INTRINSICALLY ($n-2$)-DIMENSIONAL CELLULAR DECOMPOSITIONS OF E^{n}

Robert J. Daverman and Dennis J. Garity

Abstract

Let G be a $C E$ usc decomposition of an n-manifold M. The intrinsic dimension of G is a measure of the minimal dimension of the image of the nondegeneracy set of $C E$ maps from M onto M / G which approximate the natural projection map. Examples of totally noncellular intrinsically n-dimensional decompositions of $E^{n}, n \geqq 3$, are known to exist. Here it is shown that there also exist cellular decompositions of $E^{n}, n \geqq 3$, which are intrinsically ($n-2$)dimensional.

O. Introduction. Most examples of decompositions presented in the literature are 0-dimensional. Illustrating the extreme alternative, Cannon, Daverman and Walsh have constructed examples of totally noncellular, $C E$ usc decompositions of $E^{n}, n \geqq 3$ [3] [7]. The fact that these decompositions are totally noncellular (and are known to yield n-dimensional decomposition spaces) makes it clear that they are intrinsically n-dimensional.

Cellular decompositions, however, cannot be quite so complicated. It is not difficult to show that a cellular decomposition of E^{n} (having finite dimensional decompositson space) is necessarily of intrinsic dimension less than n. For proofs of this fact, see [10, p. 68] or [11, p. 27]. This paper sets forth examples of cellular decompositions of $E^{n}, n \geqq 3$, that are intrinsically ($n-2$)-dimensional. Such examples were discovered independently by the authors in 1979.

The main point established by these examples is that cellular decompositions form a fairly large and reasonably typical subclass of the total class of $C E$ decompositions. Moreover, the important question of whether $E^{n} / G \times E^{1}$ is homeomorphic to E^{n+1} remains open in all dimensions $n \geqq 3$ (even when G is a cellular usc decomposition of E^{n} and E^{n} / G is finite dimensional). Whenever G is intrinsically of dimension $\leqq n-3,\left(E^{n} / G\right) \times E^{1}$ is known to be topologically E^{n+1} [6, Theorem 1] [5, Theorem 3.3].

Whether there exist intrinsically ($n-1$)-dimensional cellular decompositions of E^{n} stands as an unsolved problem.

1. Notation and conventions. We will be considering celllike ($C E$) upper semicontinuous (usc) decompositions of manifolds M without boundary. If G is such a decomposition, H_{G} represents the set whose elements are the nondegenerate elements of G, and N_{G}
represents the union of these elements. In general, π or π_{G} will represent the quotient map from M onto M / G. If p is a $C E$ map from M onto X and H is the decomposition of M with elements $\left\{p^{-1}(x) \mid x \in X\right\}$, then $N_{p}=N_{H}$. A $C E$ map p from M onto X is said to be 1-1 over A if $A \subset X$ and each $p^{-1}(a)$ for $a \in A$ consists of a single point.

The sup metric ρ on E^{n} will be used. That is, $\rho(x, y)=$ $\sup _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$ where $x=\left(x_{1}, \cdots, x_{n}\right)$ and $y=\left(y_{1}, \cdots, y_{n}\right)$. For maps f and g from X into $E^{n}, \rho(f, g) \equiv \sup _{x \in X} \rho(f(x), g(x))$. The standard embeddings $[-1,1] \times \cdots \times[-1,1] \times\{0\}$ and $[-1,1] \times \cdots \times$ $[-1,1] \times\{0\} \times\{0\}$ of the closed $(n-1)$ and $(n-2)$ balls in E^{n} will be denoted by B^{n-1} and B^{n-2} respectively. Thus, each point y of B^{n-1} can be represented as (x, t) where x is in B^{n-2} and t is in $[-1,1]$.
2. Preliminaries. The following definitions and theorem are taken from [3] and provide a general framework for constructing $C E$ usc decompositions.

Definition. Let N be a P.L. n-manifold. A defining sequence (in N) is sequence $\mathscr{S}=\left\{\mathscr{M}_{1}, \mathscr{M}_{2}, \cdots\right\}$ satisfying the following conditions:
(1) for each i, \mathscr{K}_{i} is a finite collection $\left\{M(1), \cdots, M\left(k_{i}\right)\right\}$ of P.L. n-manifolds with boundary in N such that

$$
(\operatorname{Int} M(j)) \cap(\operatorname{Int} M(k))=\varnothing \quad \text { for } \quad j \neq k ;
$$

(2) for $1 \leqq i<j$ and for each A in \mathscr{K}_{j}, there is a unique element $\operatorname{Pr}^{j-i}(A)$ in \mathscr{M}_{i} properly containing A; and
(3) for each $i \geqq 1$, each A in \mathscr{M}_{i}, and each pair of points x and y in ∂A, there is an integer $j>i$ such that no element of \mathscr{M}_{j} contains both x and y.

Definition. Let \mathscr{S} be a defining sequence in an n-manifold N. Then

$$
\begin{aligned}
& s t\left(x, \mathscr{M}_{j}\right)=s t_{1}\left(x, \mathscr{M}_{j}\right)=\{x\} \cup \bigcup\left\{A \in \mathscr{M}_{j} \mid x \in A\right\} \quad \text { and } \\
& s t_{k}\left(x, \mathscr{M}_{j}\right)=\bigcup\left\{s t\left(y, \mathscr{M}_{j}\right) \mid y \in s t_{k-1}\left(x, \mathscr{M}_{j}\right)\right\} \quad \text { when } k \geqq 2 .
\end{aligned}
$$

Definition. The decomposition G of N associated with a defining sequence \mathscr{S} in N is described as follows. Distinct points x and y of N are in the same element of G if there is an integer r, depending only on x and y, such that for each $j, y \in s t_{r}\left(x, \mathscr{M}_{j}\right)$.

Theorem 1 [3, §3]. The decomposition G of N associated with
a defining sequence \mathscr{S} in N is usc. If, in addition, each A in \mathscr{H}_{j} is null homotopic in $\operatorname{Pre}^{1}(A)$ for all $j \geqq 2$, then G is $C E$.

In general, each x in N has the property that $\pi^{-1} \circ \pi(x)=$ $\bigcap_{j=1}^{\infty} s t_{2}\left(x, \mathscr{M}_{j}\right)$. Let $B=\bigcup\left\{\partial A \mid A\right.$ is an element of some $\left.\mathscr{M}_{j}\right\}$. If $x \in g \in G$ and either $x \in B$ or $g \cap B=\varnothing$, then $\pi^{-1} \circ \pi(x)=\bigcap_{j=1}^{\infty} s t\left(x, \mathscr{M}_{j}\right)$.
3. Measuring intrinsic dimension. This section sets the stage for the construction of the next section. Methods for determining the intrinsic dimension of certain decompositions are set forth.

Definitions. Let G be a $C E$ usc decomposition of an n-manifold M. Then G is said to be:
(i) d-dimensional if $\pi\left(N_{G}\right)$ has dimension d;
(ii) closed d-dimensional if the closure of $\pi\left(N_{G}\right)$ has dimension d;
(iii) secretly d-dimensional if π is arbitrarily closely approximable by $C E$ maps p from M onto M / G with $p\left(N_{p}\right)$ of dimension less than or equal to d; and
(iv) intrinsically d-dimensional if it is secretly d-dimensional, but not secretly $(d-1)$-dimensional.

For a defining sequence $\mathscr{S}=\left\{\mathscr{A}_{1}, \mathscr{L}_{2}, \cdots\right\}$ in E^{n} consider the following Special Hypothesis:
(SH^{*}) There exist maps F_{1} and F_{2} from B^{2} into E^{n} and $\varepsilon>0$ so that $F_{1}\left(B^{2}\right) \cap F_{2}\left(B^{2}\right)=\varnothing$ and $\rho\left(F_{e}\left(\partial B^{2}\right), \cup \mathscr{A}_{1}\right)>\varepsilon$ for $e=1,2$.
$\left(\mathrm{SH}_{\mathrm{i}}\right)$ (a) R_{i} is the subdivision of B^{n-2} into $2^{(i-1)(n-2)}(n-2)$ cells obtained by dividing each $[-1,1]$ factor into 2^{i-1} equal subintervals.
S_{i} is a triangulation of $[-1,1]$ with S_{i+1} refining S_{i}.
T_{i} is the subdivision of B^{n-1} obtained by taking $R_{i} \times S_{i}$.
T_{i} has mesh less than or equal to 2^{2-i}.
(b) For each element A of $\mathscr{M}_{i}, A \cap\left\{B^{n-1} \times[-1 / i, 1 / i]\right\}=C \times$ $[-1 / i, 1 / i]$ where C is an $(n-1)$-cell of T_{i}.
(c) For distinct elements A and \widetilde{A} of $\mathscr{K}_{i}, A \cap \widetilde{A}$ is contained in $\partial C \times[-1 / i, 1 / i]$ where C is an $(n-1)$-cell of T_{i}.
(d) If $x \in \partial A$ for A in \mathscr{M}_{i-1}, either $x \notin \bigcup \mathscr{M}_{i}$ or $x \in \partial C \times$ $[-1 / i, 1 / i]$ for some $(n-1)$-cell C of T_{i}.

Definition. Fix t in $[-1,1]$. Maps f_{1} and f_{2} from B^{2} into E^{n} are (t, \mathscr{S}) slice maps if for all x in $B^{n-2}, \pi(x, t) \cap \pi\left(f_{1}\left(B^{2}\right)\right) \cap \pi\left(f_{2}\left(B^{2}\right)\right) \neq \varnothing$. Assume SH_{1} holds. Then f_{1} and f_{2} are $\left(A, \mathscr{K}_{i}\right.$) slice maps (A an interval of S_{2}) if $P \times A$ is contained in an element of \mathscr{M}_{i} that intersects both $f_{1}\left(B^{2}\right)$ and $f_{2}\left(B^{2}\right)$ for every P in R_{i}.

The next two lemmas are technical and will guide the construction in the following section.

Lemma 1. Assume that SH^{*} holds, and that:
(i) $\pi \mid B^{n-1}$ is homeomorphism;
(ii) $\pi\left(N_{\pi}\right) \subset \pi\left(B^{n-1}\right)$;
(iii) if f_{1} and f_{2} are maps from B^{2} into E^{n}, with $\rho\left(f_{e}\left|\partial B^{2}, F_{e}\right| \partial B^{2}\right)<$ $\varepsilon / 2$ for $e=1,2$, then for some t in $[-1,1], f_{1}$ and f_{2} are (t, \mathscr{S}) slice maps; and
(iv) the decomposition G of E^{n} associated with \mathscr{S} is cellular. Then G is intrinsically ($n-2$)-dimensional.

Proof. First, it will be shown that G is secretly $(n-2)$-dimensional. Note that $Q=E^{n} / G-\pi\left(B^{n-1}\right)$ is an F_{σ} set and that π is already 1-1 over Q. Choose a countable dense subset $\left\{x_{i}\right\}$ of B^{n-1} so that $O=B^{n-1}-\bigcup_{i=1}^{\infty}\left\{x_{i}\right\}$ is $(n-2)$-dimensional. Since G is cellular, $\pi: E^{n} \rightarrow E^{n} / G$ can be closely approximated by a $C E$ map $p_{i}: E^{n} \rightarrow$ E^{n} / G that is $1-1$ over $\pi\left(x_{i}\right)$. It follows from [9, p. 15] that the map π from E^{n} onto E^{n} / G can be closely approximated by a $C E$ map p from E^{n} onto E^{n} / G with $p\left(N_{p}\right) \subset O$. This implies G is secretly ($n-2$)-dimensional.

Next, it will be shown that G is not secretly ($n-3$)-dimensional. Assume the contrary. Then π can be approximated by a $C E$ map q so that $q\left(N_{q}\right)$ has dimension less than or equal to ($n-3$). Since $F_{1}\left(B^{2}\right) \cap F_{2}\left(B^{2}\right)=\varnothing$, it follows that $h_{1}=q \circ F_{1}$ and $h_{2}=q \circ F_{2}$ have the property that $h_{1}\left(B^{2}\right) \cap h_{2}\left(B^{2}\right)$ has dimension less than or equal to $n-3$. By [8, p. 80], there exists a path α from $B^{n-2} \times\{1\}$ to $B^{n-2} \times\{-1\}$ in B^{n-1} so that $\pi(\alpha) \cap h_{1}\left(B^{2}\right) \cap h_{2}\left(B^{2}\right)=\varnothing$.

By choosing q close enough to π, it is possible to find approximate lifts f_{1} and f_{2} to h_{1} and h_{2} so that $f_{1}\left(B^{2}\right) \cap f_{2}\left(B^{2}\right) \cap \alpha=\varnothing$, and so that $\rho\left(f_{e}\left|\partial B^{2}, F_{e}\right| \partial B^{2}\right)<\varepsilon / 2$. This contradicts hypothesis (iii) of the lemma and implies that G cannot be secretly ($n-3$)-dimensional.

Lemma 2. Assume that SH_{*} and SH_{i} hold for $1 \leqq i<\infty$, that the decomposition G associated with \mathscr{S} is cellular, and that for $1 \leqq i<\infty$ the following condition holds:
(a_{i}) whenever f_{1}, f_{2} are maps of B^{2} into E^{n} in general position with respect to all the elements of $\mathscr{M}_{k}, k \leqq i$, and for which $\rho\left(f_{e}\left|\partial B^{2}, F_{e}\right| \partial B^{2}\right)<\varepsilon / 2$ for $e=1,2$, then there exists $A_{i} \in S_{i}$ such that f_{1} and f_{2} are $\left(A_{i}, \mathscr{A}_{i}\right)$ slice maps. Moreover, in case $i \geqq 2$, the choice of A_{i} can be made so that $A_{i} \subseteq A_{i-1}$.
Then G is intrinsically $(n-2)$-dimensional.
Proof. It follows from SH_{i} that each nondegenerate element of G intersects B^{n-1} and that, for $x \in B^{n-1}, B^{n-1} \cap s t_{2}\left(x, \mathscr{M}_{i}\right)$ has diameter less than 2^{4-i}. By Theorem 1, $\pi \mid B^{n-1}$ is an embedding and $\pi\left(N_{\pi}\right)=$ $\pi\left(N_{G}\right) \subset \pi\left(B^{n-1}\right)$. Moreover, Conditions ($\left.\mathrm{a}_{\mathrm{i}}\right), 1 \leqq i<\infty$, imply that
hypothesis (iii) of Lemma 1 holds. Thus, all the hypotheses of that lemma are satisfied, and G must be intrinsically ($n-2$)-dimensional.
4. The construction. Lemma 2 indicates how the construction will proceed. A defining sequence \mathscr{S} for a cellular decomposition G will be constructed in E^{n} so that SH* is satisfied. At each stage i, SH_{1} will be satisfied, as will Condition a_{1} from Lemma 2. The construction will complete the proof of the following theorem.

Theorem 2. For $n \geqq 3$, there exist intrinsically ($n-2$)-dimensional cellular use decompositions of E^{n}.

The following definition and lemma from [4] will be used in the course of the construction. Anyone familiar with the examples of wild Cantor sets in E^{n} constructed by Antoine [1] or Blankinship [2] may prefer to use the appropriate manifolds from their specific examples in place of the more general construction procedure used below.

Definition. Let M be a manifold with boundary, H a disc with holes and f a map from H into M with $f(\partial H) \subset \partial M$. Then f is said to be I-inessential if there exists a map \tilde{f} from H into ∂M with $f|\partial H=\widetilde{f}| \partial H$. Otherwise, f is said to be I-essential.

Lemma 3 [4, p. 147]. Let S denote a closed P.L. ($n-2$)-manifold and $M=S \times B^{2}$. Choose $\varepsilon>0$. Then there exists a finite collection $\left\{M_{i}\right\}$ of pairwise disjoint, locally flat manifolds in $\operatorname{Int}(M)$ such that:
(i) each M_{i} is homeomorphic to the product of B^{2} and a closed P.L. ($n-2$)-manifold;
(ii) the diameter of M_{i} is less than ε; and
(iii) whenever H is a disc with holes and $g: H \rightarrow M$ is an I essential map, then $g(H) \cap\left(\cup M_{i}\right) \neq \varnothing$.

Stage 1. T_{1} : Let R_{1} be as in SH 1 and S_{1} be the trivial triangulation of $[-1,1]$. Let $T_{1}=R_{1} \times S_{1}$.
\mathscr{M}_{1} : Let V be a P.L. embedded copy of

$$
T^{n} \equiv B^{2} \times \underbrace{S^{1} \times \cdots \times S^{1}}_{n-2 \text { copies }}
$$

in $B^{n-1} \times[3,4]$ and W a P.L. embedded copy of T^{n} in $B^{n-1} \times[-4,-3]$. \mathscr{M}_{1} will have one element, $M(1)$, consisting of $B^{n-1} \times[-1,1], V$, W, and P.L. n-tubes joining $B^{n-1} \times\{1\}$ to V and $B^{n-1} \times\{-1\}$ to W.

Figure 1 shows $M(1)$ in the case $n=3$.

Figure 1.
SH 1: The choice of T_{1} and \mathscr{M}_{1} allows one to verify that SH 1 is satisfied.

Note 1. The construction allows one to choose $\varepsilon>0$ and maps F_{1}, F_{2} from B^{2} into E^{n} so that
(i) $\quad F_{1}\left(B^{2}\right) \cap F_{2}\left(B^{2}\right)=\varnothing$;
(ii) $\rho\left(F_{e}\left(\partial B^{2}\right), M(1)\right)>\varepsilon$ for $e=1,2$; and
(iii) whenever f_{1} and f_{2} are maps from B^{2} into E^{n} in general position with respect to $M(1)$, and with $\rho\left(f_{e}\left|\partial B^{2}, F_{e}\right| \partial B^{2}\right)<\varepsilon / 2, e=$ 1,2 , then there exists a dise with holes H_{1} (resp. L_{1}) so that $f_{1} \mid H_{1}$ (resp. $f_{2} \mid L_{1}$) is I-essential in V (resp. W).

To find $F_{1}\left(F_{2}\right)$ choose any embedding of B^{2} in $E^{n-1} \times(0, \infty)$ (in $E^{n-1} \times(-\infty, 0)$) satisfying condition (ii) above and such $F_{1}\left(B^{2}\right) \cap V$ $\left(F_{2}\left(B^{2}\right) \cap W\right)$ equals the image in $V(W)$ of $B^{2} \times p t . \times \cdots \times p t . \subset T^{n}$.

The above note yields immediately the fact that SH_{*} and Condition (a_{1}) of Lemma 2 are are satisfied.

Stage i. Assume that \mathscr{M}_{i-1} has been constructed so that the following inductive hypotheses are true for $j=i-1$.

IH I. SH_{j} and Condition a_{j} from Lemma 2 hold.
IH II. $\mathscr{\mathscr { j }}_{j}\left(\mathscr{W}_{j}\right)$ is a collection of pairwise disjoint, connected, locally flat n-manifolds with boundary in $V(W)$ of diameter less than $1 / j$, and of the form $B^{2} \times(\operatorname{closed}(n-2)$-manifold $)$.

IH III. Each element m of \mathscr{M}_{j} consists of (an $(n-1)$-cell of $\left.T_{j}\right) \times[-1 / j, 1 / j]$ connected by n-tubes to a unique element $v(m)$ of \mathscr{V}_{j} and also to a unique element $w(m)$ of \mathscr{W}_{j}. Furthermore, when $j>1$ each $v \in \mathscr{V}_{j}\left(w \in \mathscr{W}_{j}\right)$ is contained in some flat n-cell $C_{v}\left(C_{w}\right)$ that lies interior to some element of $\mathscr{Y}_{j-1}\left(\mathscr{W}_{j-1}\right)$, and then, for $m \in \mathscr{M}_{j}$, $m \cup C_{v(m)} \cup C_{w(m)}$ is a flat n-cell Q_{m} such that

$$
Q_{m} \cap\left(B^{n-1} \times[-1 / j, 1 / j]\right)=\left(\text { an }(n-1) \text {-cell of } T_{j}\right) \times[-1 / j, 1 / j]
$$

IH IV. Whenever f_{1} and f_{2} and A_{j} are as in Condition a_{j} of Lemma 2, P is an element of R_{j} and v and w are the elements of \mathscr{V}_{j} and \mathscr{W}_{j} associated with $P \times A_{j}$, there exists a disc with holes H (resp. L) in B^{2} so that $f_{1} \mid H$ (resp. $f_{2} \mid L$) is I-essential in v (resp. w).

Note 2. The above inductive hypotheses are true for $j=1$.
\mathscr{M}_{i} will be constructed by considering each "slice" $B^{n-2} \times E(E$ an interval in S_{i-1}) separately. Focus attention on one such slice.
R_{i} : Let $P(1), \cdots, P(r)$ be the $(n-2)$-cells of R_{i-1}, and $v(1), \cdots$, $v(r)$, and $w(1), \cdots, w(r)$ the associated elements of $\mathscr{\mathscr { V }}_{i-1}$ and \mathscr{W}_{i-1} respectively.

As in SH ($\mathrm{i}-1$), $r=2^{(i-2)(n-2)} . \mathrm{R}_{\mathrm{i}}$ is chosen as in SH i so that each $P(j), 1 \leqq j<r$, contains $s \equiv 2^{n-2}(n-2)$-cells of R_{i}.

Finding interior manifolds. Consider a specific $P(j) \times E, 1 \leqq$ $j \leqq r$. Use Lemma 3, with $\varepsilon=1 / i$, to obtain a collection of n-manifolds with boundary satisfying the conclusions of Lemma 3 in the interior of $v(j)$ and $w(j)$.

Without loss of generality, the same number l of interior manifolds can be chosen in each $v(j)$ and $w(j)$ so that each interior manifold in $v(j)$ (resp. $w(j)$) is contained in a P.L. n-cell interior to $v(j)$ (resp. $w(j)$).

Note 3. There are $l^{2 r}$ distinct ways of choosing exactly one interior manifold from each $v(j)$ and $w(j), 1 \leqq j \leqq r$.

Ramifying the interior manifolds. Each interior manifold M is of the form $B^{2} \times N$ for N a closed ($n-2$)-manifold. Choose $m \equiv s \cdot l^{(2 r-1)}$ pairwise disjoint subdises D_{1}, \cdots, D_{m} of B^{2}, and form m
"parallel interior" copies of $B^{2} \times N$ by taking $D_{1} \times N, \cdots, D_{m} \times N$.
$\mathscr{V}_{i}, \mathscr{V}_{i}$: The part of \mathscr{V}_{i} (resp. \mathscr{W}_{i}) associated with the slice $B^{2} \times E$ consists of the union of all the "parallel interior" manifolds constructed in $v(j)$ (resp. $w(j)$), $1 \leqq j \leqq r$.

Note 4. There are a total of $r \cdot s \cdot l^{2 r}$ components of \mathscr{Y}_{i} (resp. \mathscr{W}_{i}) associated with the slice $B^{n-2} \times E$.
$S_{\mathrm{i}}, T_{\mathrm{i}}$: Subdivide E into $l^{2 r}$ equal subintervals, so that T_{i} has $r \cdot s \cdot l^{2 r}(n-1)$-cells in $B^{n-2} \times E$.
\mathscr{M}_{i} : For each of the $l^{2 r}$ choices mentioned in Note 3, choose a distinct slice $B^{n-2} \times \widetilde{E}$ for \widetilde{E} in S_{i}. Thus, associated with $B^{n-2} \times \widetilde{E}$, we have one of the original interior manifolds from each of $v(j)$ and $w(j), 1 \leqq j \leqq r$.

For each P in R_{i} with $P \subset R(j)$, tube $P \times \widetilde{E} \times[-1 / i, 1 / i]$ to a parallel interior copy of the associated interior manifolds in $v(j)$ and $w(j)$. Do this by first choosing an n-cell C_{v} (resp. C_{w}) containing the target interior manifold in its interior, so that C_{v} (resp. C_{w}) is contained in the interior of $v_{j}\left(\right.$ resp. $\left.w_{j}\right)$. Run the tube from $B^{n-1} \times$ $\{1\}$ (resp. $B^{n-1} \times\{-1\}$) directly to C_{v} (resp. C_{w}) and then, once inside that n-cell, threading the tube through it, never leaving the cell, over to the preselected element of \mathscr{V}_{i} (resp. \mathscr{W}_{i}).

The number of parallel interior manifolds has been chosen so that each will be used exactly once. Then \mathscr{M}_{i} consists of the manifolds resulting from the above tubing operation.

Note 5. At this point IH II is satisfied for $j=i$. If the tubing operation is done carefully enough, IH III and SH_{i} will also be true.

IH IV and Condition a_{1} : Condition a_{i} of Lemma 2 is implied by IH IV. What follows is a verification of IH IV in case $j=i$.

Let f_{1}, f_{2} and A_{i-1} be as in Condition a_{i-1}, and assume, in addition, that f_{1} and f_{2} are in general position with respect to all of the elements of \mathscr{M}_{i}. By IH IV for $j=i-1$, for each $P(k)$ of R_{i-1}, corresponding to the manifolds $v(k)$ and $w(k)$ associated with $P(k) \times$ A_{i-1} are discs with holes $H(k)$ and $L(k)$ such that $f_{1} \mid H(k)$ is I-essential in $v(k)$ and $f_{2} \mid L(k)$ is I-essential in $w(k)$. It follows from Lemma 3 that $v(k)$ (resp. $w(k)$) contains an interior manifold v_{k} (resp. w_{k}) such that, modulo another general position adjustment, there exists a disc with holes $H_{k}\left(\right.$ resp. $\left.L_{k}\right)$ in $H(k)($ resp. $L(k))$ for which $f_{1} \mid H_{k}$ is I essential in $v_{k}\left(f_{2} \mid L_{k}\right.$ is I-essential in $\left.w_{k}\right)$. Then each of the parallel interior copies of $v_{k}\left(w_{k}\right)$ must be hit in an I-essential way by $f_{1}\left(f_{2}\right)$.

Determination of v_{k} and w_{k} constitutes a choice as in Note 3. Thus, the construction of \mathscr{M}_{i} associates a slice $B^{n-2} \times \widetilde{E}$ with this choice and guarantees that IH IV holds for $j=i$.

Cellularity of G. This completes the inductive description of the defining sequence \mathscr{S}. It remains to be shown that the associated decomposition G is cellular.

Fix $x \in B^{n-1} . \quad \mathrm{SH}_{\mathrm{i}}, 1 \leqq i<\infty$, together with Theorem 1 implies that the element g of G containing x is obtained by taking $\bigcap_{k=1}^{\infty} s t\left(x, \mathscr{I}_{k}\right)$. So it suffices to show that $\bigcap_{k=1}^{\infty} s t\left(x, \mathscr{M}_{k}\right)$ is cellular. At some index $j=j(x)$ the number of elements of \mathscr{M}_{j} contained in $s t\left(x, \mathscr{M}_{j}\right)$ must stabilize since this number is bounded above by 2^{n-1}. When this occurs, any $m^{\prime} \in \mathscr{M}_{k}$ in $s t\left(x, \mathscr{M}_{k}\right)$, contains exactly one $m \in \mathscr{M}_{k+1}$ in $s t\left(x, \mathscr{M}_{k+1}\right), k \geqq j$.

Using the notation of IH III, st $\left(x, \mathscr{M}_{k+1}\right)$ is contained in the union X_{k+1} of all the n-cells Q_{m}, where $x \in m \in \mathscr{M}_{k+1}$, and X_{k+1} in turn is contained in $\operatorname{st}\left(x, \mathscr{M}_{k}\right)$. It is easy to add the n-cells of X_{k+1} together, one at a time, to show that X_{k+1} is also a flat n-cell. If U is any open set containing $\operatorname{st}\left(x, \mathscr{M}_{k}\right), X_{k+1}$ (possibly slightly thickened) is thus a flat n-cell with $s t\left(x, \mathscr{M}_{k+1}\right) \subset \operatorname{Int}\left(X_{k+1}\right) \subset U$. It follows that $\bigcap_{k=1}^{\infty} s t\left(x, \mathscr{L}_{k}\right)$ is cellular and that G is a cellular decomposition of E^{n}.

References

1. L. Antoine, Sur l'homeomorphie de deux figures et de leurs voisinages, J. Math. Pures Appl., 4 (1921), 221-325.
2. W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math., (2) 53 (1951), 276-291.
3. J. W. Cannon and R. J. Daverman, A totally wild flow, Indiana Univ. Math. J., 30 (1981), 371-387.
4. R. J. Daverman, On the absence of tame disks in certain wild cells, in Geometric Topology (L. C. Glaser and T. B. Rushing, editors), Lecture notes in Math. 438, SpringerVerlag, New York, 1975, 142-155.
5. - Detecting the disjoint disks property, Pacific J. Math., 93 (1981), 277-298.
6. R. J. Daverman and W. H. Row, Cell-like 0-dimensional decompositions of S^{3} are 4-manifold factors, Trans. Amer. Math. Soc., 254 (1979), 217-236.
7. R. J. Daverman and J. J. Walsh, A ghastly generalized n-manifold, Illinois J. Math., 25 (1981), 555-576.
8. R. Engelking, Dimension Theory, North Holland, New York, 1978.
9. D. L. Everett, Embedding and product theorems for decomposition spaces, Doctoral thesis, University of Wisconsin, Madison, 1976.
10. D. J. Garity, General Position Properties of Homology Manifolds, Doctoral Thesis, Univeristy of Wisconsin, Madison, 1980.
11. D. K. Preston, A Study of Product Decompositions of Topological Manifolds, Ph. D. Dissertation, The Unversity of Tennessee, Knoxville, 1979.

Received November 7, 1980 and in revised form August 5, 1981. Research supported in part by NSF Grant MCS 79-06083.

The University of Tennessee
Knoxville, Tennessee 37916

