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Mu-TΉETA FUNCTIONS

WILLIAM G. FREDERICK

Using the technique of compact rational subgroup approx-
imations to unitary representations on a nilmanifold, we
justify the evaluation of a distribution at certain rational
points of a group. This method allows us to give meaning
to a distributional identity between theta-like functions at
discrete points in the group. The identity itself arises from
the equivalence of certain representations of the group. In
attempting to compute an intertwining constant that is
present, we are also able to show the existence of distribu-
tions that behave like the classical gaussians, i.e., they are
eigenfunctions of the Fourier transform.
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I. Introduction* Let A be an abelian, nilpotent algebra with
a nondegenerate, symmetric biliner form 2?( , •) which satisfies
B(xy, w) = B(y, xw) for all x, y and w in A. Let A be a vector
lattice in A so that Λ ΛaΛ. Assume that A — A* where A* =
{xe A\B(x, A) aZ}. Let B — Ax Ax R be the algebra with the
following multiplication (and component-wise addition):

(xlf x2, rx){yu y29 r 2 ) = {xxylf xxy2, B(xlf y2))

where xt and yt are in A and r<e R, {% = 1, 2). The commutant of
this operation is used to generate a Lie bracket in the algebra
B by [x, y] — x y — y x for all x and y in B. The exponential
map,

oo

expo; = ^Σi

applied to B yields a connected, simply connected nilpotent Lie group
with multiplication, "*". χ*y = x + y + χy9 χf y in B. The log
function (unique inverse of the exp( ) function) is well defined on
(B, *).

Define the scalar log function on A by
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for k = 2 to r + 1, where r is the nilpotent degree of the algebra
and a; is in A. This function is the third entry of the tuple,
\og(x, σx, 0) for (a?, σx, 0) e (JS, *) and σeΛ. In [5], the following
distributional identity is established:

(1) Σ exp 2πi(σ/(Ί) - J5(τ, α?)) = K(σ) Σ exp - 2πiσ/(σ-\x + y)) .
re/i

JSL(CJ) is a (intertwining) constant depending only on σeR. While
this identity exhibits some promising relationships, it should be kept
in mind that it is true only in a distributional sense and consequently
is meaningless at distinct values of x in A. Also, unless a formula
for K(σ) exists or at least a means of computing jST(tf)-independent
of this identity, we are unable to attach any meaning to (1). Both
of these objections will be addressed in this paper. At least for the
latter, a method will be outlined for computation of K(σ).

II. μ-theta distributions* We continue with group construction
of the introductory section to show the derivation of (1). For details
and proofs, the reader is referred to [5] The group inverse in (B, *)
is denoted by x and is given by

x = (xl9 x2, r) = Σ (-l)*(&i, &2, n)fc .

The notation x is used to avoid confusion with multiplicative inverses
in the algebra (i?, •). Also, the log function on (B, *) is given by

for x e B and it is easy to show that this is the (unique) inverse of
the exponential map from the Lie algebra (B, [ , •]) to (B, *).

Recall that A is a vector lattice of A and define Γ = Λx Λx R.
Γ is a co-compact subgroup of B. The subgroup properties are easy
to verify since Λ-ΛaΛ. A character μ(-) can be defined on A by

K^if %, r) = exp 2πir .

The character property is verified by a straightforward computation
and uses the fact that A = A*. The existence of a character on Γ
gives rise to a unipotent representation on (B, *) and we have

PROPOSITION 1.

Uμ = ind(Γ, (JB, *), μ) is irreducible .

Another subgroup arises from 0 x A x R == If. Actually ikί is
normal in (JB, *) and M M — 0 in the algebra (JB, •)• The subgroup
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properties are immediate. The exp( ) map applied to M is the
identity map. We define a character on this subgroup by

x(0, x, r) — exp 2πrx .

Verifying that x is a character is easy since the * operation in M
is equivalent to adding the tuples component-wise.

PROPOSITION 2.

U°° = ind(Λf, (2?, *), x) is irreducible and equivalent to Uμ .

PQ = A x 0 x R is also a subgroup of (B, *) and has a character
a?0( ) defined by

X0(x, 0, r) = exp 2πir .

In this subgroup, the * multiplication is additive in the last entry
(real) of the tuple and hence Xo is a character.

PROPOSITION 3.

U° — ind(P0, (B, *), x0) is irreducible and equivalent to Uμ .

Finally, one more subgroup is to be introduced.

Pσ = {(x, ox, r)\xeAf r, εR, σeR) .

Again verification of the subgroup properties is a matter of com-
putation. Pσ, as a subset of (B, [, ] is an abelian subalgebra and
the exponential map maps Pσ into itself by virtue of the closure of
multiplication in Pσ. Let λ be the linear functional in the dual of
the algebra (B, [, ]) defined by X(x, y, r) = r for (x, y, r) in B. We
generate a character Xσ on Pσa(Bf *) by

X(x, σx, r) = exp 2πiX(log(x, σx, r)) .

PROPOSITION 4.

U° = ind(Pσ, (B, *), xσ) is irreducible and equivalent to Uμ .

Thus far, we have constructed four subgroups, characters and
corresponding induced irreducible representation—all of which are
equivalent. We digress for a moment to consider these representa-
tions in terms of distributions. Let U be a unitary representation
of a connected, simply connected nilpotent Lie group, G and let C°°(U)
be the set of vectors v in the representation space of U, H(U), such
that g -+U(g)v is a C°°, H( F)-valued map. Define C°°*(Z7) as the space
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of continuous conjugate linear functionals on C°°(U). Note that by
virtue of the mapping v-+(v, •), H(U) <zG*XU). So for xeC°°XU),
x(v) — (v, x) — (x, v) = x(v). C°°(U) may be topologized so as to be
a Frechet space and V is thereby continuous on C°°(U). Let U^
denote the restriction of U to C°°( U) and let U^ be the contragredient
representation to Z7oo.

It is known that there is a unique, regular invariant (Haar)
probability measure on the compact group Γ/G. This allows us to
define a representation R of G in L\Γ/G) by right translation. Let
/ be in C?(U) (C°° functions with compact support in the represen-
tation space of U) and define

U(f) = ί f(x)U(x~1)dx .

It is known that U(f) maps H(U) into C°°(ί7) continuously. Hence
there is a conjugate map U(f): C°°XU)->H*(U), where H*(U) is the
conjugate dual of H(U). Actually, since H*(U) is isomorphic with
H( U), we may take U(f)*ι C°°( 17) -> H(U). Also, U(x) U{f)*v= U{fx)*v
where fx = f(x~κ) and so the range of U(f)* is, in fact, contained in
C°°(U). The map x-+fm is C°° from N into__C?(N) and f-+U(f)*v is
continuous from G? into H. Let /*(») = fix'1) and I7(/)co = Σ7(/*)*.
Z7(/)oo extends Z7(/) when we consider CTOcC°°*. Note that this
defines the action of U on a distribution acting on C?(U) by the
considerations in [7]. The measure on the lattice Γ will be assumed
to be the counting measure.

With these preliminaries established, we make the following
definition, A Schwarz Distribution θa on (Bf *) is a μ-theta distribution
if

( i ) θσ(y*x) = μ(y)θσ(x)
and

(ii) θσ(x*w) = θσ(x)x(w) for all x in 5, 7 in Γ and w in P,. The
real number σ is called the period of #<,(•)•

PROPOSITION 5. For each σ in R, there is an essentially unique
(up to a scalar multiple) μ-theta distribution.

The existence of the μ-theta distributions is a result of the
equivalence of representations established earlier. In order to show
the implications of this, some consideration must be given to the
intertwining operators between the four equivalent and irreducible
representations. C°°(Z7) is topologized by the topology of uniform
convergence on compacta of the functions g-+U(g)v and their der-
ivatives of higher order. By the use of suitable semi-norms, C°°(U)
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is a Frechet space and the restriction U^g) of U(g) to C°°(U) is a
continuous linear operator on G°°(U) by the closed graph theorem.
From [10], we have

PROPOSITION 6. The following are equivalent:
(1) U is irreducible
(2) C/Όo is irreducible
( 3 ) The only continuous, invariant bilinear forms on

C°°(U) x C°°(U) are multiples of the scalar product in H restricted
to C~(U)xC~(U).

Recall that C~°°(U) is the space of conjugate linear functionals
on C°°(U) and let T be an intertwining operator between two
continuous unitary representations Uι and U2 in H± and H2 re-
spectively. T has a unique continuous extension to a mapping
y-oo. cf-TO(i71)->C-0O(ί72). A linear functional δ in C"°°(17) is defined to
be a generalized cyclic vector for U provided δ(U(g)v) — 0 for all g
in G implies that v — 0 for v in C°°(U). A generalized cyclic repre-
sentation is a pair (£7, <5) consisting of a unitary representation U
and a generalized cyclic vector, <?. Two such pairs (Z7, <5) and (F, ε)
are protectively equivalent if there is a unitary isomorphism T
which maps d onto a multiple of ε and intertwines U and V. The
pairs are equivalent if that scalar multiple is one. We will show
that the identity (distributional) (1) is the projective equivalence
of generalized cyclic representations and is equality between two
μ-theta distributions. K(σ) is the multiple of that projective equiva-
lence.

The pair (U, δ) has a realization in the Hubert space of distri-
butions on C?(G) — C°° functions with compact support. If φ is in
C?(G) and / is in H(U), define

where

for dg (right) invariant Haar measure on G. Poulsen, [10] has shown
that if φ is a continuous function on G vanishing at infinity, then
U(φ) leaves C°°(U) invariant and is continuous in C°°(U). If φ is in
C?(G), then U(φ) maps H(U) continuously into C°°(!7). Further-
more, the integral defining U(φ) converges in C°°(U) in the sense
that if / is any continuous linear functional on C°°(U) and if v is
in C°°(U)f then
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The map / —> / is injective and defines a realization of U in the
space of distributions, H. H will be referred to as the canonical
space for (U, δ) and the realization of U in this space as the canonical
realization. U acts as right translation in this realization, C°°(U) is
a space of locally integrable functions and δ is evaluation at the
identity. In [5], Penney proves that if the map / -» f(φ) is continuous
for every φ in C?(G) (suitably normed), if right translation defines
a unitary representation U of G in H and if C°°(U) is a space of
locally integrable functions, then (U, δ) is the canonical realization
of a unique equivalence class of generalized cyclic representation.
We will use the following corollary to those results; namely any
representation induced from a character of a closed subgroup of G
is a generalized cyclic representation.

A pair (%, H) consisting of a character X and a subgroup H is
maximal if there is a λ in the dual of the Lie algebra of G and
a subordinate subalgebra h of maximal dimension such that H =
exp(fe) and %(•) = exp 2πiX(\ogG ) restricted to H. The pair is integral
if Γ n H\H is compact (or equivalently if ΓH is closed) and if X
restricted to Γ Π H is trivial. /% here, as elsewhere is a co-compact
subgroup of G. In [1], we find

THEOREM 1. Let (x, H) be any maximal, integral character.
Then the distribution D associated with the irreducible projection
onto the primary subspace of Ux = ind(iϊ, G, x) is given by

- Σ (ί χ(h)f(ΓhΎ)dh)

where the sum is over all 7 in Γ Π H\Γ. f is in C°°(Γ\G), dh is
normalized Haar measure on Γ (Ί H\H. The sum is absolutely
convergent.

THEOREM 2. Let Mx and M2 be closed {but not necessarily
connected) subgroups of the nilpotent Lie group G. Let xx and x2

be characters on Mx and M2 respectively such that xx = x2 on
M1M2 Φ {e}. Assume MιM2 is closed and U1 = mA{Ml9 Gly xλ) and
U2 = ind(M2, G2f x2) are irreducible representations. If Tλ and T
are defined as follows then 7\ and T2 are bounded intertwining
operators between U1 and U2 and Tf = T2. For f in C

Txfig) = \ f(mg)x2(m)dm
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and for f in C°°( U2)

TJig) = \

Proof. From the results in [5], C00^) can be identified with
the space of Schwarz distributions φ on G and in a distributional
sense 0(m ) = Xi(m)φ( ) for all m in fl"lβ If we can show that 2\/
exists for all / in C°°(E7i) and is locally integrable, then it would
follow that TJ defines a Schwartz distribution and hence an element
of C-°°(U2). 2\ is then a continuous from C°°{U^ to C-°°(U2). From
Proposition 6, 2\ takes values in C°°( U2), 2\ is a multiple of a unitary
operator because the form B(xxy) = (Γ^, TΊi/> is a ίTΊ invariant bi-
linear form and hence B(x, y) — c(xu y) implying that 2\*JΓI = cl.
The adjoint property is clear.

Let M1 be the smallest connected subgroup containing Mx\ then
M\MX is compact. In [5], it was proved that C^iUJ is the space
of C°° functions / which satisfy f(mx) — Xι(m)f(x) for m in Mx and
/ is Schwartz transverse to Mγ. It is not difficult to show that
Mx Π M2\MX Π M2 is compact. Therefore we may write

\ x1{m)f{mx)dm = I \ ^ x1(mLm2)f(m1m2x)dm1dm2
ΰM1Γ[M2/M2 J MiΠM^MzJ M^ M2\MiΠMz

and the integrals exist by compactness and / being Schwartz trans-
verse to M. Clearly TJ is in fact a C°° function and hence locally
integrable. Π

Establishing this result allows us to compute explicitly the
intertwining operators between the four equivalent irreducible
representations.

T{σ, 0)1 | r ( o o , μ)

2X0, μ)

FIGURE 1

More direct computations show that Pa*M = B, P0*M = B, and
Pσ*P0 = B. For feH(U'),

T(σ, 0)f(x) = \ f(P*x)xo(p)dp = ( Mp, 0, 0)*x)dp
JPσC\P0\P0 JA

since {(p, 0, 0) | p in A} is a complete set of inequivalent coset repre-
sentatives of P σ n P 0 in Po. Similarly, for feH(U°)
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T{σ, oo)/(χ) = ί / ( ( 0 , p, O)*x)dp
JΛ

for feH(U°),

T(0, μ)f(x) = Σ /((0, 7, 0)**)
Λ

for feH(U">)

and for fe 11(17°),

Γ(0, »)/(!) = ( /((0, p,

Let w( ) be the distribution defined by w(m*p) = X(m)X,,(2>) for
m in Λf and 2) in Pσ. Of course, this makes sense only if Z and Xσ

agree on ikf Π Pσ which is 0 x 0 x R and if M*Pa = B, both of which
are clear. Similarly, define the distribution in C~°°(?70), wo(po*p) =
XoiPoWσip) for Po in Po and p in Pσ. Note again that Zo and %σ agree
on Po n P. and J5 = P,*Pσ.

PROPOSITION 7.

, 0)δ = ic?o

Proo/. Let g be in C°°(U0) with compact support in Poβ, then

(g, T{σ, 0)8) = <Γ(0, σ ) Λ δ>

= Γ(0, σ)ff(0)

(a, <*<*>, 0)χσ(a9 σa, 0)da

Similarly for / in C^iU00) with compact support in M\B,

oo)δ> = <Γ(oo,α)/,ί>

= ί /(α, σα, 0)χ,(α, σα,
J A

Finally,

T O , μ)w(xί, x2, 0) = θo(xlt x2, 0)

u ) ^ , ^ x» 0) = ί.Caj,, «,, 0) .
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PROPOSITION 8. θσ is a μ-theta distribution and K(σ) is an
intertwining constant depending only on σ.

Proof. The conjugate dual space C'^iU00) may be identified with
the space of Schwartz distributions Φ which satisfy Φ(m*x) —
X(m)Φ(x), [5]. By its very definition then θσ — T(oof μ)w must be a
μ-theta distribution [5, §111]. Using Schur's lemma,

( 2 ) Γ(oo, μ)T(σ, oo)δ = K(σ)T(0, μ)T(σ, 0)8

for some constant, K(σ) and both T(oo? μ)w and T(0, μ)w0 satisfy
the definition of a μ-theta distribution. •

Now that we have explicit formulas for all of the intertwining
operators we introduce coordinates and obtain a more concrete from
for (2) — in fact we show the equivalence of (1) and (2). The following
results will be useful in the computations that follow.

PROPOSITION 9.

logB(x, σx, 0) = (logAx, a log^ x, σ/{x))

where /(x) is the scalar log function defined earlier and
( i ) S(x*y) = /(x) + S(y) - B{x, y)
(ii) /{x) + /{x) = B(x,x)

Now the computations for θσ:

0σ(xlt xt, 0) = Γ(oo, μ)w(xlf x2f 0)

2πiB(Ύ, x2)w(Ύ*xl9 x2 + 7#2, 0)

= Σ exp 2πί[B(7, x2) + σs(y*x)] .

where all sums are over 7 in Λ. Applying Proposition 9, we have

θσ(xlf x2, 0) = exp 2πίσ/(x) Σ exp 2πi[B(Ύ, x2 — σxλ) + (7/(7)] .

For the other side of (2),

θσ(x» x2, 0) - K(σ)T(0, μ)wo(xlf x2f 0)

= Σ wo(O, 7, 0 ) * ^ , x2, 0)Z0(0, 7, 0)

= Σ Zo(6, 0, tχ)Zβ(α, σα, 0)

where t h e sum is over 7 in Λfb = x1 — a~γx2, a = 6*α; and £x = σ —

B(a, b).

θσ(xu x2f 0) = Σ e χ P — 2πiσ/(σ~\σx1 — x2 + 7)) .
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Eeplacing σxx — x2 by x, we have the distributional identity (1).

THEOREM 3.

Σ exp 2πi(σ/(7) - B(Ύ, x)) = K(σ) Σ exp - 2πiσ/σ~\x + 7))

The sum on both sides is over Ί in A.

III. μ-Theta functions* We will in this section attempt to
duplicate the results just completed in the (locally compact) group
structure of the previous section. Here, however, we will be using
a compact group and will obtain a function identity (as opposed to
a distributional identity) analogous to (1). In a subsequent section,
we will evince the connection between the two identities.

Recall that the vector lattice in A had the property that A — A*.
Throughout this section we will assume that the real number σ of
identities (1) and (2) is rational and in lowest terms. That is, σ =
a/b, (a, &) = 1. Define

r

where, as before, r is the nilpotent degree of the algebra A.

An = At = {x 6 A I B(x, An)(zZ}

An = Σ (AJb)k

fc=l

A: = (AT

PROPOSITION 1.

(a) Xc4c4cA B c A».
(b) Λn is a two sided ideal in the ring, An.
(c) An is a two sided ideal in the ring, Af

n.

Proof. Actually for any sets Su S2 in A such that Sx c S2 then
S*czS*. Clearly A!nz> AnZD A so Λ* c At c (An)*. An is a ring by
construction since A is nilpotent and any coefficient of the form
{l/nl)k cannot appear for k > r. If λ is in An, x and y are in An,
then

B(X x, y) = B(x \, y) - B(\ x-y) .

The latter form is integral since A is a ring. •

In the same method as in introduction, An and A'n will be the
basis for the construction of a compact ring, and subsequently, a
compact group. Bn = An x A'n x R is a ring—with multiplication
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defined as a subset of B and Γn = A'n x Λn x z is a two sided ideal
in Bn. Define Ba = Γn\Bn and note that it is isomorphic to (A'n\An) x
(Λn\A'n) x π. Bn is an algebra because Γn is an ideal. In the same
fashion as before, we generate a Lie Bracket on Bn by [x, y] ~
x y — y-x for all x and y in Bn. The compact group associated
with Bn, denoted by (Bn9 *), is Bn with "*" multiplication defined by
25* y = x + y + x-y.

In the analysis that follows, we will denote projection to Ba by
affixing " ~ " and form pre-images by removing " ~ " . For instance,
consider the following subset of Bn

Mn = l\\Λ'n xA'axR

and the subset of Bnf

Mn = A'Λ x Al x R .

PROPOSITION 2.

(a) Mn is a subgroup of Bn

(b) Mn is a subgroup of Bn.

The proof of this straightforward. Recall that M = 0 x A x R
and thus Mn = Mn Π M + Γn = (ikfn ΓΊ J l ί ) ^ , by the multiplicative
properties of M. The subgroup Γn is normal in 5 n and the character
x of §1 is trivial on Γn Π {Mn Π -M). Therefore, there is a unique
extension of I to a character ln of Γ*(Mn Π If) = ΛfΛ. Since a;n is
trivial on Γn we may also define a character jf?ι on Mn — Γn\Mn by
projection.

With the construction of §11 in mind, we establish

THEOREM 1. Let U be any irreducible representation of (Bn, *)
such that U restricted to the center of (Bn, *) is equal to e2πitl, where
I is the identity operator and t is in R. Then U = U™ =
ind(Mλt, (Bn, *), x j α^c? i7~ is irreducible.

Proof. Let £7 restricted to Mn be denoted by UR. Since ί/72 is
finite dimensional (Ma is compact),

where the C/ί?s are primary and ί/' = xjίf for /,- the identity
operator on the vector subspace of 11(11*) operates and the xt are
distinct characters of Mn. Prom the results in Mackey, [3], we have
that {Z£}?=1 is a homogeneous (Bn9 *) space under the operation
&-> Zϊ. Fix a Zo in {ZJ?=1 and let S - {Xl\qe (Bn, *)}.
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LEMMA 1. The stability subgroup for xn under the mapping

xn -> xl is Mn.

Proof. This follows by direct computation. •

LEMMA 2. There exists a q in Bn such that

a?o = 2 J

where xo(O, 0, t) = e2πίt.

Proof. Since {xq

n} for qe Bn has Mn for its stability subgroup,
there are [Mn; Bn] distinct elements in {xq

n}, qe Bn. A complete set of
inequivalent coset representatives for Mn\Bn would be Γn\An x A x z
which is isomorphic to Al\An. We claim:

LEMMA 3. The number of elements in the dual of A'n\An is
[Λn; A'n].

Proof. By the homorphism φ: A'n —> Άn defined by φ(x) ==
exp2πiB( , x), we map A'n into the dual of An. The kernel of this
mapping is An. The annihilator of the image is precisely A'n.
Therefore,

An\An s (A'n\AnT . Π

Continuing the argument in Lemma 2, there must exist a q such
that x0 = xl since xQ was a character for Mn. Π

LEMMA 4. // X0(0, 0, t) = e2;rίί, ίfee^ ίfce stability subgroup of
{xq

Q},qeBn is Mn.

Proof From Lemma 2, x0 — xq

n' for some q' e 5n. Applying
Lemma 1, we see that the stability subgroup of x0 is Mn. Π

We now apply the Mackey machinery, [3] to prove that ϋ =
md(Mn, (Bn, *), a?0). This will establish that U = U~. We isolate this
result in

LEMMA 5.

U=md(Mn,(Bn9*),x°).

Proof. As the stability subgroup of x0 is Mn, it follows from
the Mackey machinery that ind(ikfn, (j?n, *), xQ) is irreducible and equi-
valent with ϋζ. In particular, U™ is irreducible. •
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Let σ = a/b be a rational number such that (α, b) = 1. Recall
that the definition of An depended on b and we choose w (used in
the definition of An) so that n ^ b and % SΞ> α.

In (Bn, *) define the subsets Pσ,n = (P, Π Bn)*Γn and Pα,n,0 =
Pσ n p,,n.

PROPOSITION 3.

P,,n is α subgroup of (Bn, *) .

Proof. This is clear since Pα fl i?» is a subgroup and Γn is normal
in Bn. By the properties of Λn and X, the latter is contained in Γn

and thus

Pσtn £*PσnBn + Γn. D

As a result of this proposition, we have

COROLLARY 4.

P^T* is a subgroup of (Bn, *) .

PROPOSITION 5.

Po,n = P,,..0*(0 X i ί . X 2 )

Proof Prom the previous result, elements of Pa>n are of the form
(x + X, σx + λ, r + z) for x in An, λ in Λn, λ' in X, r in R and ^ in Z.

However, (cc+λ', σx+λ, r+2T) = ((aj+V), (s+λ/), ̂ ) + (0, λ-σλ', Z))
and the latter element is in O x ^ x Z. Pσ,n,0*(0 x i4n x Z) = Pσ,n,0 +
(0 x Λn x )̂ by a previous argument. Elements in Pσ,n,0 are of the
form (as, σ#, r) + (0, λ, Z) for a; in i r It is clear that this is in
pσ n Bn + rn - p,ιn. Π

The subgroup Γ n = Λ'n x ^ π x Z is normal in J5π and la is trivial
on Γn Γ) Pα,nto There is a unique, well-defined extension of Xσ to a
character α?,tn of Pa,n/Γn = Pα, w.

Since #σ>7l is trivial on Γnf we may define a character xσ>n on
•Pα.n = Γn\Pσιn by projection.

PROPOSITION 6.

Un = ind(Pα,n, (Bn, *), £,,„) is irreducible .

Proof By Theorem 1, C7; is primary and quasi-equivalent with
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LEMMA 6.

[Pσ>n: Bn] = [An: A'n]

Proof. Let Δn = A'n x An x # . Then Pσ,n^In and P σ , n - Δ*Pβtnt,.

Hence, 4,VPσ.« = 4 Π P,,n,oVP*.«.o Now POt7l = {(x, σx, t)\xeAn} and
Δn Π Pσ,n - {(λ, <τλ, ί) I λ e Λ!J. It follows that Δn\POtn s Λn\A>. Clearly,
P,,ΛSΛ - (^A^.J Π {Δn\Bn). But Jn\Bn s ^^\An x ΛnVC Our lemma
follows. •

The dimension of Ua

n is [Pσ,n; Bn] which is [Λn; A
f

n] by the lemma.
Establishing the equality [Λn; A'n] — [A'n; An] will prove that £7J and

ϋζ have the same dimension; by primarity of Va

n and irreducibility of
Unt Ua

n contains only one copy of ?7~. We isolate this equality in

LEMMA 7.

[Λn; A'n] - [Λ'n; An] .

Proof. In Lemma 3, an isomorphism was established between
the dual of Λ'n\An and Λn\A'n. That same argument can be used to
show an isomorphism between the dual of Λn\A'n and Λ'n\An. Thus
the number of elements in Λ'n\An is equal to the number of elements
in (Λn\A'ny which is less than or equal to the number of elements
in Λn\A'n. Applying the equality suggested by the first isomorphism
proves the lemma. •

From Proposition 1, Λ'n x An x ZςzΛ x A x i? C An x A'n x R.
Therefore, Γn = Γn\Λ x Ax R is a, nontrivial subgroup of Bn. Define
μ on Γn by

72, ίΓ) = exp 2πit

for (ylf 72, ί), a coset representative of Γn in A x A x R.

PROPOSITION 7.

μ is α character on Γn .

Proof. Recall from Chapter I, the character μ defined on Γ by

μ(V» 72, r) - e2'"

for (7X, 72, r) in P. μ is trivial on Γn and /5 is a projection of μ
onto cosets of A'n x An x Z in Γ. Thus μ is well defined. Q

In the following proposition, we establish the irreducibility of
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£7£ and continue the analogy with Chapter I:

PROPOSITION 8.

Uil = ind(Γn, (Bn, *), μ) ΐs irreducible and equivalent to ϋ™ .

Proof. In ί?π, the commutativity of the ^'-multiplication for
X — (Xu X2f rj)~ and Y~ = (Γi, Y"2, r2T is equivalent to

x*?*χ-=?
Ϋ+[X,Ϋ]=Ϋ

[x, Ϋ] = δ .

In £?„, this implies that [X, Y] is in Γn.

[X, Y] = (0, XXΓ2

This is, in Γn = Λ'n x Λn x ^ for all such X1 in ^ln and X2 in X if
B{xx, y2) — B(x2, y±) is integral and x2y1 — x±y2 is in /ln. In particular,
this must hold if x2 = αcCi for σ = a/b. Then (σ — l)B(a?i, j/2) is in Z
for all xί in An. This implies that y2 is in ^ίn by definition. There-
fore, B(x2, 7/i) is in Z for all x2 in A'n which implies that y1eΛ'n. I t
is clear that Γn\Λf

n x A x R is contained in the center of Bn. We
have just proven:

LEMMA 8. The center of Bn is Γn\Λ'n x Λn x R.

μ restricted to the center is of the form e2πίt for (0, 0, f)~ in
Bn. Once we establish irreducibility of C7£, equivalence with ϋ™
will follow from Theorem 1. ϋζ is primary and its dimension
[Γn; BΛ].

Γn\Bn = (Γn\Γ)\(Γn\Bn)

= (Λ\An) x (Λ\An) x {0} .

The number of cosets is given by [A; A'n]'[A; AN], By an argument
similar to the proof of Lemma 3, we can prove:

LEMMA 9.

[A'n; Λ] - [A; A'N]

Proof. Map A into the dual of A'n by φ(X)(x) = exp 2πi(B(X, x))
for λ in A and x in A'n. The kernel of this map and the annihilator
of the range are A'n and A respectively. •
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Therefore,

[Γn;Bn] = [Λ'n;Λ].[Λ;AN]

= [Λϋ; An]

= [Mn; Bn]

= dimlJ-

As ΪJί is primary and ϋ" is irreducible, this completes the proof of
Proposition 8. •

There is one last subgroup to consider. Let

Po,» = Γn\An xΛnxR

and

-Xo7n((«, °> r )) = e χ P 2 π i r

for (x, 0, ?\Γ in P07n.

PROPOSITION 9. P0,n ΐs a subgroup of (Bn, *) αwd X0,n is α
charades on POtn.

Proof. This follows the same line of reasoning as in our previous
arguments. That is, the normality of Γn in Bn and the subgroup
property of Po (Ί Bn provide the basis for proof. •

PROPOSITION 10. Ul = ind(P0,n), Bn, *), X0>n) is irreducible and
equivalent to £/"".

Proof Again, by a counting argument, [P0,n; Bn] = [Λn; A'TO] and
so dimi7° = dim?/". It is clear that Ul restricted to the center is
of the form exp 2πit for (0, 0, ty in the center of Bn. Therefore,
by Theorem 1, Ul = Όζ. Π

The compact group construction is now complete and we illustrate
the construction by means of the following diagram of equivalent,
irreducible representations:

i i
FIGURE 2

By Schur's lemma, this diagram commutes up to a multiplicative
constant. However, we defer the definition of any intertwining
operators or the computation of that multiplicative constant until
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certain normalization constants are computed. We will establish a
relationship between Figure (1) and Figure (2) by proving that the
multiplicative constant referred to above is K(σ).

A function θσ on (JBn, *) will be called a μ-theta function if
( i ) θσ(rX) = μn{Ί)θa{X)

and
(ii) θ.(X*p) = J£9,jj>)θσ(X)^

for all 7 in Γnf p in Pσ>n, and X in Bn.

PROPOSITION 11. There is a unique, up to a multiplicative
constant, μ-theta funtion on (Bn, *).

Proof. It follows from the Frobenius reciprocity theorem that
the subspace of vectors V in H(U§ such that Uζ(p)V = XσΛv)V
for p e Pσt7l has dimension one. •

We compute the μ-theta functions more explicitly. Let Wn be
the function on (Bnf *) defined by

Wn(m*p) = Xn{m)Xa,n{p)

for m in M w and p in Pσ>TO.

L E M M A 10.

ra •*• σ,n — •LJn

Proof. Let (x, y, t) be in Bn. Then,

(α?f y, tT = (0, δ, ί,)^(α, σα, 0)^

where (α, &, t^f = (x, y — σx, ty. •

(Γn\Λp

nxAnxR)\(Γn\AnxΛnxR) is isomorphic to Γn\Λ'nxΛnxR. By
Lemma 8, Mnp[POyn is the center of Bn. Also, for pΓ, p7 in P^n and
mlf m2 in M^, M^*P7 — M*P7 implies that Wn(mϊ*pϊ) = TFTO(mΓ*?>Γ)-
Therefore, Wn( ) is a well-defined function on i?w.

Define

where X^ is in BZ and 7 is a coset representative of Γn π Mn in Γn.
In terms of coordinates,

θσ((xlf x2, ty) — θσ((0, 0, ί1)"*(α?1, ίc2, 0)")
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We compute θσ((xlt x2f 0)") more explicitly.

(xu x2, 0y = (0, x2 - σxu 0y*(xl9 σxl9 Oy .

Thus,

Wn(xl9 x2, 0) - Xn((02, x2 - σxl9 θy)Xatn(fri, ™i, ° Π

= exp 2πiσs(x±) .

The set Cn = {(7, 0, 0)" in Γn\Λ x Λn x R} is a complete set of coset
representatives of Γn n Mn in 7 γ

Wn((Ύ, 0, 0Γ*fe, α2, 0)1 - exp 2πί[B(x2, 7) + σl(y*xd] and

GΛ^cn = Λ'M .

As a consequence,

«α((«i, «», o n = Σ W[(y9 o, 0)^(^, xu oy], (7 e Cn)

= exp 2πiσ/(xύ Σ exp 2πi[B(Ύ, x2 - σxx) + σ/(7)] , (7 6 Cn) .

The proof that θσ is a nontrivial function will be deferred until an
explicit connection can be made between these functions and the
distributions constructed in §11.

PROPOSITION 12. P*,nPα,n = AnxσAnxR+0xΛnx0 is α subgroup
of (Bn, *). Furthermore, XQ>n = Xσ,n on P0,nn Pβ f n = (A,Πσ~ ιA n)xΛ nxR.

Proof. By previous considerations,

Pen = {(», ^ + λ, t j I a? in An, λ in ^ln, t, in iί}

Po.n = {(y, λ', ί2) |y in An, V in 4n, ί2 in R} .

(», λ', t2)*{xf σx + λ, ίx) = (y*x, σ(y*x - y) + X", Q for

λ" = λ Γ + λ + λ'

and ί8 = ίx + ί2 + -B(OΣ, λ;) Note that λ" is in yln since /lra is an ideal
in An. Conversely, given an element of the form (α, σb + λ, ί8) with
α, δ, in An and ί3 in R, it is easy to show that

(α, σδ + λ, ί8) = (y, λ', ί2)*(a?, σα? + λ", ίx)

for x and i/ in An; x'f X" in 4n and tl9 t2 in Jϊ. So P0*nPσ,n is set
theoretically equal to AnxσAnxR + 0xΛnx0. Multiplication can be
easily shown to be well-defined. Therefore, P*nPσ „ is a subgroup
of (Bn, *).

In order for (xf σx + λ, tλ) in Pσ>n to also be in P0,n, σx + X eAn.
Thus, x e σ~xΛn. Therefore,

P0>n n Pσ>n c {(σ-%, λ2, ί) I λlf λ2 e An, t e R , and < r % e An} .



Mu-ΊΉEΎA FUNCTIONS 311

The opposite inclusion is obvious. Finally, X0>n(σ~1λ1, λ2, t) = e2πίt

X σ , > - % , λ2, t) - X,,n(<r%, λ, + (λ2 - λ,), ί)

= exp 2πi(t

However, αv( ) is integral on ((j~"\4TO)i4.n because n ^ max{r, α, 6} and
so XOtn = χ ι n on P0)7l n P«,,n. D

Define the function W0,n( ) o n the subgroup P0*nPσ,n by

for p0 in P0>n and p in Pσ>TO. By the preceding proposition, WOtn is
well-defined on P*nPσin. Define W0,n( ) o n the entire group (2?n, *) by

[0 otherwise .

For (χlf x2f oy in (Bn, *), define

^((^i , »2, 0)1 - Σ WOtn(^*(xlf x2, OΓ) .
?o,*n7'n\rΛ

If (aϊi, x2, OT is in P0>n*Pσ,n, (xlf x2, OΓ = (w, 0, 0)^*(v, σv, ϋ ^ where
U — xλ — σ^Xt, v — ut'x1 and tx — —Bin, v).

Then,

W0((u, 0, 0)^*(t;, σv, txy) -

= exp

If (α?!, x2, 0) is not in P*,nPOtn then TFoί^, x2, 0) = 0. A direct adapta-
tion of these arguments show that (U\ 0, 0)~*(F, σV, tty =
(£/', 0, 0)^*(7', F', «;)̂  implies that

WQ((U, 0, 0Γ*(7, σV, tf)=W0{U', 0,

It is easy to show that

( 1 ) ^

( 2 ) 5(?7, V) = -B(U, Xd + B{U, Ό)

and

( 3 ) /(U) + /(U) = B(U, U) .

Therefore,

WO(XU X , 0) = exp 2πiσ{/{X1) - /{X, - o'ιX%)) .
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The set DZ = {71 (0, 7, 0)" in Λ'nxΛnxZ\Λ'nxΛxZ} is a complete
set of inequivalent coset representatives for PQtn Π Γn in Γn. Note
that D:<zPf,nPσtn.

Finally,

^[(#1, »2, 0)"] = exp 2πiσ/(xι) Σ exp - 27ri<7/0-1(#1 ~ x2 + 7)) .

Replace #2 — σxx by a? in the expressions for Θσ and Ψσ and

yσ[(a?!, α?2, 0Γ] = exv2πiσ/(x1) Σ exp - 2πiσ/(σ~1(a; + 7)), (7 6 Λn\Λ)

θσ[(Xlf X2, Oy] - exp2πi(T/(X1) Σ exp + 2πi[-B(Ύ, x) + σ/{Ί)} ,

(7 6 XVI).

By virtue of Proposition 11 and the construction of θσ and Ψσ,
we have

THEOREM 2. JPO?* S W Bn, θσ(x) = cΨσ(x) for some nonzero scalar
c.

This establishes a similar relationship between these μ-theta
functions as in §11. However, it will be shown later that c is an
intertwining constant Kn(σ) which is equal to K(σ).

IV. The relationship between μ-theta functions and μ-theta
distributions* We will now relate the results of §§Π and III. Our
intent is to derive, in a more meaningful manner, the constant
multiple of Theorem 2 in §111 and establish equality between that
constant and K{σ).

First, we establish an equivalency that is the key of our in-
vestigation. Let p:Bn-^Bn be the canonical map onto A'nxAnxZ
cosets in An x A'n x R. Let Uμ

n = ind(/\, (Bn, *), μ%) and Un -
ind(Γ, (Bn, *), λ j .

PROPOSITION 1.

Proof. Uμ = ind(Bw, JB, ind (Γ, Bn, μ)) by induction in stages.
Since Uμ is irreducible, Un must be irreducible. The following diagram
is commutative:

Bn

 P—>Bn

Un\ \ϋn

FIGURE 3
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That is, for / in L\Γn\Bn),

UZ(pg)f(X) = Un(g)f(px) .

This follows from the definition of Bn and from Λ'nxΛnxZ being a
two sided ideal in AnxA'nxR. Therefore ϋί and Un have the same
invariant subspaces. Since both representations are irreducible, they
must be equivalent. •

We will now improve upon Figure 2.

ffμ
Un Tn(0,μ)

FIGURE 4

Each of the mappings Γn( , •) is an intertwining operator between
equivalent irreducible representations and hence this diagram com-
mutes up to a constant, Kn{σ) by Schur's lemma. We lift this
diagram up to the entire group B by means of the inducing map
and the pull back, p. Each representation is lifted to B by the
following:

Ul = ind(£n, B, mop)

Ul = ind(2?n, B, m°ρ)

ϋi = inά(Bn9 B, U~op)

Uζ - ind(Bn, B, ϋζop) .

We may, without ambiguity also make the additional identifications

Ul = ind(P.,,, B, XaJ

Ul = ind(P0,n, B, Zo,J

Ul = ind(Mn, B, Xn)

Uί - ind(Γn, B, μn) .

By equivalence of the inducing representations we have the
following diagram of irreducible, equivalent representations of (B, *).

Γ.(σ, 0)J I Γ,(oo, μ)

FIGURE 5

For / in the appropriate representation space, we have
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[ T > , oo)E72/](0, 0, 0) - [fn(σ, co)ϋ«nopf](θ, 0, 0)

[Γm(oc, μ)Uϊf](Q, 0, 0) - [5*.(oof μ)ϋtopf](09 0, 0)

[Tn(σ, 0)ϋϊ/](0, 0, 0) = [ Γ > , 0)£/^/](0, 0, 0) .

Consequently, the diagram of Figure 5 also commutes up to the
constant, Kn(σ).

That is,

Γn(oo, μ)Tn(σ, oo) = Kn(σ)Tn(0, μ)Tn(σ, 0) .

Through the equivalence of the representation Un and ί/£°jθ, we
have established an equivalency between Uμ and t/J. Since all these
representations are irreducible, consider the diagram of Figure 6.

T(σ, 0)

A(μ, n)

FIGURE 6

It has been shown that the right and left sides of this diagram
commute up to the constants K(σ) and Kn(σ) respectively. It is our
intent to show that Kn(σ) = K(σ).

However, before pursuing that line of reasoning, we exhibit the
intertwining operators of Figure 5. For sake of definition, let / be
an appropriate function in each instance below.

A(σ, n)f(x, y,t) = \ f(p*(x, y, t))Xa,Λ(p)dp

A(μ, n)f(x, y, t) - f(x, y, t)

A(0, n)f(x, y, t) = [Λn; Λ]'1 \ f(p*(xf y, t))
JPθfnΓ)Po\POt1t

A(oo, n)f(x, y, t) - [X; Λ]-1 \ f(p*(x, y, t))Xn(p)dp
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Tn(σ, 0)/(a?, y, t) = ^ ^ ^ f(p*(x, y, t))XOtn(p)dp

Tn{σy oo)f(χ9 Vf t) = \ f(p*(χ, y, t))Xn{p)dp

Tn(0, μ)f{x, y, t) = [Λn; Λ] j n / v/(2>*fo V, t)μ{p)dp

Tn(oof μ)f(χt yy t) = K ; Λ] J v w / ( P * 0 » , 1/, t)£(2>)dp

In each definition dp is Haar measure. These definitions are (formally)
the intertwining operators between the irreducible, equivalent repre-
sentations. The following proposition is necessary for the latter
group of operators defined above.

PROPOSITION 2.

(a) The characters Xσ,n and X0>n agree on Pσ>n Γ) POjn.
(b) The characters Xσ>n and Xn agree on Pσ>n Π Mn.
(c) The characters XOιn and μ agree on POyn f] Γ.
(d) The characters Xn and μ agree on Mnf] Γ.

Proof, (a) This was proven in Proposition 12 in Chapter II.
(b) Pσ>nΓ\Mn = Λ'nxΛnxR and both Xσ,n(\', λ, t) and XQ,n{X\ X, t)

are e2πίt for (λ', λ, t) in Pσ>n n Mn.
(c) Mn ίΊ Γ = Λ'nxΛxZ and both characters are trival on this

subgroup.
(d) PQtn Π Γ — ΛxΛnxZ and both characters are trivial on this

subgroup. •

Before justifying the existence of such operators, some considera-
tion will be given to normalization constants associated with the
invariant measures.

Let G by a locally compact abelian group K, a subgroup of G.
Let / and/be integrable functions on G and G. Let K} — {characters
of the dual group of G that are trivial on K}.

The Poisson summation formula is given by

f(k)dk = \ f(m)dm

if K and K are given compatible Haar measures, i.e.fK1 has the
measure dual with the measure on K\G which is determined by the
measure on G and the measure on K. We want to choose that
measure so that / " = /. If G is compact, then G is discrete and
Haar measure on G must be counting measure. If the measure of
the compact group is C, then the Haar measure on G is G~ι times
counting measure.
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We shall say the measures on G, KG and K are normalized if

ί = ( \
JG JK\G JK

Hence, we shall always assume that our measures are so normalized.
Furthermore, we will choose the measure on K1 to equal that on
(K\Gy so that the Poisson summation formula works. As a conse-
quence, we give discrete sets counting measure. If G and K are
both discrete, the triple G, K, K\G is then normalized.

Set

An\A

A'M

AM
Λ'ΛA

Measure

[Λn; A]-1

[An; AY1

[An; A]

[An; A] .

With these considerations completed, we now investigate the
intertwining operators.

PROPOSITION 3. For f appropriately chosen in the representation
space of each operator,

Tn(oo, μ)f(x, y, t) = [An; A] Σ /((7, 0, 0)*(x, y, t))
Λ'v>Λ

Tn(0, μ)f(x, V, t) = K ; A] Σ /((0, 7, 0)*(sf y, t))
Λn\Λ

Tn{σ, oo)f(Xf y9t)= Σ /((0, 7, 0)*(x, y, «))

Tn{σ, 0)f(x, »,*) = ( /(P*(», 2/, t))XOtn(p)dp

where dp is normalized Haar measure.

Proof. The last equality is stated only for completeness and
reference, as no attempt will be made to simplify it.

By definition, for / in S(A x 0 x 0) Π H(U%),

Tn{oo, μ)f(χ9 Vf t) = [A'n; A] \ f(p*(x, y, t))μ{p)dp .

It is easy to show that {(7, 0, 0) 17 in A'n\A} is a complete set of
inequivalent coset representatives of Mn Π Γ in Γ and μ(y, 0, 0) = 1.
The other identities follow similarly. Π

Before attempting any simplification of A(μ, n), A(oof %), A(σ, n)
and A(0, n) we state the following proposition whose proof may be
found in [8].
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PROPOSITION 4. If H and K are rational subgroups of N (a
nίlpotent Lie group) and K normalizes H then HK is rational andy

in particular, is closed.

By the Noether isomorphism theorem.

p n P\P — P\P* p
x σ,n » I •*• aX1- σ,n — ± a\x σ.ra * a

Mn Π M\Mn = M\M*Mn

•Lθ,n Π

and the latter portion of each isomorphism is closed by the previous
remarks, {(k, 0, 0) | k in Λ'n} is a complete set of inequivalent coset
representatives of MnΓ)M in Mn as is {(0, k, 0)|k in Λn} for PQynΠPQ in
P0>n. Also, {(0, k, 0) I k in Λn) is a complete set of inequivalent coset
representatives for P0,n Π Pσ in Pσtn. As a consequence we have,

A(β, n)f(X, Y, t) - f(Xy Y, t)

A(σ, n)f(X, Y,t) = Σ /((0, h, 0)*(X, Γ, ί))

il(0f n)f(X, Y, t) = [Λn; A]'1^ /((0f Λ, 0)*(X, Γ, ί))

, F, ί) - [X; ^ ] - Σ /((*, 0, 0)*(X, Γ, t)) .

It is left to the reader to show the triviality of each character on
the coset representatives. With all of these considerations of operators
completed, we present the first theorem of this chapter.

THEOREM 1. The diagram of Figure 6 is commutative except
for the right and left sides, which have been shown to commute up
to the constants Kn(σ) and K(σ) respectively.

Proof. The really meaningful part of this proof is the commuta-
tivity of the back portion of this diagram and we defer justification
of that to the end of this proof. Recall S(G) is the Schwarz space
of the group G. It is sufficient to compute the constant of commuta-
tivity for two intertwining operators between equivalent and irre-
ducible representations by application of them on an arbitrary
nonzero function evaluated at the group identity.

First consider the front of the diagram.

, μ)\ \τ(oo,μ)

Let / be in H(U~) ΠS(AxOxO). Now,



318 WILLIAM G. FREDERICK

A(μ, n)T{~, μ)f(β, 0, 0) = Γ(«>f μ)f(0, 0, 0)
= Σ/(V,0,0), (7 mA).

A

In the other direction,

Tn(<~, μ)A(oo, Λ)/(0, 0, 0) = [X; Λ] Σ A(oo, n)f(y, 0, 0)

- [X; Λ] Σ [X; ΛΓ Σ /(fc*(τ, 0, o»
W Λn

2
Thus the diagram commutes since the sums converge.

The bottom of (6) is

T»(0, μ) Γ(0, W)

_, A(μ, n) j T t

Let / be in JΪ(Z7°) Π S ( O x i x 0), then

A{μ, n)T(0, μ) = Γ(0, μ)f(0, 0, 0)

= Σ /(o, 7,0).

In the other direction,

Γ«(0, ίi)il(0, n)/(0f 0, 0) = K ; 4 Σ^ A(0, Λ)/(0, 7, 0)

- K; 4] ΣJ^n; ^l]-1 Σ /((0, ft, 0)*(0,7, 0))

- Σ /(o, r, 0).

Therefore, the bottom portion commutes.
The top of the diagram is

Tn(σ, oo) T(σ, co)

Let / be in £Γ(17») Π S ( 0 x 4 x 0).

Koo, n)T(σ, oo)/(0, 0, 0) = [A; Λ Γ Σ Γ(^, -)/(&, 0, 0)

n

= [X; ΛΓ1 Σ ( /(p*(ft, o, 0))X(P)dp
Λ, JPσr\M\M
Σ (
Λ, JPσr\M\M

n

= [X; Λ]-1 Σ \ /(Λ, P, 0)dp

(k, p, 0) = (a, σa, t)*(fi, b, 0)
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where a = k, b — p + kp + σk and t = —B(a, 6).
Note that dδ = dj>. Thus, since / is in H(Uσ)f

A(oof n)T(σ, oo)/(0, 0, 0) = [Λ'n; Λ]~^\ exp - 2πί(B(k, b)

+ σs(k1)) f(θ,b,θ)db

= [X; ^]~ x Σ exp 2πiσ/{k)q(xk) ,

where g(x) = /(0, aj, 0) and Xk is the character e ~ 2 ^ ^ ^ . Also by
construction, σ/(k) is integral for k in X. In the other direction,

7, n)f(0, 0, 0) - Σ A(σ, w)/(0, 7, 0)

= Σ Σ/((0,A;,0)*(0,7,0))

- Σ /(0, Λ', 0) .
An

By the Poisson summation formula,

i.e., this portion commutes also.
Finally, this portion of the diagram is the most difficult for

proving commutativity

Tn(σ, 0) T(σ, 0)

Commutativity will, in fact, be demonstrated by showing that

A(0, nY'TJiσ, 0)A(σ, n) = T(σ, 0) .

For / in H(U°) n S(A x 0 x 0), we have

Tn(σ, 0)A(σ, n)f(0, 0, 0) = \ A(σ,

J Jpσ>nnp0>n\p0,n pσ>nΓ)Pσ\pσ>n

where dp1 and dp2 are normalized Haar measures. As before, define
the function Wo on A^ x σAn x J? by WoWPi) = X0,n(Pi)XoΛPϊ) ^ T pL

in P0>7, and p2 in Pσ > n. This is well-defined since XQtn = Xσ,π on PO>71 Π
Pσ)7l and P*nPQ,n = ANx σAn x R. Also, by the Noether isomorphism
theorem, P0>n n Pσ,Λ^o,n = Pσ,n\P*nPσ,n
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TΛ(σ, 0)A(σ, n)f(0, 0, 0)

Tn(σ, 0)A(σ, n)f(0, 0, 0) = ί . f{p)W{p)dp

where p = ptpx and dp is normalized Haar measure. Pσ>n Π Pσ =
{(a, σa) | α in An} x R and {(α, 0, 0) | a in Ara} is a complete set of
inequivalent coset representatives of POtn Π Pa in the subgroup
P* P

Thus,

Tn(σ, 0)A(σ, n)f(0, 0, 0) = ί /(α, 0, 0)]?0(α, 0, 0)da .

W0(α, 0, 0) = 1 because (a, 0, 0) is in P0>n and hence by normalization
of Haar measure, we have Tn(σ, 0)A(σ, ri)f(09 0, 0) = Σ^/(3>, 0, 0).
In order to prove commutativity, we will show that

A*(0, n)Tn(σ, 0)A(σ, n)f(fl, 0, 0) - T(σ, 0)/(0, 0, 0)

where

A*(0, n)f(X, Γ, t) = ( /((p, 0, 0)*(X, Γ, t))dί
Jκ n u

and A*(0,n)A(P,n) = I, the identity operator on H(U"). That is,
A*(0, Λ) = A-\0, n).

LEMMA 1.

A*(0, n)A(0, n) = I.

Proof.

A*(0, n)A(0, n)f(0, 0, 0) = \ Λ(0, n)f(p, 0, 0)dp
JAn\A

\ [ n ; r
JAn\A n

(p, k, 0) = (p, 0, -B(p, k + pk))*(0, k + P-k, 0)

A*(0, n)A(fl, n)f(0, 0, 0) = ( [Λn; Λ]-1 Σ exp
JAn\A Λn

— 2πiB(p, k + pk)f(0, k + pk, 0)dp .

Let hP(h) - exp - 2πi(B(p, k + pk)f(0, k + pk, 0)).
[An, Λ]~iyΣjAnhp(k) = Σ^Λ^p(-X*) by the Poisson summation formula.
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A*(0, n)A(0, n)f(fi, 0, 0) =

= ί Σ ( K(a)Xk(a)dadp
JAn\A An JA

= LuξL e x p

-2πiB(p, a+pa)e-2πiB{a'k)f(0, a+pa, 0)dadp .

However, the sum over h in An is zero except for a — 0 in which
case the right hand side becomes /(0, 0, 0). •

Next,

A*(0, n)Tn(σ, 0)A(σ, n)f(0f 0, 0) = \ Tn(σ, O)A(cr, n)f(p, 0, 0)dp

and

Γn(σ, 0)A(σ, w)/(p, 0, 0) - [E7£(p, 0, 0)Tn(σ, 0)A(σ, ^)/](0, 0, 0)

- [Γm(<j, 0)A(σ, Λ) J7(p, 0, 0)/](0, 0, 0)

= Σ[ϋ2(P,0,0)/](α,0,0)

- Σ /((α, 0, 0)*(p, 0, 0)) .

So,

A*(0, w)Tn(<7, 0)A((7, w)/(0, °ι °) = ( Σ /((α, 0, 0)*(p, 0, 0))dp

where pr = α*p and dp' is Haar measure of A. The latter expression
is precisely T(σ, 0)/(0, 0, 0). We have shown that

A*(0, Λ)Γn(σ, 0)A(σ, n) = T{σ, 0)

and by Lemma 1,

TΛ(σ, 0)A(σ, n) - A*'\0f n)T(σ, 0)

Tn(σ, 0)A(σ, n) = A(0, n)T(σ, 0) .

The back of the diagram (D4) commutes and this completes the proof
of Theorem I. •

THEOREM 2. For n appropriately chosen, that is sufficiently
large, Kn{σ) = K{σ) if σ is a rational number.

Proof. By diagram of Figure 6 and / chosen in H(Uσ), we
have
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Γ»(~, μ)Tn(σ, oo)A(σ, n)f = Γn(oo,

and hence

KΛ(σ)Tn(Q, μ)Tu(σ, 0)A(σ, n)f = A(

£ » Γ n ( 0 , μ)A(0, n)T(σ, 0)/ = #(<7)A(μ, n)T(0, μ)T(σ, 0)/

Kn(σ)A(μ, n)T(0, μ)T(σ, 0)/ - iΓ(σ)A(^, n)Γ(0, μ)T(σ, 0)/ .

Therefore, ίΓn(σ) - K(σ). •

Consider the diagonal plane of the diagram:

Λ(oo, w ) f o o

Tn(θO,0)\ \T(θO,0)

This diagram is commutative by the considerations in §11. The-
refore we have the following:

PROPOSITION 4.

(1) T(09μ)T(oof0) = T(oofμ)
(2) Γw(0, μ)Tn(oof 0) - Tn(oof μ).

Proof, By Schur's lemma,

^ 0 0 , ^ =

We will show that C = 1. For / in H(Um) n S ( 4 x 0 x 0),

CT(0, μ)T{oo, 0)/(0, 0, 0) = C Σ Γ(°°, 0)/(0, 7, 0)

= C Σ ( f(P, P'y + v, B(p, Ύ))dp .
Λ JA

Noting that {p, pi + γ, B(p, 7)) - (0, py + 7, 0)*(p, 0, B(p, 7)) then

, 0) = C Σ ( ^ " " " - ' / ( p , 0,
1 J4

By the Poisson summation formula, C = 1 (recall that Λ = Λ1). Also,
Γn(oo, ^) = Γn(0, μ)Tn(oof 0) follows by the commutativity of dia-
grams. •

COROLLARY 1. Γ(co, 0)T(σ, oo) ^ K(σ)T(σ, 0).
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Proof.

Γ(oo, 0)T(σ, oo)

- T(0, ^Γ#(σ)T(0, μ)T(σ9 0)

= JSΓ((τ)Γ(σ, 0) . D

The following results answer some open questions from Chapter
II. It has been shown that

= K(σ)θσ

and

T(oof μ)T(σ, oo)δ = T(oof μ)W

= θo.

Those same arguments apply to the operators in §111

Tn(Q,μ)Tn(σ,0)δ = ψσ

Γ»(°°, μ)Tn(σ, c)δ^θσ

and we have

COROLLARY 2. θσ(x) — K(σ)ψσ(x) for x in Bn and θσ and ψσ are
nonzero functions on (Bn, *).

Proof.

θa{x) = Kn(σ)fσ(x) .

Kn(σ) is the intertwining constant for the operators of the compact
group and by Theorem 2, of this section Kn{σ) = K(σ). ψσ is a
nonzero function on (βn, *)—it is the image of a nontrivial function
under an intertwining operator between two irreducible, equivalent
representations. Also, Kn{σ) = K(σ) Φ 0. Therefore θa is also
nontrivial. Q

V. K(σ). In this section, we will attempt to compute K{σ)
more explicitly. At the very least, we will derive an interesting
identity involving K(σ) and present some examples to illustrate the
depth of these results.

From Corollary 1, §IV, we have Γ(oo, 0)T(σ, oo) = K(σ)T(σ,ϋ).
This result is the basis for a remarkable identity. Let Φσ(X) —
exp2πiσs(x) for x in the nilpotent algebra, A and £(•) the scalar
log function as defined earlier. As usual, denote the Fourier Trans-
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form of a function, g, over the algebra A by g.

THEOREM 1. If n is the vector space dimension of A, then K(σ)
is a factor of the proportionality constant in the following distri-
butional Fourier transform identity:

<£,(.) = σ-"K(σ)Φ_σ(σ-ι )

Proof Let / be in C°°(Uσ) and have compact support in Pσ\B.

Γ(oo, 0)Γ(σ, oo)/(0, 0, 0) = K(σ)T(σ, 0)/(0, 0, 0)

ί T(σ, oo)/(p, 0, 0)dp = K(σ)\ f(p, 0, 0)dp
JA JA

\ \ /((0, P', 0)*(p, 0, 0))dp = K{σ) \ f{V, 0, 0)dp .

Now

(0, p', 0)*(pf 0, 0) = (p, p' f 0)

(P, P', 0) = (α, σα, 0)*(6, 0, 0)

where a = α""^', & = σ~ιp'*p.
Prom this (p*6) — p r. Since this transformation of coordinates

is unipotent, we have σndb = dp', where ^ is the vector space di-
mension of the algebra, A. Thus the left hand side of the equality
is, after a change of coordinates,

σn\ \ exv2πiσs(p*b)f(b,0,0)dbdp
J A JA

= σn[ \ e-MBip.ov^iotΰfφ 0 o)dbe2πίσ*{p)dp .

With the change b->b, db — db by the in variance of Haar measure and
the inner integrand becomes exp(—2πiB(p, σb)) exp 2πiσ/(b)f(b, 0, 0).
However, since / is in H(Uσ),

{b) f(b, 0, 0) = X.Q>, σb, 0)/(6, 0, 0)

Let g(b) = /(0, 6, 0) and the previous integral is now

σn\ [ e'2πίB{p'σb)g(σb)dbe2πiσ^p)dp .

Again change coordinates by b -> σ-16 and we have
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On the other side of our operator identify involving K(σ), we have

K{σ) \ f(p, 0, 0)dp .
JA

Invoking the algebraic properties of (1),

f(P, 0, 0) - exp(-2πi/(p))/(0, σp, 0)

and this changes the latter integral (after the coordinate transfor-
mation p —> σ~1;p)

σ~nK{σ) \
J

= σ~nK{σ)
A

While this distributional formula does not provide us with an
explicit formula for K(σ), it will allow us to compute K(σ) in some
examples that follow. The examples, at least the first, indicate the
complexity of the integrals involved. This complexity does give
some promise for future research. First, however, the examples to
illustrate the application of our results.

EXAMPLE 1. Let N1 = span^{e}, where B{e9 e) = 1 and ei = 0 for
i > 1. Assume σ = a/b, (a, b) — 1. Let X = t-e for t in R and 7 —
k-e for k in Z. By definition, s(X) = -(l/2)B(te, te) = -(l/2)ί2. As
a consequence, Φσ(X) = exp —πiσtf. The Fourier transform identity

Φσ(X) = e^Φ_Xσ^X)\V^

is well-known. Thus, K(σ) — V σ e~πi/i. From the definitions in §111,
Λn is isomorphic to blZ and Λ'n is isomorphic to bnl Z. Thus Λ'n\A
is isomorphic to the integers modulo bnl and Λn\Λ to the integers
modulo n\. The μ-theta function identity of §11 (with C = K{σ))
is

(2) nΣexpτrif—\k + tf = K(a)^1expπiί-2kt - ~

Let t = 0 and after cancellation, we have

Σ exp πi — k2 = J—e-πί/ί Σ exp - πi—k2 .

This is, of course, the familiar Gaussian Summation Formula. For-
mula (2) may be intepreted a transformation of the classical sums
(with some restrictions on £).

EXAMPLE 2. Let N2 be the nilpotent algebra with basis {eu e2}
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where e\ = ei9 el = 0 and B(eif ed) = 1 if and only if i + j = 3 and
zero else. For X = t& + t2e2 and tl9 t2 in JR,

Let g be in C£(iί2), then

( Φσ(X)g(X)dX

= I exp2ττiσ—ίjexp(—2πi{σt ι + s jk + tλs2)g{su s2)ds1ds2dt1dt2 .
J.R1 3

Note that the integral, I >dt2 is zero except when sx = — σtx. This

integral then reduces to:

\ exp 2πiσt\β exp — 2πit1s2g( — σt1, 82)d82dt1

= σ~ι 1 exp — 2πiσ (—(σ~%f — σ'H&jgfa, 82)d82dtt

= σ~x I Φ_σ{σ-ιx)g(x)dx .
J4

Therefore, Z((j) = σ.

Let X = txex + ί2e2 as before and 7 = fc^ + k2e2 for ^ and fc2 in Z.
The jH-theta function identity becomes

exp \\
L 3

( Λ Ϊ - kλk2) Σ

It is not difficult to show that Λn is the span over Z of (w!)2^ and
nle2 and X is span over Z of δ 2 ^ ! ) 2 ^ and bnle2. For ^ = 0,

Σ Σ exp 2ττi - ±(± --kl
kλ=o k2=o a V 3 a

= •?• Σ Σ exp 2πiH—k\ -
6 AJ1=O fc2=o 6 \ 3

Since ^ ^ α, ^ ^ & these sums reduce by cancellations to

3α-i α-1 h / Λ h \ n 3 δ = 1 ft-! /Y / 1 \
Σ Σ exp 2i - A ( i Afc; _ fc^) . l ^ E e x p 2i^(-ί^ - A Λ ) .

*i=o /k2=o α V 3 a / 6 fc1=o fc2=o 6 V 3 /

However, the sum over k2 in both instances is trivial except when
kt = 0, the identity is then: a = α/δ δ.
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The results from Example 2 are somewhat disappointing, as we
had hoped to derive a formula for the cubic Gauss Sums. The
difficulty might be a peculiarity of the algebra. It could be, however,
the tendency of nilpotent algebras to behave in a general fashion
akin to the quadratic case. Nonetheless, it serves as a basis for
future research. It should also be mentioned that Example 1 was
not just coincidental—it is the motivation for this group construction,

[5].
In the final analysis, there are several problems that come im-

mediately to mind. The first is the possibility of using the adele
group constructions and thereby obtaining a product formula for
the μ-theta functions and distributions. Secondly, there seems to
be a lot more structure to K(σ) as indicated by the examples and
the proof of the first theorem of this section. Finally, the analogy
of these functions with classical theta functions certainly begs some
consideration to establish formulas comparable to these of the clas-
sical case.
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