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Mu-THETA FUNCTIONS

WILLIAM G. FREDERICK

Using the technique of compact rational subgroup approx-
imations to unitary representations on a nilmanifold, we
justify the evaluation of a distribution at certain rational
points of a group. This method allows us to give meaning
to a distributional identity between theta-like functions at
discrete points in the group. The identity itself arises from
the equivalence of certain representations of the group. In
attempting to compute an intertwining constant that is
present, we are also able to show the existence of distribu-
tions that behave like the classical gaussians, i.e., they are
eigenfunctions of the Fourier transform.
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I. Introduction. Let A be an abelian, nilpotent algebra with
a nondegenerate, symmetric biliner form B(-, -) which satisfies
B(zy, w) = By, xw) for all z,y and w in A. Let 4 be a vector
lattice in A so that 4-4c 4. Assume that 4 = A4* where A* =
{xe A|B(x, /)c Z}. Let B=A X A X R be the algebra with the
following multiplication (and component-wise addition):

(@1, Top 1) Y1y Yoy T2) = (@Y1, 1Y, B(,, ¥5))

where «;, and y, are in 4 and r,e¢ R, (4 =1, 2). The commutant of
this operation is used to generate a Lie bracket in the algebra
B by [,y =2-y —y-x for all x and y in B. The exponential
map,

expx = i 1/k! x*
k=1

applied to B yields a connected, simply connected nilpotent Lie group
with multiplication, “+”. x*y =2+ y + 2y, 2, y in B. The log
function (unique inverse of the exp(-) function) is well defined on
(B, ).

Define the scalar log function on A by

/(@) = 3, (=1)*"'Blx, *)/k
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for k=2 to » + 1, where  is the nilpotent degree of the algebra
and z is in A. This function is the third entry of the tuple,
log(x, oz, 0) for (x,0x,0)e(B,*) and cc R. In [5], the following
distributional identity is established:

(1) % exp 2ni(o/(7) — B(7, x)) = K(o) 5_}1 exp — 2wio/(07(x + ¥)) .

K(o) is a (intertwining) constant depending only on ce R. While
this identity exhibits some promising relationships, it should be kept
in mind that it is true only in a distributional sense and consequently
is meaningless at distinet values of # in A. Also, unless a formula
for K(o) exists or at least a means of computing K(o)-independent
of this identity, we are unable to attach any meaning to (1). Both
of these objections will be addressed in this paper. At least for the
latter, a method will be outlined for computation of K(o).

II. p-theta distributions. We continue with group construection
of the introductory section to show the derivation of (1). For details
and proofs, the reader is referred to [5]. The group inverse in (B, *)
is denoted by Z and is given by

T = (xu Loy r) = ;1(—1)"(901, Loy Tl)k .
The notation ¥ is used to avoid confusion with multiplicative inverses
in the algebra (B, -). Also, the log function on (B, *) is given by

r

log X = E (—l)k_l(xu Lo,y 'rl)k

k=2

for xe B and it is easy to show that this is the (unique) inverse of
the exponential map from the Lie algebra (B, [:, -]) to (B, *).
Recall that 4 is a vector lattice of A and define I" = 4 x 4 X R.
I' is a co-compact subgroup of B. The subgroup properties are easy
to verify since A4-4C A. A character p(-) can be defined on 4 by

w(Vy, Yo, ) = eXp 277 .
The character property is verified by a straightforward computation
and uses the fact that 4 = A4*. The existence of a character on I”
gives rise to a unipotent representation on (B, *) and we have
PROPOSITION 1.
U = ind(I", (B, *), tt) 1is irreducible .

Another subgroup arises from 0 X A X R = M. Actually M is
normal in (B, *) and M-M = 0 in the algebra (B, -). The subgroup
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properties are immediate. The exp(-) map applied to M is the
identity map. We define a character on this subgroup by

(0, x, r) = exp 2nr, .

Verifying that x is a character is easy since the * operation in M
is equivalent to adding the tuples component-wise.

ProposiTION 2.
U~ = ind(M, (B, *), x) s irreducible and equivalent to U* .

P,=AX0XR is also a subgroup of (B, *) and has a character
() defined by

Loz, 0, r) = exXp 2mir .

In this subgroup, the * multiplication is additive in the last entry
(real) of the tuple and hence X, is a character.

PROPOSITION 3.

U’ = ind(P, (B, *), x,) s irreducible and equivalent to U*.

Finally, one more subgroup is to be introduced.
P, = {(z, ox,r)|xc A, r,eR, 0€ R} .

Again verification of the subgroup properties is a matter of com-
putation. P,, as a subset of (B,[,] is an abelian subalgebra and
the exponential map maps P, into itself by virtue of the closure of
multiplication in P,. Let A be the linear functional in the dual of
the algebra (B, [,]) defined by Mz, y, ) = » for (z,y,r) in B. We
generate a character X, on P,C(B, *) by

L x, oz, r) = exp 2min(log(x, ox, 1)) .

PROPOSITION 4.

U° = ind(P,, (B, *), x,) s irreducible and equivalent to U* .

Thus far, we have constructed four subgroups, characters and
corresponding induced irreducible representation—all of which are
equivalent. We digress for a moment to consider these representa-
tions in terms of distributions. Let U be a unitary representation
of a connected, simply connected nilpotent Lie group, G and let C=(U)
be the set of vectors » in the representation space of U, H(U), such
that g —» U(g)v is a C=, H(V)-valued map. Define C~*(U) as the space
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of continuous conjugate linear funectionals on C~(U). Note that by
virtue of the mapping v — (v, -), H(U) c C~*(U). So for ze C*'(U),
2(v) = (v, x) = (x, v) = (). C=(U) may be topologized so as to be
a Fréchet space and V is thereby continuous on C=(U). Let U.,
denote the restriction of U to C*(U) and let U... be the contragredient
representation to U...

It is known that there is a unique, regular invariant (Haar)
probability measure on the compact group I"/G. This allows us to
define a representation R of G in L*'/G) by right translation. Let
f be in C2(U) (C~ functions with compact support in the represen-
tation space of U) and define

U(f) = |, 1) Ueda

It is known that U(f) maps H(U) into C~(U) continuously. Hence
there is a conjugate map U(f): C=(U) — H*(U), where H*(U) is the
conjugate dual of H(U). Actually, since H*(U) is isomorphic with
H(U), we may take U(f)*: C*(U) — H(U). Also, Ux)U(f)*v=U(f,)*v
where f, = f(x™*-) and so the range of U(f)* is, in fact, contained in
C=(U). The map z— f, is C° from N into C(N) and f — U(f)*v is
continuous from C2 into H. Let f*(x) = fla~") and U(f).. = U(f*)*.
U(f). extends U(f) when we consider C~c C*". Note that this
defines the action of U on a distribution acting on C?(U) by the
considerations in [7]. The measure on the lattice I" will be assumed
to be the counting measure.

With these preliminaries established, we make the following
definition, A Schwarz Distribution 8, on (B, *) is a p-theta distribution
if

(1) 0,(v*2) = p(7)0,(x)
and

(ii) 0,(z*w) = 0,(x)x(w) for all x in B, v in I" and w in P,. The
real number ¢ is called the period of 4,(-).

PROPOSITION 5. For each o in R, there is an essentially unique
(up to a scalar multiple) p-theta distridbution.

The existence of the p-theta distributions is a result of the
equivalence of representations established earlier. In order to show
the implications of this, some consideration must be given to the
intertwining operators between the four equivalent and irreducible
representations. C=(U) is topologized by the topology of uniform
convergence on compacta of the functions g —U(g)v and their der-
ivatives of higher order. By the use of suitable semi-norms, C*(U)
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is a Fréchet space and the restriction U.(g) of U(g) to C~(U) is a
continuous linear operator on C*(U) by the closed graph theorem.
From [10], we have

PROPOSITION 6. The following are equivalent:

(1) U is irreducible

(2) U, s irreducible

(8) The only continuous, invariant bilinear forms on
C=(U) x C>(U) are multiples of the scalar product in H restricted
to C=(U) x C=(U).

Recall that C—=(U) is the space of conjugate linear functionals
on C°(U) and let T be an intertwining operator between two
continuous unitary representations U, and U, in H, and H, re-
spectively. T has a unique continuous extension to a mapping
T~>: C~(U,) — C~=(U,). A linear functional § in C~=(U) is defined to
be a generalized cyclic vector for U provided 6(U(g)v) = 0 for all ¢
in G implies that v = 0 for » in C=(U). A generalized cyclic repre-
sentation is a pair (U, 0) consisting of a unitary representation U
and a generalized cyclic vector, 6. Two such pairs (U, §) and (V, ¢)
are projectively equivalent if there is a unitary isomorphism T
which maps 6 onto a multiple of ¢ and intertwines U and V. The
pairs are equivalent if that scalar multiple is one. We will show
that the identity (distributional) (1) is the projective equivalence
of generalized ecyclic representations and is equality between two
p-theta distributions. K(o) is the multiple of that projective equiva-
lence.

The pair (U, ) has a realization in the Hilbert space of distri-
butions on C?(G) — C* functions with compact support. If ¢ is in
C2(@) and f is in H(U), define

Fg) = 8(Ug)f)

where
v = | 0Ty

for dg (right) invariant Haar measure on G. Poulsen, [10] has shown
that if ¢ is a continuous function on G vanishing at infinity, then
U(¢) leaves C=(U) invariant and is continuous in C*(U). If ¢ is in
C?(@), then U(p¢) maps H(U) continuously into C=(U). Further-
more, the integral defining U(g) converges in C(U) in the sense
that if f is any continuous linear functional on C*(U) and if v is
in C=(U), then
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Fugp) = | so)7(Uig)dg -

The map f — f is injective and defines a realization of U in the
space of distributions, H. H will be referred to as the canonical
space for (U, 6) and the realization of U in this space as the canonical
realization. U acts as right translation in this realization, C*(U) is
a space of locally integrable functions and ¢ is evaluation at the
identity. In [5], Penney proves that if the map f — f(¢) is continuous
for every ¢ in C2(G) (suitably normed), if right translation defines
a unitary representation U of G in H and if C*(U) is a space of
locally integrable functions, then (U, d) is the canonical realization
of a unique equivalence class of generalized cyclic representation.
We will use the following corollary to those results; namely any
representation induced from a character of a closed subgroup of G
is a generalized cyclic representation.

A pair (X, H) consisting of a character X and a subgroup H is
maximal if there is a A\ in the dual of the Lie algebra of G and
a subordinate subalgebra % of maximal dimension such that H =
exp(h) and X(-) = exp 2win(loge-) restricted to H. The pair is integral
if I' " H\H is compact (or equivalently if I'H is closed) and if X
restricted to "' N H is trivial. I', here, as elsewhere is a co-compact
subgroup of G. In [1], we find

THEOREM 1. Let (x, H) be any maximal, integral character.
Then the distribution D associated with the irreducible projection
onto the primary subspace of U® = ind(H, G, x) s given by

~

@, £ =%(, , A0 Chn)

where the sum 1is over all ¥ em I' N H\I'. f 1s in C=(I'\G), dh 1is
normalized Haar measure on I' N H\H. The sum 1s absolutely
convergent.

THEOREM 2. Let M, and M, be closed (but mnot mnecessarily
connected) subgroups of the milpotent Lie group G. Let x, and x,
be characters on M, and M, respectively such that x, = x, on
MM, + {e}. Assume MM, is closed and U, =ind (M, G, x,) and
U, = ind(M,, G,, x,) are irreducible representations. If T, and T
are defined as follows then T, and T, are bounded intertwining
operators between U, and U, and T} = T,. For f in C°(U,)

@) = |, Fimg)mimdm

AyNM\My
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and for f in C*(U,)

@) =, . fmgmimdm .

M0 My

Proof. From the results in [5], C°(U,) can be identified with
the space of Schwarz distributions ¢ on G and in a distributional
sense ¢(m-) = x,(m)é(-) for all m in H,. If we can show that T.f
exists for all f in C*(U,) and is locally integrable, then it would
follow that T.f defines a Schwartz distribution and hence an element
of C—=(U,). T, is then a continuous from C~(U,) to C~=(U,). From
Proposition 6, T, takes values in C*(U,), T, is a multiple of a unitary
operator because the form B(x,y) = (T\x, Tyy) is a U, invariant bi-
linear form and hence B(x, y) = ¢{(x, y) implying that TxT, = cl.
The adjoint property is clear.

Let M, be the smallest connected subgroup containing M,; then
M\M, is compact. In [5], it was proved that C=(U,) is the space
of C~ functions f which satisfy f(mx) = x,(m)f(x) for m in M, and
f is Schwartz transverse to IM,. It is not difficult to show that
M, N Mz\ll7[1 N M, is compact. Therefore we may write

7, (m) f(mz)dm = | Fi(mum) f (mma)dm.dom,

SM,_HMZ/MZ Tllan\MZSMIr)MZ\Elan

and the integrals exist by compactness and f being Schwartz trans-
verse to Jf. Clearly T.f is in fact a C~ function and hence locally
integrable. O

Establishing this result allows us to compute explicitly the
intertwining operators between the four equivalent irreducible

representations.

Ue T(a, o) U~

T(o, 0)1 lT(oo, )
[ N— § [
v T, p) U
FIGURE 1

More direct computations show that P,xM = B, P,xM = B, and
P,«P,= B. For fe H(U,

T, 08@) =, fPaj@dp = | f(v,0,0)dp

P,NPy

since {(», 0, 0)|» in A} is a complete set of inequivalent coset repre-
sentatives of P,N P, in P,. Similarly, for fe H(U)
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T(a, =)f@) = | £(©, 3, Osw)dp
for fe H(U),
7O, Wf@ = 5 70, 7, 0)+2)
for fe H(U™)
T(es, ()f() = 5, £((7, 0, 0)+)
and for fe H(U"),
T(©, =)f@) = | f(©, p, 0)x)dp .

Let w(-) be the distribution defined by w(mx*p) = X(m)X,(p) for
m in M and p in P,. Of course, this makes sense only if X and X,
agree on MNP, which is 0 X 0 X R and if M+P, = B, both of which
are clear. Similarly, define the distribution in C~=(U"), w(p.*p) =
Xo(po)X,(p) for p, in P, and p in P,. Note again that X, and X, agree
on PNP, and B= PxP,.
PROPOSITION 7.
T(o, 0)6 = w,
T(o, =)0 = w .

Proof. Let g be in C*(U®) with compact support in P,B, then

<g, T(c, 0)6) = <T(0, a)g, 6>
= T(0, 0)g(0)

= SAg(a, oa, 0)%,(a, oa, 0)da
= g, wy)
Similarly for f in C*(U*) with compact support in M\B,
(f, T(o, )5y = (T(c°, 0)f, 6)
= | f(a, o0, 0% (a, ga, 0)da
= (f, w) . O
Finally,

T (oo, M)W(®y, T,y 0) = O,(2,, %, 0)
K(O)T(Oy f")wo(xu .’172, 0) = Ho(xh xZ, 0) .
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PROPOSITION 8. 4, s a p-theta distribution and K(o) is an
intertwining constant depending only on o.

Proof. The conjugate dual space C~=(U~) may be identified with
the space of Schwartz distributions @ which satisfy @(mxx) =
L(m)®(x), [5]. By its very definition then 6, = T(eo, )w must be a
p-theta distribution [5, §III]. Using Schur’s lemma,

(2) T(ee, 1)T(o, =)o = K(0)T(0, 1)T(0, 0)0
for some constant, K(s) and both T(eo, p)w and T(0, #)w, satisfy
the definition of a p-theta distribution. [

Now that we have explicit formulas for all of the intertwining
operators we introduce coordinates and obtain a more concrete from
for (2) — in fact we show the equivalence of (1) and (2). The following
results will be useful in the computations that follow.

PROPOSITION 9.

logx(z, oz, 0) = (log,x, o log, x, a/(x))

where Z(x) is the scalar log function defined earlier and
(1) Z(a*y) = 4(2) + #(y) — Bz, y)
(ii) 7(x) + 2(%) = B(x, %)

Now the computations for 4,:
0a(x1) x2y O) = T(oo, #)w(xly x2y 0)
= 3 w((7, 0, 0)x(x,, a,, 0))X(7, 0, 0)
= >, exp 2ni B(Y, X )w(V*xy, X, + T, 0)
= >, exp 2wi[B(7, x,) + /(7*x)] .
where all sums are over ¥ in 4. Applying Proposition 9, we have
0,(x,, ., 0) = exp 2wio/ (x) >, exp 27i[ B(Y, x, — ox,) + a7(7)] .
For the other side of (2),
0‘,(371, xZ) 0) = K(O')T(Oy #)wo(xly 992, 0)
= Z wo(O, 77 0)*(971, x2r O)XO(Oy 77 O)
= >, Xy(b, 0, t)X,(a, ga, 0)

where the sum is over ¥ in 4,b =2, — 67, @ = b*x and ¢, = ¢ —
B(a, b).

0,(xy, @5, 0) = >, exp — 2mic/ (e (ox, — %, + 7)) .
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Replacing oz, — x, by 2, we have the distributional identity (1).

THEOREM 3.
> exp 2wi(as(Y) — B(7, x)) = K(o) >, exp — 2xia/0~ (& + 7))

The sum on both sides is over ¥ in A.

III. p-Theta functions. We will in this section attempt to
duplicate the results just completed in the (locally compact) group
structure of the previous section. Here, however, we will be using
a compact group and will obtain a function identity (as opposed to
a distributional identity) analogous to (1). In a subsequent section,
we will evince the connection between the two identities.

Recall that the vector lattice in A had the property that 4 = 4*.
Throughout this section we will assume that the real number ¢ of
identities (1) and (2) is rational and in lowest terms. That is, 0 =
afb, (a,b) =1. Define

A, =3 (An))
k=1

where, as before, » is the nilpotent degree of the algebra A.
4, = A ={xe A| Bz, A,)CZ}
A, = 3 (AdSB)
A, = (A"
PROPOSITION 1.
(a) d,cd,cACA,CA,.

() 4, is a two sided ideal in the ring, A,.
(e) 4, is a two sided ideal in the ring, A..

Proof. Actually for any sets S, S, in A such that S, c S, then
SrcS*. Clearly A, DA, D4 so A*C A¥c(A,)*. A, is a ring by
construction since A is nilpotent and any coefficient of the form
(1/n!)* cannot appear for k> . If A is in 4,2 and y are in A4,
then

B()‘"x; y) = B((l?')\:, y) = BO\" (I?:I/) .
The latter form is integral since A is a ring. ™
In the same method as in introduction, A, and A, will be the

basis for the construction of a compact ring, and subsequently, a
compact group. B,= A, X A, x R is a ring—with multiplication



Mu-THETA FUNCTIONS 303

defined as a subset of Band I', = 4, X 4, X z is a two sided ideal
in B,. Define B, = I',\B, and note that it is isomorphic to (4,\4,) x
(A)\A)) x w. B, is an algebra because I", is an ideal. In the same
fashion as before, we generate a Lie Bracket on B, by [% 7] =
F-—%-% for all & and ¥ in B,. The compact group associated
with B,, denoted by (B,, *), is B, with “*” multiplication defined by
TY=TF+Y+TY.

In the analysis that follows, we will denote projection to B, by
affixing “~” and form pre-images by removing “~”. TFor instance,
consider the following subset of B,

M, =1\, x A, xR
and the subset of B,
M,=1, x A, x R

ProOPOSITION 2.
(a) M, is a subgroup of B,
() M, is a subgroup of B,.

The proof of this straightforward. Recall that M =0 X A X R
and thus M, =M, "M+ I,= (M,N M)*I", by the multiplicative
properties of M. The subgroup I, is normal in B, and the character
x of §I is trivial on I', N (M, N M). Therefore, there is a unique
extension of X to a character X, of I'¥(M, N M) = M,. Since z, is
trivial on I", we may also define a character 7, on M, = I",\M, by
projection.

With the construction of §II in mind, we establish

THEOREM 1. Let U be any irreducible representation of (B,, *)
such that U restricted to the center of (B,, *) is equal to eI, where
I s the didentity operator and t 1s tn R. Then U=0> =
ind(#1,, (B,, *), %) and U? is irreducible.

Proof. Let U restricted to I, be denoted by UZ. Since U” is
finite dimensional (M, is compact),

(71: — i@Um

where the UYs are primary and U’ =z, for I, the identity
operator on the vector subspace of H(U?) operates and the z; are
distinct characters of M,. From the results in Mackey, [3], we have
that {X;}7_, is a homogeneous (B,, *) space under the operation
2, — XL Fix a %, in {X}, and let S = {Xi|qe (B,, ).
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LeMMA 1. The stability subgroup for %, under the mapping
Z,— % s M,.

Proof. This follows by direct computation. |

LeEMMA 2. There exists a q in B, such that
X, = I},

where x,0, 0, t) = &7,

Proof. Since {x%} for ge B, has M, for its stability subgroup,
there are [I,; B,] distinct elements in {xi}, e B,. A complete set of
inequivalent coset representatives for M ,\B, would be I',\A, X 4 X 2
which is isomorphic to 4\A4,. We claim:

LEMMA 3. The number of elements in the dual of A\NA, is
[4,; ALl

Proof. By the homorphism ¢: A, — A, defined by ¢(x) =
exp 2niB(-, x), we map A, into the dual of A,. The kernel of this
mapping is 4,. The annihilator of the image is precisely 4.
Therefore,

A\, = (4\4,)" . 4

Continuing the argument in Lemma 2, there must exist a ¢ such
that z, = «! since 2, was a character for I,. O

LEMMA 4. NI f X0, 0, t) = &, then the stability subgroup of
{x}, g€ B, is M,.

Proof. From Lemma 2, x, =% for some §'c B,. Applying
Lemma 1, we see that the stability subgroup of x, is Ii7,. O

We now apply the Mackey machinery, [3] to prove that U=
ind(Ji1,, (B,, *), ). This will establish that U =Us. We isolate this
result in

LEMMA 5.
U = ind(i1,, (B,, *), «°).

Proof. As the stability subgroup of =, is M,, it follows from
the Mackey machinery that ind(/Z,, (B,, *), %,) is irreducible and equi-
valent with U?. In particular, Uz is irreducible. (]
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Let ¢ = a/b be a rational number such that (a, b) = 1. Recall
that the definition of A, depended on b and we choose % (used in
the definition of A,) so that » = b and »n = a.

In (B,, *) define the subsets P,,=(P,NB,)«I'n and P,,,=
Pa ﬂ Pa,n‘

ProrosITION 3.
P, . is a subgroup of (B,, *) .
Proof. This is clear since P, B, is a subgroup and I", is normal

in B,. By the properties of 4, and A, the latter is contained in I",
and thus

P.=PNnNB,+1T,. U
As a result of this proposition, we have

COROLLARY 4.

B, . is a subgroup of (B, *) .

PROPOSITION 5.

Pa,n = Pum,o*(o X An X Z)

Proof. From the previous result, elements of P, , are of the form
@+ N, 08+ N1+ 2) for 2 in A,, N in 4,,\ in 4;, » in R and z in Z.

However, (x+\, gx+N, r+Z)=((x+N), @+N), r)+(0, n—0oN, Z))
and the latter element is in 0x 4, X Z. P,,*(0x A, XZ)=P,,,+
(0 X 4, X 2) by a previous argument. Elements in P,,, are of the
form (x, ox, ) + (0, N, Z) for # in A,. It is clear that this is in
P,NB,+1I,=P,,. O

The subgroup I', = 4, X 4, X Z is normal in B, and X, is trivial
on I'yNP,,, There is a unique, well-defined extension of X, to a
character z,, of P,,,*I", = P,, n.

Since z,, is trivial on I',, we may define a character z,, on
P, .= TI,\P,,. by projection.

PROPOSITION 6.

U; = ind(P,,,, (B,, *), &,.) s irreducible..

Proof. By Theorem 1, Ur is primary and quasi-equivalent with

U-. O



306 WILLIAM G. FREDERICK

LEMMA 6.
[P,.: B]=1[4, Al

Proof. Let 4, = A,xA,xR. Then P, , >4, and P, , = 4P, ..
Hence, 4,\P,,=4,NP,,\P, ... Now P, ={, ox,t)|xecA,} and
4,0 P, . ={(\, on, )| Nne d,}. It follows that 4,\P,, = 4,\A,. Clearly,
P, \B, = (4,\P,,) N (4,\B,). But 4,\B, = 4'\A, x 4,\A,. Our lemma
follows. ™

The dimension of U7 is [P, ,; B,] which is [4,; A,] by the lemma.

Establishing the equality [4,; A,]=[4.; A,] will prove that U and
U= have the same dimension; by primarity of U? and irreducibility of
U=, U? contains only one copy of U7. We isolate this equality in

LEMMA 7.

[4.; A = [45; AL .

Proof. In Lemma 3, an isomorphism was established between
the dual of A\A, and 4,\A,. That same argument can be used to
show an isomorphism between the dual of 4,\A, and A,\A,. Thus
the number of elements in A4,\A, is equal to the number of elements
in (4,\A.)" which is less than or equal to the number of elements
in 4,\A,. Applying the equality suggested by the first isomorphism
proves the lemma. O

From Proposition 1, 4, x4, X ZcAdAx Ax RCA, x A, X R.
Therefgre, [, =T\ x4xRis a nontrivial subgroup of B,. Define
fZ on I', by

F((7y, 7, £)7) = exp 2mit

for (v, 7, t), a coset representative of I', in 4 X 4 X R.

PROPOSITION 7.

£ is a character on I, .
Proof. Recall from Chapter I, the character p defined on I' by
;’6(717 '727 /I') = 62””

for (v, 7, 7) in I'. p is trivial on I', and # is a projection of px
onto cosets of 4, X 4, X Z in I'. Thus # is well defined. 1

In the following proposition, we establish the irreducibility of
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U" and continue the analogy with Chapter I:

PROPOSITION 8.

Uz = ind(I",, (B, *), &) 1s 1rreducible and equivalent to U= .

Proof. In B,, the commutativity of the *-multiplication for
X=(X,X,r) and Y~ = (Y, Y, )" is equivalent to

X«V:X =Y
VLR V=T
[X, Y1=0.
In B,, this implies that [X, Y] is in [,.
[X, Y] = (0, X,Y, - Y. X, B(X,, Y.) — B(X,, Y))) .

This is, in I', = A, x 4, X Z for all such X, in A, and X, in A, if
B(x,, y,) — B(x,, y,) is integral and x,y, — x,¥, is in 4,. In particular,
this must hold if x, = ox, for 0 = a/b. Then (¢ — 1)B(x,, ¥,) is in Z
for all @, in A,. This implies that y, is in 4, by definition. There-
fore, B(x,, y,) is in Z for all x, in A, which implies that y,e4,. It
is clear that I'\4, x 4 x R is contained in the center of B,. We
have just proven:

LEMMA 8. The center of B, is I',\4, x 4, < R.

£ restricted to the center is of the form ¢ for (0,0, ¢ in
B,. Once we establish irreducibility of U% equivalence with U=
WNill follow from Theorem 1. U: is primary and its dimension
l:lwn; En]'
F\B, = (I"\['\(I",\B,)
= I'\B,
= (A\A,) x (4\A4;) x {0} .

The number of cosets is given by [4; A,]-[4; Ay]. By an argument
similar to the proof of Lemma 38, we can prove:

LEMMA 9.
(455 4] = [4; AX]
Proof. Map A4 into the dual of A, by s(\)(x) = exp 27i(B(), x))

for » in 4 and « in A,. The kernel of this map and the annihilator
of the range are A, and A respectively. O
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Therefore,
[I.; B.] = [43; 4]-[4; Ayl
= [4:; A,]
= [M,; B,]
= dim 0> .
As U* is primary and U2 is irreducible, this completes the proof of
Proposition 8. |

There is one last subgroup to consider. Let

P,,=T\A,x4,xR
and
Xi,.((x, 0, 1)) = exp 2mir

for (x, 0, )" in Py,.

PROPOSITION 9. P, is a subgroup of (B, *) and X,. is a
charactes on P,,,.

Proof. This follows the same line of reasoning as in our previous
arguments. That is, the normality of I', in B, and the subgroup
property of P, B, provide the basis for proof. O

PropOSITION 10. U° = ind(B,,), B,, *), X,.) is irreducible and
equivalent to U?.

Proof. Again, by a counting argument, [P, ,; B,] = [4,; 4.] and
so dim0°® = dimU>. It is clear that U° restricted to the center is
of the form exp 2xit for (0,0, t)~ in the center of B,. Therefore,
by Theorem 1, U =Uz. O

The compact group construction is now complete and we illustrate
the construction by means of the following diagram of equivalent,
irreducible representations:

U, — Uz
U — U
FIGURE 2

By Schur’s lemma, this diagram commutes up to a multiplicative
constant. However, we defer the definition of any intertwining
operators or the computation of that multiplicative constant until
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certain normalization constants are computed. We will establish a
relationship between Figure (1) and Figure (2) by proving that the
multiplicative constant referred to above is K(o).
A function 4, on (B,, *) will be called a p-theta function if
(1) 0,7*%) = A,M0,X)
and
(ii) 0,%°D) = X, 0)0,X)_ o
for all ¥ in I',,  in P,,, and X in B,.

PROPOSITION 11. There s a wunique, up to o multiplicative
constant, p-thela funtion on (B,, *).

Proof. 1t follows from the FroNbenius reciprocity theorem that
the subspace of vectors V in H(U%) such that UXp)V = X,.®)V
for e P,, has dimension one. |

We compute the g-theta functions more explicitly. Let W, be
the function on (B,, *) defined by

W, (#*p) = X,(m)X,,.(b)

for @ in M, and 7 in P, .

LEMMA 10.
M:P,, =B,

Proof. Let (x,4,t) be in B,. Then,
(z, 4,0 = (0, b, 1) *(a, oa, 0)°
where (a, b, t,)” = (x, y — oz, t)". |

(r\4,x A, XR)\(F \A4, x4, X R) is isomorphie to I' \4, x4, xR. By
Lemma 8, M,N P, , is the center of B,. Also, for », 0, in P,, and
My, Mo in My, M, *P; = My P; implies that W,(m;*p;) = W.(m; * 7).
Therefore, W,(-) is a well-defined function on B,.

Define

0, =_3 WX

Fpn M\,

where X~ is in B, and 7 is a coset representative of I, N M, in I,.
In terms of coordinates,
00((w1, xz, t)~) = 00((()’ O: tl)“*(xly wZ, 0)“)
= ¢*"0,((%,, ., 0)7) .
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We compute 4,((z,, x,, 0)~) more explicitly.
(xy, @, 0)” = (0, @, — ox,, 0)"*(x,, 0%, 0)" .
Thus,
W, (2, 2, 0) = X,((0,, @, — ox,, 0)7)X, .(x, 021, 0)7)

= exp 2wio/(x,) .

The set C, ={(7,0,0)~ in I",\4 x 4, X R} is a complete set of coset
representatives of I', N M, in I",.

W.((7, 0, 0)"*(x,, 2, 0)7) = exp 2n3[B(x,, ¥) + ol(v*z,)] and
C.=C,= A\ .

As a consequence,

00((181, x?, 0)~) = ZW[(’Y! 07 0)~*(x1y xZ, 0)~] ’ (7 € Cn)
= exp 2wio/(x,) >, exp 2wi[B(v, 2, — ox,) + a7(7)], (veC,).
The proof that 6, is a nontrivial function will be deferred until an

explicit connection can be made between these functions and the
distributions constructed in §II.

PropPOSITION 12. P} P,,=A,X0A, XR+0X4,X0 is a subgroup
of (B,, *). Furthermore, X,,=X,,on P,,NP,,=(A,N0o7'4,) X4, XR.

Proof. By previous considerations,

P, ={x, 00+ t)ein A, N in 4,, ¢, in R}

P,,={wy, N, t)|y in 4,,\ in 4, ¢, in R}.

(y, M, L)*(x, ox + N, &) = (Y*x, o(y*x — y) + N, t;) for
AN =AY N+ N

and &, = t, + t, + Bz, \'). Note that A" is in 4, since 4, is an ideal
in 4,. Conversely, given an element of the form (a, gb + , ¢;) with
a, b, in A, and ¢; in R, it is easy to show that

(@, b + N, &) = (y, N, t,)*(x, ox + N, t,)

for x and y in A,; N, N\’ in 4, and ¢,¢ in R. So PYP,, is set
theoretically equal to A,x0A4,XR + 0x4,x0. Multiplication can be
easily shown to be well-defined. Therefore, Py, P,, is a subgroup
of (B, *).

In order for (x, ox + \, t,) in P,, to also be in P,,, ox + M€ 4,.
Thus, x€o07'4,. Therefore,

P,.NP,,C{07N, My t) [N, €A, teR, and o 'NMEA,).
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The opposite inclusion is obvious. Finally, X, .(07\, Ny, t) = €%

Xu,n(o-—l)\’ly >\’2’ t) = Xa,n<a~1}\’1, )\’l + (K’Z - >“1)y t)
= exp 27i(t + 07(07\y)) -

However, o-(-) is integral on (67'4,)A, because n = max{r, a, b} and
S0 X-O,n = Xa,n on PO,n m Pa,n‘ D

Define the function W, ,(-) on the subgroup PP, ., by
W, (78D) = X, (D) X,,.(D)

for 7, in P,, and 7 in P,,. By the preceding proposition, W,, is
well-defined on B¢ P, .. Define W, ,(-) on the entire group (B,, *) by

XO,n(ﬁO)Xa,n(ﬁ) Xe ﬁ;nﬁo,n

W. (%) =
(@) 0 otherwise .

For (x, x,, 0)~ in (B,, *), define
w‘a((xly xZ; 0)") :~ 2 - WO,n(’7~*(x17 932; 0)~> .

Po,aN T\
If (@, 2,0) is in B, +P,., (%, 2,0 = (u, 0, 0)"*(v, ov, t,)° where
U=, — 07’2, v = @*x, and ¢, = — B(u, v).

Then,

Wi((u, 0, 0)*(v, ov, t,)”) = exp(—2aiB(u, ov))-X,..(v, ov, 0)7)
= exp 2ni0(/(v) — B(u, v)) .

If (», ,, 0) is not in P§,P,, then Wiz, x,, 0) = 0. A direct adapta-
tion of these arguments show that (U’ 0, 0)"*(V, ¢V, t,)” =
(U, 0,0)"*(V’, V', t;)~ implies that

Wy((U, 0,0)"*(V, 0oV, t)") =W,(U", 0,0)"*(V’, a V', £,)7) .
It is easy to show that

(1) /(V) = 2(U*X,)
=/(0) + 2(X) — B(X,, U)
(2) B(U, V)= —B(U, X)) + B(U, 0)
and
(3) 2(U) + «(U) = B(U, U) .
Therefore,

WX, X;, 0) = exp 2mio(/(X,) — /(X, — 07'X))) .
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The set D, = {7](0,7,0)" in A, X4,X Z\4, X AX Z} is a complete
set of inequivalent coset representatives for P,,N 1", in I,. Note
that Dy c P¢.P, ..

Finally,

¥ (z, 2, 0)7] = exp 2wios(x,) >, exp — 2mi0/ (07 (2, — &, + 7)) .
Replace », — ox, by z in the expressions for 6, and ¥, and

T, [(x,, x, 0)7] = exp2mics(x) >, exp — 2wio/(c™(x + 7)), (Yed\1)
0,[(X,, X;, 0)°] = exp 2wi0/(X) >, exp + 2wi[—B(7, x) + a7(M)],
(vea\4) .

By virtue of Proposition 11 and the construction of 4, and ¥,
we have

THEOREM 2. For % in B, 0,() = c¥,(&) for some nonzero scalar

This establishes a similar relationship between these p-theta
functions as in §II. However, it will be shown later that ¢ is an
intertwining constant K, (o) which is equal to K(o).

IV. The relationship between -theta functions and g-theta
distributions. We will now relate the results of §§II and III. Our
intent is to derive, in a more meaningful manner, the constant
multiple of Theorem 2 in §III and establish equality between that
constant and K(o).

First, we establish an equivalency that is the key of our in-
vestigation. Let p: B, — B, be the canonical map onto 4, x 4, X Z
cosets in A, x A, x R. Let Ut=ind (I, (B, *), #£) and U, =
ind(T, (B,, *), M-

PROPOSITION 1.

U,=Utp

Proof. U* =ind(B,, B, ind(I", B,, tt)) by induction in stages.
Since U* is irreducible, U, must be irreducible. The following diagram
is commutative:

B,—*— B,
UnJ 1@
LXI'\B,) — L(I",\B,)

FIGURE 3
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That is, for f in LI \B,),

Ut09) f(X) = U,(9)f(02) .

This follows from the definition of B, and from /4, x/4,xZ being a
two sided ideal in A,x A, xR. Therefore U* and U, have the same

invariant subspaces. Since both representations are irreducible, they
must be equivalent. O

We will now improve upon Figure 2.

Uv: Th(a, o) 1-7:

Tio, 0)1 l To(oo, 1)
0 _—_ Up
" T, ) "

FIGURE 4

Each of the mappings 7,(-, -) is an intertwining operator between
equivalent irreducible representations and hence this diagram com-
mutes up to a constant, K,(¢) by Schur’s lemma. We lift this
diagram up to the entire group B by means of the inducing map
and the pull back, po. Each representation is lifted to B by the
following:

Uz = ind(B,, B, Usop)

U? = ind(B,, B, Ulop)

Us = ind(B,, B, Uzop)

Ut = ind(B,, B, Ut-p) .

We may, without ambiguity also make the additional identifications

U? = ind(P,,, B, X,.)
U? = ind(P,,, B, X,.)
U= = ind(M,, B, X,)
U = ind(T",, B, tt.) .

By equivalence of the inducing representations we have the
following diagram of irreducible, equivalent representations of (B, *).

U Tnlo, o) U=

Tn(o, O)l lTn(oo, #)
U TA(0, 1) U
FIGURE 5

For f in the appropriate representation space, we have
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[T.(0, ) U3 £)0, 0, 0) = [T,(g, =) Usop£1(0, 0, 0)

[T.(c, U IO, 0, 0) = [T,(, ) UzopfI(0, 0, 0)

[T.(0, 0)U:5)0, 0, 0) = [T,(0, 0)Uzo0£)(0, 0, 0) .
Consequently, the diagram of Figure 5 also commutes up to the

constant, K, (o).
That is,

T (e, ()T (0, =) = K,(0)T,(0, 9)T,(0, 0) .

Through the equivalence of the representation U, and l7£fop, we
have established an equivalency between U* and U?. Since all these
representations are irreducible, consider the diagram of Figure 6.

Ao, n)

U U’
T.(a, n)
Tulove2) T(s,%0) |T(s,0)
e Aleo) U;/
70 A0, ) e

T, (0, )
T(o0, 1) T, 1)

T(0, 1)

” "
b Al m)

FIiGURE 6

It has been shown that the right and left sides of this diagram
commute up to the constants K(o) and K,(o) respectively. It is our
intent to show that K,(¢) = K(o).

However, before pursuing that line of reasoning, we exhibit the
intertwining operators of Figure 5. For sake of definition, let f be
an appropriate function in each instance below.

Ao, m)f@, v, 6) = | F@0*@, v, )X, .(P)dp

Pg,n\Pg\Pg,n
A, m)f(@, y, ©) = f(x, 9, 1)
A©, m)f(o,y, t) = [4,; 41 | £@*@, v, )Xo @)dp

Po,n N1 Po\Po, n

Ao, w0, 0 t) = [ AT, v, )R 0)p

My N M\M
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~

ﬂ@mﬂ%%®=j F@*@, y, ) X,,.(p)dp

Py, Py, n\Pg,n

T.(0, )f (@, v, ) = | £ (@, y, )X, (n)dp

Po,n N M p\M y,

T, 0f @, 0 =[5 | 0%, v, i)

Po,n N

T2, 0@, 9, ) = M5 A1\ f0*(, v, D@D
In each definition dp is Haar measure. These definitions are (formally)
the intertwining operators between the irreducible, equivalent repre-
sentations. The following proposition is necessary for the latter
group of operators defined above.

PROPOSITION 2.

(a) The characters X,,, and X,, agree on P,, N P,,.
(b) The characters X,, and X, agree on P, , N M,.
(¢) The characters X,, and ¢ agree on P,, N I.

(d) The characters X, and ft agree on M, N I.

Proof. (a) This was proven in Proposition 12 in Chapter II.

(b) P,,NM,=4,%x4,xR and both X, (\,\, t) and X, ,(\, N, t)
are ¢=' for W, \, t) in P,, N M,.

(¢) M,NI = A,xAxZ and both characters are trival on this
subgroup.

(d) P,,NIT =Ax4,xZ and both characters are trivial on this
subgroup. ]

Before justifying the existence of such operators, some considera-
tion will be given to normalization constants associated with the
invariant measures.

Let G by a locally compact abelian group K, a subgroup of G.
Let f and 7 be integrable functions on G and G. Let K* = {characters
of the dual group of G that are trivial on KJ}.

The Poisson summation formula is given by

SK F()dk = SKLf(m)dm

if K and K- are given compatible Haar measures, i.e.,K+ has the
measure dual with the measure on K\G which is determined by the
measure on G and the measure on K. We want to choose that
measure so that f~ = f. If G is compact, then G is discrete and
Haar measure on G must be counting measure. If the measure of
the compact group is C, then the Haar measure on G is C* times
counting measure.
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We shall say the measures on G, KG and K are normalized if

b= e

Hence, we shall always assume that our measures are so normalized.
Furthermore, we will choose the measure on K* to equal that on
(K\G)" so that the Poisson summation formula works. As a conse-
quence, we give diserete sets counting measure. If G and K are
both discrete, the triple G, K, K\G is then normalized.

Set Measure
A.\A [4.; 4]
A\A [4.; 4]
4.\ [4,; 4]
4\A [4.; 4]

With these considerations completed, we now investigate the
intertwining operators.

PROPOSITION 3. For f appropriately chosen in the representation
space of each operator,
To(eo, ) f (@, 9, 1) = [4; A]A% f((, 0, 0)*(z, y, ©)
7.0, 19£(, v, 1) = [As; 413} 7O, 7, 0@, ¥, )
T.(o, ) f(x, 9, 1) = X f((0, 7, 0)*(=, y, 1))

047,

T.(0, 0f @, v, ) = | FP*(@, y, ) en(p)dp

Pg,nNPgs n\Pory

where dp is normalized Haar measure.

Proof. The last equality is stated only for completeness and
reference, as no attempt will be made to simplify it.

By definition, for f in S(A x 0 x 0) N H(UY),

T, @0, 0) = [ 41| 70*@, v, O)EID .

My

It is easy to show that {(7,0,0)|v in A4,\4} is a complete set of
inequivalent coset representatives of M, NI in I" and (7, 0,0) = 1.
The other identities follow similarly. O

Before attempting any simplification of A(g, n), A(e, n), Ao, n)
and A(0, n) we state the following proposition whose proof may be
found in [8].
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ProposiTiON 4. If H and K are rational subgroups of N (a
nilpotent Lie group) and K mormalizes H them HK is rational and,
wn particular, is closed.

By the Noether isomorphism theorem.

Pa,n n Pa\Pa,n = Pa\Po*,‘nPa
M, N M\M, = M\M*M,
Po,n ﬂ PO\PO,n E O\POT‘nPO

and the latter portion of each isomorphism is closed by the previous
remarks. {(k,0,0)|k in A,} is a complete set of inequivalent coset
representatives of M,NM in M, as is {(0, k, 0) |k in 4,} for P,,N P, in
P,.. Also, {(0,% 0)|%k in 4,} is a complete set of inequivalent coset
representatives for P,, N P, in P,,. As a consequence we have,

A, m)f(X, Y, t) = f(X, ¥, 1)
Ao, n)f(X, ¥, 8) = 3 f((0, k, 0*(X, Y, 1)

AQ, mf(X, Y, 1) = [4s; A7 35 £(0, K, 0%(X, Y, 1))
Aleo, mf(X, Y, 1) = [ A7 2 (5, 0, 0)°(X, X, 9)) .

It is left to the reader to show the triviality of each character on
the coset representatives. With all of these considerations of operators
completed, we present the first theorem of this chapter.

THEOREM 1. The diagram of Figure 6 is commutative except
for the right and left sides, which have been shown to commute up
to the constants K, (o) and K(a) respectively.

Proof. The really meaningful part of this proof is the commuta-
tivity of the back portion of this diagram and we defer justification
of that to the end of this proof. Recall S(G) is the Schwarz space
of the group G. It is sufficient to compute the constant of commuta-
tivity for two intertwining operators between equivalent and irre-
ducible representations by application of them on an arbitrary
nonzero function evaluated at the group identity.

First consider the front of the diagram.

U= A(o0, m) U=
T(co, #)l lT(OO,#)
U Alp, m) e

Let f be in H(U”) N S(A x 0 x 0). Now,
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A(g, n)T(e=, 1) £(0, 0, 0) = T'(0, £2)£(0, 0, 0)
= ;f(ﬁ', 0,0), (7vin 4).
In the other direction,

T.(c0, )A(e0, m)f(0, 0, 0) = [4;; A] 35 A(ee, m)f(7, 0, 0)

4\
= 435 4) 3 {435 A1 S £6*(, 0, 0)
A;‘\A A;L
= 51 f(K,0,0).

Thus the diagram commutes since the sums converge.
The bottom of (6) is

A0, n)

v A0
7.0, p)k &T«), n)
e Ale, ) 7. -

Let f be in H(U®) N SO x A x 0), then

A, IO, 1) = T(0, D£(0,0,0)
= 3,/0,7,0).

In the other direction,
T.(0, 1) A0, n) (0, 0, 0) = [4,; 4] ZA;@(O, n)f(0, 7, 0)
= [4,; /I]A%[/ln; a1 % £, &, 0)*(0, 7, 0))
= ;f(O, v, 0).

Therefore, the bottom portion commutes.
The top of the diagram is

Ao, n)

UZ —1 = U
T(o, oo)l jTto, o)
ge Aom g

Let f be in H(U) NSO x A x 0).
A(e0, n)T(0, =) f(0, 0, 0) = [4,; A]7* X, T(a, =) f(%k, 0, 0)

A

n

= s 7St 0, 0)X(p)dp

PN

= (4 41" | £, 9, 0)dp

(IC, , 0) = ((l, aa, t)*(or b; 0)
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where a = k, b = p + kp + ok and ¢t = —B(a, b).
Note that db = dp. Thus, since f is in H(U"),

A(e=, m)T(a, =)£(0,0,0) = [43; 4175 | exp — 27i(BU, b

+ 0/(151))-}(0, b, 0)db
= [4; 417" X exp 2mios (k)G(xy) ,

n

where ¢(x) = f(0, 2, 0) and X, is the character ¢ *#*%. Also by
construction, os(k) is integral for %k in A,. In the other direction,

T.(a, <)A(a, n)f(0,0,0) = >, A(a, n)f(0, 7, 0)
A\47,

=21 2 f((0, &, 0)*(0, 7, 0))

A\4l, Ay

= >, f0, %, 0).
45
By the Poisson summation formula,

455 417 S (X)) = X 70, ¥, 0),

n

i.e., this portion commutes also.
Finally, this portion of the diagram is the most difficult for
proving commutativity

Ao, n)

U S0 g
T.(o, O)l ¢T(0, 0)
o A g

Commutativity will, in fact, be demonstrated by showing that
A0, n)*T (0, 0)A(e, n) = T(o, 0) .
For f in H(U) N S(A x 0 x 0), we have

T.(0, 0)A(e, 10,0, 0) = | Ao, )£ (2) Xan(p)dp,

Po,n Py, n\Po,n

I F (D) %00 Ko (0.,
Pg,nNPo,n\Po,n Pg,nNPg\Pg,n

where dp, and dp, are normalized Haar measures. As before, define
the function W, on Ay X 04, X R by W (vip,) = X,,.(0)X, .(p,) for p,
in P, and p, in P,,. This is well-defined since X;, = X, ,on P,, (N
P, . and P} P,,= Ay xdA, X R. Also, by the Noether isomorphism
theorem, P, N P, \F,, = P,,\P%P,,.
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T.(a, 0)A(o, n)f(0, 0, 0)

f (o p) W(pdp)do.dp,

*
SSPG,n\PO,ann Pg,nNPg\Pg,y

T.(0, 040, 70,00 =| . fo)Wp)dp

3,2V Po\Po,nPg,n

where p = p¥p, and dp is normalized Haar measure. P,,N P, =
{(a, oa)|a in A,} x R and {(e,0,0)|a in A,} is a complete set of
inequivalent coset representatives of P,,N P, in the subgroup
PP, .

Thus,

T.(0, DA, m£(0,0,0) = | (e, 0,0Wi(a, 0, 0)da

Wya, 0, 0) = 1 because (a, 0, 0) is in P,, and hence by normalization
of Haar measure, we have T,(g, 0)A(c, n)f(0,0,0) = >.,, f(p, 0, 0).
In order to prove commutativity, we will show that

A*0, n)T,(a, 0)A(a, n)f(0, 0, 0) = T(c, 0)£(0, 0, 0)

where
40, miX, Y, 0= 7@, 0,0%X, v, tpat

and A*(0, n)A(0, n) = I, the identity operator on H(U°. That is,
A*0, n) = A0, n).

LeMmA 1.
A*(0, n) A, n) = I .
Proof.
A*(0, n)A(0, n)f (0, 0, 0) = SM\AA(O, n)f(p, 0, 0)dp
= [, 4175 70,k 0
(8, %, 0) = (8, 0, —B®, s + BR)*O, k + 5k, 0)

4%, A©, w)£0,0,0) = | 441" Siexp
—21iB(p, k + Dk)f(0, k + Dk, 0)dp .

Let h,(k) = exp — in(BQp, k + pk)f(0, k + Dk, 0)).
[4,, A1 X, hy(k) = 254, hp(X,) by the Poisson summation formula.
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A%(0, mA©, £0,0,0 = | i, (Xoap

n

=, 2| m@Xi@dadp

Ap\d A,

S

Ap\4 Ay

— 2w B(p, a+ pa)e " £(0, a+pa, 0)dadp .

However, the sum over % in A, is zero except for ¢ = 0 in which
case the right hand side becomes £(0, 0, 0). ]

Next,

A*(0, n)T,(a, 0)A(g, n)f(0, 0, 0) = g Talo, 0 Ao, n)f(p, 0, 0)dp

and
T.(a, 0)A(a, n)f(p, 0,0) = [Ux(p, 0, 0)T (g, 0)A(a, n)f](0, 0, 0)
= [T.(0, 0)A(o, n) U(p, 0, 0)£1(0, 0, 0)
= AZ [Tx(p, 0, 0)f1(a, 0, 0)
= 3\ f((a, 0, 0)*(p, 0, 0)) .
So, "

A%(0, m)T. (0, 0A(, ) £(0,0,0) = | 3 7((a, 0,0)"(s, 0, 0)dp

n

= s, 0, 00ap
where »" = a*p and dp' is Haar measure of A. The latter expression
is precisely T(o, 0)£(0, 0, 0). We have shown that
A*(0, n)T (o, 0)A(c, n) = T(o, 0)
and by Lemma 1,

T\(o, 0)A(a, n) = A*7(0, n)T(o, 0)
T.(o, 0)A(a, n) = A0, n)T(o, 0) .

The back of the diagram (D4) commutes and this completes the proof
of Theorem I. J

THEOREM 2. For n appropriately chosen, that is sufficiently
large, K,(0) = K(o) +f 0 1s a rational number.

Proof. By diagram of Figure 6 and f chosen in H(U’), we
have
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To(oo, WT(0, ©)A(o, n)f = T, (0, )A(, n)T(0, «)f
and hence

K, (0)T (0, ()T, (0, 0)A(o, n)f = A(t, n)T(e2, )T(0, =) f
K (0)T.(0, A0, n)T(o, 0)f = K(o)A(g, n)T(0, 1)T(o, 0)f
K. (0)A(¢, MT(0, ()T(o, 0)f = K(a)A(r, m)T(0, )T (0, 0)f .

Therefore, K, (o) = K(o). |

Consider the diagonal plane of the diagram:

U= Aleo, m) U~
1Ummﬂ | 7,0
v A0 o,

This diagram is commutative by the considerations in §II. The-
refore we have the following:

PROPOSITION 4.
(1) T(0, #)T(co, 0) = T(co, 1)
(2) T.0, )T (oo, 0) = T',(c0, ).

Proof. By Schur’s lemma,
T(co, p1) = CT(0, £)T(=, 0) .
We will show that C =1. For f in H(U*)N S(4A X 0 x 0),
T(eo, 110, 0,0) = 3 f(7, 0, 0)
CT(0, 1T (==, 0)£(0,0,0) = C 3 T(<=, 0)£(0, 7, 0)
= x| 7, 07+, B, ap .
Noting that (p, p¥ + 7, B(p, 7)) = (0, 27 + 7, 0)*(», 0, B(p, 7)) then
CT(0, 1)T(, 0) = CZS e BT f(p, 0, 0)dp
A A
=C3fr,0,0) .

By the Poisson summation formula, C = 1 (recall that 4 = 4*). Also,
T.(c0, )y = T,(0, )T, (0, 0) follows by the commutativity of dia-
grams. ]

COROLLARY 1. T(co, 0)T(o, ) = K(0)T(0, 0).
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Proof.

T(eo, 0)T(0, =) = T(0, ()™ T(e=, )T(0, =)
= T(0, 1) K(0)T(0, #)T(a, 0)
= K(0)T(0, 0) . O

The following results answer some open questions from Chapter
II. It has been shown that

(0, 19)T(a, 0)0 = T(0, )W,
= K(o)0,

and

T(eo, )T(0, 00)d = T(e=, )W
=4, .

Those same arguments apply to the operators in §III

7.0, )T.(0, 00 = 4+,
T\(e0, 9T(0, )3 = 0,

and we have

COROLLARY 2. 0,(&) = K(0)9,(&) for % in B, and 0, and +, are
nonzero fumctions on (B, *).

Proof.
0,(T) = K,(0),(%) .

K,(0) is the intertwining constant for the operators of the compact
group and by Theorem 2, of this section K,(0) = K(0). +, is a
nonzero function on (B,, *)—it is the image of a nontrivial function
under an intertwining operator between two irreduecible, equivalent
representations. Also, K,(0) = K(0) = 0. Therefore 6, is also
nontrivial. O

V. K(o). In this section, we will attempt to compute K(o)
more explicitly. At the very least, we will derive an interesting
identity involving K(o) and present some examples to illustrate the
depth of these results.

From Corollary 1, §IV, we have 7T(c, 0)T(g, «) = K(0)T(o, 0).
This result is the basis for a remarkable identity. Let @,(X) =
exp 2mios(x) for x in the nilpotent algebra, A and I(-) the scalar
log function as defined earlier. As usual, denote the Fourier Trans-
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form of a function, g, over the algebra A by §.

THEOREM 1. If wm 1s the vector space dimension of A, then K(o)
18 a factor of the proportionality comstant in the following distri-
butional Fourier transform identity:

d,(-) = 0" K(0)D_,(a7*-) .

Proof. Let f be in C=(U?) and have compact support in P,\B.
T(o0, 0)T(0, «)f(0, 0, 0) = K(0)T(o, 0)£(0, 0, 0)
|, 7@, «)7®,0,0dp = K@) 7,0, 0)dp
|| 7, 2, 0%, 0, 03dp = K@) | 7o, 0, 00dp.

Now

©, p', 0)*(p, 0, 0) = (p, p', 0)
(p, 7', 0) = (a, aa, 0)*(4, 0, 0)

where ¢ = 67'9p/, b = 67'p"*p.

From this (p*b) = p’. Since this transformation of coordinates
is unipotent, we have o0"db = dp’, where n is the vector space di-
mension of the algebra, A. Thus the left hand side of the equality
is, after a change of coordinates,

o" S S exp 2mios (p*b) £(b, 0, 0)dbdp
A JA
— o.ng S e-z;:iB(p,a?)ezziu J’f(b, 0, O)dbe”““ (p)dp .
A JA
With the change b — b, db = db by the invariance of Haar measure and

the inner integrand becomes exp(—2niB(p, b)) exp 2nias(b)f(b, 0, 0).
However, since f is in H(UY),

gerioe (b)f(l;’ 0, 0) = Xo(b, Ub, O)f(g’ 0, 0)

H = f(0, b, 0) .

Let g(®) = £(0, b, 0) and the previous integral is now
O.n S S e——ZmlB(p,ab)g(o-b)dbezfn'a; (p) dp .
4 J4
Again change coordinates by b— ¢7'b and we have

Sﬁ(p) exp™“®dp = S@(p)d’a(p)dp .
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On the other side of our operator identify involving K(o), we have

K@) | rv,0,0dp .
Invoking the algebraic properties of (1),
f(», 0, 0) = exp(—27i/(p))f(0, op, 0)

and this changes the latter integral (after the coordinate transfor-
mation p — 07'p)

0 "K(0) SA exp(—2rmios(07'p)) = 07 "K(0o) SA@_a(o*lp)g(p)dp . L]

While this distributional formula does not provide us with an
explicit formula for K(o), it will allow us to compute K(o) in some
examples that follow. The examples, at least the first, indicate the
complexity of the integrals involved. This complexity does give
some promise for future research. First, however, the examples to
illustrate the application of our results.

ExaMPLE 1. Let N' = spang{e}, where B(e¢, ¢) = 1 and ¢ = 0 for
1 >1. Assume ¢ = a/b, (a,b) =1. Let X =t-e for ¢t in R and 7 =
k-e for k in Z. By definition, /(X) = —(1/2)B(te, te) = —(1/2){*. As
a consequence, @,(X) = exp —rwict’. The Fourier transform identity

D(X) = e hD_(c7' X))V 0

is well-known. Thus, K(¢) = /o e, From the definitions in §III,
A, is isomorphic to b!Z and /A, is isomorphic to bdn! Z. Thus 4\4
is isomorphic to the integers modulo bn! and 4,\4 to the integers
modulo %!. The pg-theta function identity of §II (with C = K(o))
is

n'—1

bn!—1 a
(2) % expm( ) + 07 = K(0) 3, exp m’<—2kt - —k2> .
p= b
Let ¢ = 0 and after cancellation, we have
Kins) . b a
_kz — wi/4 e — k2
g.oeXpm ” ‘/b Z, Xp mb
This is, of course, the familiar Gaussian Summation Formula. For-

mula (2) may be intepreted a transformation of the classical sums
(with some restrictions on t).

ExAmMpPLE 2. Let N? be the nilpotent algebra with basis {e, ¢}
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where ¢ = e, ¢; =0 and B(e,e;) =1 if and only if ¢ + 7 =38 and
zero else. For X = te + te, and ¢, ¢, in R,

/(X)) = /e, + te) = —:1);15} — .

Let g be in CZ(R?), then
| 2.x)50ax

= S exp Zn'iaéti exp (—2xi(ot, + s)t, + t.8,)9(s,, 8,)ds,ds,dt,dt, .
Rt

Note that the integral, S -dt, is zero except when s, = —ot,. This
R
integral then reduces to:

S L XD 27i0t}[3 exp — 2mits,0(—at,, s,)ds,di,
R
= g! g LeXp — 2o (—;—(a“tl)8 — o‘ztlsz>g(t1, $,)ds.dt,
R
= a“ls o_,(0-m)g(x)ds .
A

Therefore, K(o) = o.

Let X = te, + t,e, as before and v = ke, + k,e, for k, and k, in Z.
The p-theta function identity becomes

S exp 271 — o~ [—13—0-*@; ) 4+ (6 — k)G — k»]

i
“n\

= K(6) S exp 27:»;<—1-k: — ki, + It + k2t1> .
V] 3

It is not difficult to show that 4, is the span over Z of (n!)%, and
nle, and 4, is span over Z of b*(n!)%, and bnle,. For ¢, =0,

2(n!)2—1 bn!—1
ST expzm'—ﬁ<1 bk“~lck>
a

E=0  kg=0

’g Slexp2mi(Th — ki) .

Since n = a, n = b these sums reduce by cancellations to

- (L0 )= 0§ expait(Ll
> DL exp2s ~a_<3 Kk k1k2>-72= z]oexpmb(g

k=0 kg=0

K — lclk2> .

However, the sum over k, in both instances is trivial except when
k, = 0, the identity is then: a = a/b-b.
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The results from Example 2 are somewhat disappointing, as we
had hoped to derive a formula for the cubic Gauss Sums. The
difficulty might be a peculiarity of the algebra. It could be, however,
the tendency of nilpotent algebras to behave in a general fashion
akin to the quadratic case. Nonetheless, it serves as a basis for
future research. It should also be mentioned that Example 1 was
not just coincidental—it is the motivation for this group construction,
[5].

In the final analysis, there are several problems that come im-
mediately to mind. The first is the possibility of using the adele
group constructions and thereby obtaining a product formula for
the g-theta functions and distributions. Secondly, there seems to
be a lot more structure to K(o) as indicated by the examples and
the proof of the first theorem of this section. Finally, the analogy
of these functions with classical theta functions certainly begs some
consideration to establish formulas comparable to these of the clas-
sical case.
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