3-r/2-it)2 _j_ V V

1

N m(k)
§ .eV(w3-r/2-it)2 _j_ V V

3=1

j L ^ ^ Λg(n)nu}
2vπy n=

Zvπy 2vπy

where

op-(akx)*/iy-iUϋtkaί)-lakr/2+βk-l)\x\ __ 1

dχ

1 - ^
In [2, Theorem 10] it is shown that there exists a positive con-

stant C such that

(6.3) N(T)~CTlogT,

as T->+co. Using (6.3) and writing the sum on the left hand
side of (6.1) as a Stieltjes integral one can show that the sum over
all p is convergent, i.e.,

lim Σ ey{p'r/2-ίt)2 = Σ e»(ί>-r/2-«>2

 β

We are concerned with the behavior of the right hand side of
(6.1) as y —> + co. We have

(6.4) θ]ogC + 2Av <<:

2i/7ry

Let sfc = (l(2)αkr + βk-l and % = (l/2)αkr + μk-l, where /ί4 =
Re(/8t). Then
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(6.5)
f + 0

Jo
cos (ahtx)(l - e-*1

ex - 1

The first integral in (6.5) is convergent and has the value

2{7 + Re [ψQ + aki)]} .

(See [1], p. 78, 4.3.138 and p. 259, 6.3.17.) If 0 < x < 4ηkylo&,
then —a\x2liy — ηkx > 0 and if x > 4j}ky/ak9 —a\x2\ky — ηkx < 0.
Also if ηk > 0, then -a2

kx
2/4y - ηkx < 0. Let

Then

Θk — max (0, 4^

cos (aktx)(l — e~al

as y —> + oo, if % > — 1. Also

cos
ex -

as y —• + oo. Thus, if % > — 1, i.e., αfcr + 2μk > 0, then Wk(y) < 1,
as /̂ —> + oo. Thus, as y —> + ©o,

Let

= Ln(v)Mn(t) ,

say. Then, if akr + 2μk > 0, we have, as y —> +oo,

V

(6.6)

iV m(fc)

fe = l m = 0

^ ) 2

Suppose ρ0 = r + ί70 is a zero of /(s). Suppose /(s) has no
zeros in the region
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U = {z - u + iv: (u - r/2)2 ^ v2} .

Then |7 0 | > r/2.
Prom (6.6), with t = 0, we have

V Λ K O - Ϊ / 2 ) 2 — V < ? ^ < R e ( ? ) — r / 2 ) 2 - ( I m ( | 9 ) ) 2 + 2 ( R e (/>)-r/2) (Im (,o)) i ]

P P

- o(l) ,

as y —• + oo, since / has no zeros in the region U. Thus
co R N m(k)

(6.7) Σ £.(y, 0) = Σ δjβ1""-'--''81 + Σ Σ e " p ' ' s + ( i * + " ) / e * ) ! + o( i ) ,
m = l i —1 jfc = l m = 0

as 2/ -> + oo.

In (6.6) let t — 70 and let i; be the multiplicity of p0. Then ^
contributes a term ve^2 4. Since r ^ Re (p) for all nontrivial zeros
of f(s) and since f(s) has no zeros in U imples Im (p) ^ r/2 the
rest of the sum on the left hand side of (6.6) is o(eyr2/i), as y->+oo.
Since the first two sums on the right hand side of (6.6) arise from
poles of f(s) and A(s) in the strip 0 ^ σ ^ r and t = 70 > r/2, we
see that, as #-» +co ? these terms are o(eyr2/4). Thus (6.6) becomes,
in this case,

(6.8) Σ LM(y, 70) - -vβ^ 2 / 4 + o(eyr2/i) ,

as 7/ —> + oo.

We now suppose the coefficients of f(s) are real and that f(s) —

g(s). Then Λf(n) = Λ(w), by (2.4), and so

Ln(y, t) = Lm(y)Mm(t)

~ 2Lm(y)Λf(m) cos (έ log m)

= Nm(y) cos (ί log m),

say. Note that

Lm(y, 0) - iSΓm(i/)

and

Lm(y, 70) = iSΓm(i/) cos (70 log m) .

By Schwarz's inequality and the double angle formula, we have

Σ LJy, 7,)) = Σ VNJM) VNm{y) cos (70 log m)

^ -|-( Σ iv.d/) )2 + Y £ JV.dz) Σ ^ ( y ) cos (270 log ™).

Thus
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(6.9)
Σ Nm(y) cos (70 log m)

Σ Nu(y)

1_
2

Σ#»(2/)cos(2τ0logm)

We now apply (6.7) and (6.8). Then, as 2/-++00, the left hand
side of (6.9) approaches

(6.10) +
Λ=l m=0

If we let p = maxy,fc,m (\wd - r/2|2, |r/2 + (m +
+oo; (6.10) approaches

), then, as

(6.11) -veyr2/i φvr^γ

Now j? ̂  r2/4, since Re {w5) ^ r. Thus the right hand side of (6.11)
is ^v\

On the other hand, the right hand side of (6.9) is ^1/2. For
if 2τ0 is an ordinate of a zero of /(s), then, by (6.8), we see that,
since d3- > 0, 1 <I j ^ R, the quotient is negative as y —> + oo. If
2τ0 is not the ordinate of a zero, then, as y—> +oo, the quotient
vanishes, by (6.6) and (6.7), since 2τ0 > r and δ3- > 0, 1 ̂  i <: 22.

This proves the following theorem.

THEOREM 3. Suppose f(έ) is a Dirichlet series with real coef-
ficients that satisfies the functional equation (2.3) with f(s) = g(s).
Suppose that akr + 2μk > 0, 1 ̂  k <̂  iV, α^d /(s) feαs ^o ^eros iw
ί/̂ β region U = {s = σ + it = (σ — r/2)2 ^ ί2}. ΓΛe^ f(s) has no
zeros on the line σ = r.

We illustrate Theorem 3 with some examples.

EXAMPLE 1. The Riemann zeta function. In [18, p. 22] it is
shown that ζ(s) satisfies the functional equation (2.3) with JV = 1,
ax = 1/2, β, = 0, C = π, Θ = 1, δ = -1/2 and r = 1. Then

αxr + 2μ, = 1/2 > 0 .

On p. 330 of [18] it is shown that the zeros closest to the real axis
are 1/2 ± iT, where T is approximately 14.13. Thus, by Theorem
3, ζ(s) has no zeros on the line σ = 1.

EXAMPLE 2. Hecke zeta functions over the Gaussian field. In
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[13, Chapter 14] it is shown that if ft is a positive integer and

-j -foo +co /?4ife arg [m + in)

ζ(8, λ») = JL Σ Σ e4
< * .' * / o . 2\<ί

then ζ(s, λfc) satisfies the functional equation (2.3) with N = 1, αx =
1, ft = 2ft, C = 7Γ, θ = 2, δ = - 1 and r = 1. Then

axr + 2ft = 2 + 4ft > 0 .

From Table 2 on p. 501 of [6] we see that for 1 ^ ft ^ 10 all the
zeros of ζ(s, λ*) are outside the region U. Thus, by Theorem 3,
ζ(s, λfe) is nonzero on the line σ — 1 for 1 ^ ft :g 10.

EXAMPLE 3. L series with real characters. In [5, p. 71] it is
shown that X is a real character modulo ft, a positive intger, and

L(s, X) = Σ X{n)n~s ,

then L(s, X) satisfies the functional equation (2.3) with N = 1, αx =
1/2, ft = (l/2)α, C - π /ft, θ = 1, δ = -a/2 + (logε)/log C and r = 1,
where a = {X(l) - Z(-l)}/2 and ε = ft'1/2G(X){(l - a) - αi}, with G(X)
the usual Gaussian sum associated to X. Then

axτ + 2ft = 1/2 > 0 .

From [7, Table 2] it is known that L(s, X), for ft = 3, 4, 5, 7, 8, 11,
12, 13, 15, 19, 24, 43, 67, and 163, has no zeros in the region U since
the zeros are all of the form 1/2 ± ΪΊ with 7 > 0. Thus, by Theorem
3, L(s, X) has no zeros on the line σ = 1 for these ft.

EXAMPLE 4. Artin L-functions attached to certain cubic fields.
Let ζρ(αi/3)(8) be the Dedekind zeta function for the field Q(a1/3) and let

La(s) = ζρ(β1/3)(s)/ζ(s) .

Then it is known [13, p. 254] that LJβ) satisfies the functional
equation (2.3) with N= 1, a, = 1, ft = 0, C = 3i/"3α/27r, θ = - 2 ,
3 — 1 and r = 1, then

α χ T _j_ 2ft = 1 > 0 .

From Table 1 of [12] we see that LJβ) has no zeros in U for a —
2, 3, 6 and 12. Thus, by Theorem 3, we know that La(s) has no
zeros on the line σ = 1 for a — 2, 3, 6 and 12.

REMARKS. (1) This result, in this generality, seems to be
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new.
(2) One may also prove the same result if the abscissa of

absolute convergence is α, where r/2 ^ a < r.
( 3 ) It seems reasonable that this same proof would work, with

not too many modifications, for a wider class of Dirichlet series. It
should not be necessary to assume that the a(n) are real or that
f(s) = g(s).

(4) Finally, it seems quite likely that this proof can be
modified to give a zero-free region for f(s), since many of the
proofs that yield the nonvanishing of ζ(s) at s — 1 can be amended
to produce zero-free regions. See, for example, [18, pp. 40 and 48].

(5) In [10] Jaquet and Shalika show that the L-functions
attached to certain representations of GL{n) do not vanish on their
line of absolute convergence. Their method of proof is unconditional
in that they do not need to check for nonvanishing in the region
U. In [11] they use this result to show that certain related L-
functions are absolutely convergent in the half plane to the right
of this line of absolute convergence and hence nonzero there.
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