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IRREDUCIBLE REPRESENTATIONS OF FINITE GROUPS
OF LIE TYPE THROUGH BLOCK THEORY

AND SPECIAL CONJUGACY CLASSES

RICHARD A. BOYCE

This paper is concerned with the study of certain irre-
ducible representations, over the field of complex numbers,
of finite groups of Lie type, and especially with the
characters afforded by these representations. The methods
used are based on the theory of blocks with cyclic defect
groups for certain prime different from the characteristic,
called special primes, relative to which the groups have
cyclic Sylow subgroups. Character values are obtained on
certain regular semisimple classes, and all Deligne-Lusztig
virtual characters relative to certain maximal tori are de-
composed.

()• Introduction* Consider a pair (<?, T) where G is a finite
group of Lie type and T a maximal torus of G whose order is
divisible by at least one special prime. Let β be a complete set
of orbit representatives for the action of N = NG(T) on the set
of irreducible characters of T whose orders in the character group
T~ are relatively prime to each special prime dividing \T\. Then
for each ψ e Ω, a family of irreducible characters of G is constructed.
These families, which are pairwise disjoint, resemble closely the
organization of the irreducible characters of G into blocks, and the
behavior of their members reflects in a number of ways the character
theory of N (see Theorem (5.2)).

That special primes exist for a wide class of pairs (G, T) is
established in §2, where they are seen to arise as the primitive
divisors of Zsigmondy [14]. Let (G, T) be such a pair, let π be the
set of special primes dividing \T\, and let X be the set of elements
of T having order divisible by some reπ. Then the Brauer-Dade
theory and Suzuki's theory of special conjugacy classes, as adapted
to the peculiarities of this setting in §4 and §3 respectively, are
employed in §5 to show (Theorem (5.2)) that the sets of nonexcep-
tional characters in certain r-blocks of G are independent of reπ,
and that the irreducible characters of G which are of interest,
namely those not vanishing on X, arise as follows. If ί e Γ and
e = [stably (0): T], then there exist irreducible characters Xlt ••-,%*
of G and signs εl9 , εe = ± 1 such that for all i,

e
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It is shown also that %<(1) == {eije)θN{l) (mods) where s is the π-part
of |G|.

One of the primary objectives in the study of representations of
finite groups of Lie type is the decomposition of the Deligne-Lusztig
virtual characters (Deligne-Lusztig [5]) in cases where this has not
yet been accomplished. In §6 such decompositions are given (Theorem
(6.1)) for all Deligne-Lusztig virtual characters arising from certain
maximal tori. Indeed, let ^ be a connected reductive affine algebraic
group giving rise to a finite group G of Lie type, let &~ be a
maximal torus of ^ giving rise to a maximal torus T of G such
that | Γ | is divisible by a special prime, and let 0eT~. Then using
the previous notation (subject, however, to a possible relabeling if
a certain transitivity condition holds), the result obtained is that

e

where R%-(θ) is the Deligne-Lusztig virtual character of G correspond-
ing to ^ and θ e 3Γ\ In case G = GL(n, q), this decomposition is
given by Fong and Srinivasan in [7], Finally, the Deligne-Lusztig
theory is applied in §6 to obtain improvements in §5.

The author is deeply grateful to Professor Charles Curtis, whose
advice was indispensable throughout this work. A debt of thanks
is also due to Professor Gary Seitz, who provided the author with
a number of important ideas and improvements.

1* Preliminaries*

NOTATION. We adopt the exponential notation x9 = g~~ιxg where
x and g are elements of a group. If X is the union of a set of
conjugacy classes of a finite group G and X:X~~>C is constant on
conjugacy classes, then for geG, Xg:X9—>C is defined by Xg(x9) =
l(x) for all xeX.

Let GF(q) be a finite field of characteristic p > 0 and order q,
viewed as a subfield of its algebraic closure K. For greater detail
in what follows, we refer the reader to [2], [11], and [13]. Let 2^
be a connected reductive affine algebraic group over K with
coordinate ring Szf, and let ,S^GFiq) £ J^ be a (τjF(g)-rational structure
for & such that the induced Frobenius morphism F: & —> & is a
homomorphism of abstract groups. Denote by G the corresponding
finite group of Lie type, by which is meant the finite group ŜV of
fixed points of F in ^ .

F-stable maximal tori of ^ are known to exist, and if J7~ is
such a torus, then the abelian subgroup T — ,ί7~F of G is called a
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maximal torus of G. Furthermore, there exists an i^-stable maximal
torus J^"' of Sf which is contained in an F-stable Borel subgroup &'
of 2 ,̂ and the pair CJ/7"', &') is unique up to G-conjugacy. Therefore
the classification of the maximal tori of G, which we outline below,
does not depend on our choice of (J/"~', . ^ ' ) Let W(S'f) be the Weyl
.group Λ^ΊJ?"', where <yl^r — N.χj?~r). Given an element w = n:y'!

where n e ,yίr\ Lang's theorem guarantees the existence of an
element α e ^ such that n = a(Fa)~ι. It follows that j / ~ — a~~\9~'a
is an .F-stable maximal torus of &, and hence that T = J7'~F is a
maximal torus of G, said to be obtained by twisting by w. More-
over, using the action induced by F on W(Jy~'), we may define an
equivalence relation on W{^~r), called F-conjugacy, whereby w\ and
w2 are related if and only if there is an element ιvz e W(J7~') such
that w2 = w^^Fw-i)"1. Then the assignment

w i > {a~\$rra)F

induces a bijection between the F-conjugacy classes of W(^s~f) and
the G-conjugacy classes of maximal tori of G.

If F acts trivially on W(^r), then F-conjugacy degenerates to
the usual notion of conjugacy, in which case we may speak (abusively)
of the Coxeter torus of G, namely any maximal torus of G obtained
by twisting by a member of the conjugacy class of Coxeter elements
in W(JT').

To obtain information about irreducible characters of G, we
shall make use of Suzuki's theory of special conjugacy classes and
Brauer's theory of blocks.

DEFINITION 1.1. Let N be a subgroup of G, let ^ , ίfw be
distinct conjugacy classes of N represented by the respective ele-
ments nL, '-',nm, and assume that the following conditions hold:

(a) For all ΐ, CG(n^ ^ JV.
(b) If ί Φ j, then nt and % are not conjugate in G.
(c) If for some i, ne N satisfies (n) = (n^), then n e &ά for

some j.
Then ^ , , r(^m form a set of special conjugacy classes of N

in G.

PROPOSITION 1.2 (Suzuki, Higman). Let G, N, and ^ e ^ ,
(1 ^ i ^ m) be as in (1.1). Then

(a) X = U { ^ : 1 ^ i ^ m} is a T.I. set in G and NG(X) = N
(see Dornhoff [6], p. 60).

(b) There is a basis θlf , 0m of virtual characters of N for
the complex vector space of class functions of N which vanish off X.

(c) Let I r r (G) - {Xlf , Xu), let I r r (N) = {<plf , <pυ}, and set
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U V

Σ δί A'fc = Σ ^iiβih

/or all i, j e{l, , m}.
(d) Tftere exisί complex numbers cjk determined uniquely by the

equations <Pi(ns) — Σ?=iCy*α« (1 <; i <> v, 1 <̂  j S m,); moreover, these
numbers also satisfy the equations %*(%) = Σ?=i cjJ>ki (1 ^ i ^ u,
1 £ 3 ^ w).

Proof. See Dornhoff [6], p. 149.

Detailed accounts of block theory may be found in Curtis and
Reiner [3], Dornhoff [6], or Isaacs [8]. Given a prime number r
and a subgroup H of G, we adopt the viewpoint that a member
B = 5(r) of the set B/(H) = £<.(#) of all r-blocks of H is a subset
of the disjoint union

Irr Off) U IBr(iί) ,

where Irr (H) denotes the set of irreducible complex characters of
H and IBr (H) denotes the set of irreducible Brauer characters of
H relative to r (see [8], Chapter 15). We denote by B' (resp. B")
the set B Π Irr (H) (resp. B Π IBr (H)).

If D is a subgroup of G, then the actions of NG(D) by conjuga-
tion on Irr (CG(D)) and on IBr (CG(D)) induce an obvious action of
NG(D) on B/(PQ{D)).

Our primary block theoretic tool is the following portion of
Dade's results on blocks with cyclic defect groups.

PROPOSITION 1.3 (Dade [4]). Let BeB/(G) have nontrivial cyclic
defect group D of order r \ For each ke{0, , α}, let Dk, Ck, and
Nk be the subgroups of G defined respectively by [D: Dk] = rk, Ck =
GG(Dk), and Nk = NG(Dk). There exists a block b0 of Co satisfying
bG

0 = B. Let E = Stab^o(6o), and e = [E: Co]. Then the following
assertions hold:

(a) If beB/{CQ)9 then bG is defined and bG = B if and only if
bn = 60 for some n e No.

(b) For each /be {0, , α — 1}, ί/̂ β 6ίocΛ bk = 6?& is defined and
(bk)" = {ψk} for some φk e IBr (Cfc).

(c) Bf contains certain distinct irreducible characters Xlf , Xe

of G such that there exist signs ε0, εlf , eβ, Ύo, Ίu , Ίa_x = ± 1
satisfying the property that if ke {0, , α — 1},

Σ
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for each i, where Dk = (x) and yβCk is r-regular.
(d) The signs et and Ύk may be chosen so that 70 = 1. Under

this assumption, replace G by Cα_!. Since 6α_! 6 B/(Ca_^ has defect
group D, (a)-(d) hold for Cα_i and ba_x, giving us new signs
(%>)'> '' 't (^e-i)Ί where we may assume that (70)' = 1. Then 70 =
(To)', •• , 7 β _ 1 = ( 7 β _ 1 ) \

LEMMA 1.4. Retaining the notation o/(1.3), assume that G — Co.
e = 1 cmd ίfee proposition holds with ex = 70 = 7X = =

Proof. This is Proposition 2.1 of [4].

After the terminology of Brauer (see Dade [4]), the characters
Xl9 , Xe in (1.3c) are called the nonexceptional characters of B. We
remark however that if the action of E on the nontrivial irreducible
characters of D is transitive, then (1.3c) holds independently of
which characters of B' are labeled Xlf •••,%«.

In [5], Deligne and Lusztig establish the existence of a set of
virtual representations of G over C, parameterized by pairs (^7 θ)
where ^" is an i^-stable maximal torus of 2^ and θ is an irreduci-
ble character of ^~F over C, the set of which we denote by (J7~FY
to emphasize that it forms a group isomorphic to ^~F. We shall
confine our attention to the corresponding virtual characters of (?,
the one associated with ( ^ 0) being denoted by R%-(θ) (or by R^{θ)
if the reference to Ŝ 7 is clear).

If ^ is an .F-stable maximal torus of gf, then N^{^~) is ί7-
stable, and the action of N^{^")F by conjugation on (J7~FT lifts to
Nsrί^h/^F- θei^y is said to be in general position if
{w e NA^)P/^~F: ΘW = Θ} = {1}.

For any closed connected reductive i^-stable subgroup Sίf of ^ ,
denote by a{3έf) the common dimension of all maximal (?.F(g)-split
tori of £ίf. If ^~ is an F-stable maximal torus of έ%f and ^ is the
set of all unipotent elements of ^f, then the function Q%\ <%SF —> C,
defined by Q^(u) = iϋytl^X^) for all u 6 <%fF, is called Green's
function of Jg^ relative to

PROPOSITION 1.5 {Deligne-Lusztig [5]). Le£ ^ be an F-stable
^maximal torus of & with θ, θr e (^p)*. Then the following assertions
hold:

(a) (RΛΘ), RAΘ'))G ^\{we N,Λ^r)FljrF: θ» - θ]\.
(b) If R^(θ) is irreducible up to sign, then sRjr(θ) e Irr ((?)

where e = (- l) σ ( ^ } (- l) σ ( S f ) .
(c) If x = su (s semisimple, u unipotent) is the Jordan decom-
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position in 5^ of xeG, then for any geG, ^(g) = C&igsg'1)0 is a
closed connected reductive F-stable subgroup of 5̂ *, and

geG

where θ° coincides with θ on J^Ί? and is zero on G — F

(d) RAθ)(x) = θG(x) for all xe^~F satisfying C#(x)Ό = JTT

2* Regular semisimple elements and special primes* If x 6 G
is semisimple, then x is contained in some jF-stable maximal torus
άΓ of Ŝ , and if in addition C?(x)° — ̂ 7 then ^~ is clearly the
unique maximal torus of gf containing x (see Springer-Steinberg [11]).

DEFINITION 2.1. Let xeG be semisimple and let J^~ be an Te-
stable maximal torus of g^ such that xeT — ̂ ~F. Let N = NG(T).
Then we call x regular if C^(x)° = J7~, and we call x locally regular
(relative to T) if CN(x) - T.

By our preceding remark, the notion of regularity is well-
defined.

LEMMA 2.2. Let T — JfF be a maximal torus of G, and let x e 2\
Then the following assertions hold:

(a) If x is locally regular (relative to T), then x is regular.
(b) x is locally regular (relative to T) if and only if CG(x) = T.

Proof (a) is proved by Springer in [10], Lemma 6.11. Plainly
CG(x) = T implies that CN(x) = T, so only the converse of this
remains to be proved. If GN(x) = Γ, then by (a), C#(x)° = J T The
connected component of an affine algebraic group is a normal sub-
group, so j ^ ~ < C^(x), whence C^(^) ^ N*(^~). Now N^(^)F ^
JVβ(Γ), therefore Cff(a;) = C^^),, forces CG(x) £ NG(T). Hence Cβ(») =
CN(x) = T, and the proof is complete.

It is implied by (2.2a) that if a semisimple element xeG is
locally regular (relative to T)9 then ^~ is the unique maximal torus
of & which contains x. Hence the phrase "relative to T" is
superfluous and we shall omit it.

DEFINITION 2.3. Let T be a maximal torus of G. A prime
number r is called a special prime of G relative to T (or simply a
special prime when the references to G and T are understood) if
the following conditions hold:

(a) r | | Γ | .
(b) For all xeT, r\\x\ implies that x is locally regular.
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We denote by S^{G, T) the set of all special primes of G relative
to T.

The next result, for the proof of which the author is indebted
to Gary Seitz, implies that blocks of G relative to a special prime
r have cyclic defect groups, thereby enabling us to invoke 1.3.

PROPOSITION 2.4. Let T — S~F be a maximal torus ofG. Assume
that ^~ Φ gf, and let re<9*(G, T). Then each ReSγlr(G) is cyclic,
and there exists a unique such R contained in T.

Proof, We may choose xeT such that \x\ — r. Then xeR for
some ReSylr(G). We show first that R ^ T. Let IΦzeZ(R).
CG(x) = T by (2.2b) since x is locally regular. Therefore z, which
centralizes x, must lie in Γ. Now z, which has order divisible by
r, is locally regular, so R <; CG(z) = T by (2.2b). Since T is abelian,
R is the unique element of Sylr(G) contained in T.

Suppose now that R is not cyclic. Recalling that J^~ Φ gf, let
β: >9~ -> K* be a root, ^ the corresponding root group of gf, and
xβ: K-^^β an isomorphism of affine algebraic groups (where K is
viewed additively). Then for all te^~ and all aeK, txβ{a)t~ι =
xβ(β(t)a). β{R) is a finite subgroup of K*, hence it is cyclic, so
since R is not cyclic there exists a nontrivial element y e R f] ker β.
It follows that yxβ(a)y~1 = xβ(a) for all aeK, so that ^/β SG^{y).
Now ^ ^ Co(y)° since ^ is connected. But y is locally regular,
so (2.2a) implies that S/β <£ ̂ 7 a contradiction. Therefore i2 is
cyclic, thus concluding the proof.

If gf = SL(2, K) and i77 is the map which raises matrix entries
to the power q, then G = &L(2, g), the Coxeter torus Γ of G is
cyclic of order q + 1 (see, for example, 1.10 in Chapter II of
Springer-Steinberg [11]), and the only elements of T which are not
locally regular are ± 1 (see Theorem 38.1 and Step 1 of its proof in
Dornhoff [6]). Therefore the case q = 33 shows that not every locally
regular element of T need have order divisible by some r e S^(G, T)f

the case q — 53 shows that generally speaking \S*(G, T)\ > 1, yet
the case q = 3 shows that it can occur that S^(G, T) = 0 .

We give now conditions which lead to the existence of special
primes in a variety of cases. In particular, the last example above
will be seen to be deviant.

DEFINITION 2.5. Given a power η ^ 2 of a prime p and an
integer v > 1, the pair (rjf v) is said to be compatible if neither of
the following hold:

(a) 7] = 2 and v = 6.
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(b) η is a prime of the form 2k — 1 for some integer k ^ 1,
and v — 2.

LEMMA 2.6 (Zsigmondy [15]). I/O?, v) is α compatible pair, then
there exists a prime number r such that r \ vf — 1 and for all positive
integers b < v, r)(7)b — 1.

For each positive integer v we denote by fv(x) the vth. cyclotomic
polynomial.

PROPOSITION 2.7. In order that <9*(G, T) Φ 0 , it is sufficient
that N/T be cyclic with a generator nT (n e N) of order m and that
there exist an integer s ^ 1 such that the following conditions hold:

(a) tn = tqS for all teT.
(b) /m.(g)| |T|.
(c) (q, ms) is a compatible pair.

Proof. By (c), (2.6) implies the existence of a prime r such that
r\qms — 1 and for all positive integers b < ms, r\qh — 1. Since
gws — 1 = J[fb(q), the product being taken over all positive integers
6 dividing ms, r must divide fb(q) for some b. If 6 < ms, then
r|gδ — 1 contradicts the property defining r. Therefore r\fm8(q), and
by (b), r | | Γ | .

To complete the proof, we must show that if x e T satisfies
r||a?|, then CN(x) = T. But if such is not the case, then the
cardinality d of the class of x in N satisfies d < m. It follows by
(a) that xqSd = x, whence xq*d~ι = 1, thus forcing r\qsd — 1 contrary
to the property defining r. Therefore CN(x) — T.

We discuss some examples now where &*(&, T)Φ0. Let G — &F

where & is a connected semisimple affine algebra group over K and
F is the usual Frobenius morphism induced on S? by the field
automorphism a t-+ aq of K. Then G is a finite (untwisted) Chevalley
group over GF(q) (see Steinberg [14]). We assume for convenience
that the root system associated with this group is indecomposable,
and we base our classification of the maximal tori of G on the
diagonal subgroup J7~' of &, which is an .F-stable maximal torus
of & contained in an ^-stable Borel subgroup of g .̂ Note that
JP acts trivially on the Weyl group W — W(^~')f so that the con-
jugacy classes of W parameterize the G-conjugacy classes of maximal
tori of G.

Consider a maximal torus T = Jί?~F of G obtained from ^~' by
twisting by we W. We make the further assumptions that NQ{^)F~

NG(T) and that (q, \w\) is a compatible pair. The failure of either
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of these conditions is incidental and rare ((2.7) of Seitz [9] implies
that the first holds whenever q ^ 4). Let PW(X) be the characteristic
polynomial of w, w being viewed as a linear transformation of the
jβ-space X{^~')®ZR, where X{ά^') is the group Horn (jT~', X*) of
characters of ^ " ' . We assert that <9*(G, T) Φ 0 if the following
conditions hold:

(2.8) Cw{w) = (w)

(2.9) /ι

Indeed, in the presence of (2.8) it follows from §2 of Srinivasan [12]
that N/T = (w), that T = T{ and JSΓ = iV/ for some ge gf where
2\ = R e J^"': tΐ = Ft,} and iŜ  = K 6 N<?(^'): nΐ = ί7^}, and that
there exists an element wx e Nλ such that έ?1 = Ftx for all £x 6 2V
Since Fx = #* for all $ 6 ^ " ' , the above facts imply that there exists
an element neN such that tn = tq for all teT. Now by 1.7 in
Chapter II of Springer-Steinberg [11], |2Ί = |Pw(tf)|, so in the presence
of (2.9) the assertion follows from (2.7) with m = \w\ and s = 1.

By Proposition 30 and Table 3 of Chapter [1], (2.8) and (2.9)
always hold if w is a Coxeter element of W. Moreover, using
Carter's terminology and tables in [1], we conclude that (2.8) and
(2.9) also hold, for example, if w corresponds to one of the admis-
sible diagrams ^ ( α j , E7(a^, E8(a^), or E8(a2), in which cases w is not
a Coxeter element.

The algebraic groups considered above are all semisimple. How-
ever, by essentially the same discussion, S^(G, T) can be shown to
be nonempty for certain finite groups G — ĝ V of Lie type where gf
is not semisimple. For example, let G = GL(m, q) and S^ = GL(m, K),
let F be the usual Frobenius morphism of 2 ,̂ and let T = S"v be
the Coxeter torus of G. Then G = gfj. is a finite group of Lie
type, and we may conclude as before that S^(G, T) Φ 0 provided
that N#(^~)F = NG{T) and that (q, m) is compatible. (The order of
a Coxeter element of the Weyl group associated with 2^ is m.)

We return now to the case where G = ŜV is an arbitrary finite
group of Lie type, and we observe that our requirements in the
above examples that NG(T)/T be cyclic and that N^{^)F = Nβ(T)
are not accidents.

PROPOSITION 2.10. Let T = ^~F he a maximal torus of G such
that JT- Φ gf and £^{G9 T) Φ 0 . Then

(a) NG(T)/T is cyclic.
(b)

Proof. Let r e £*(G, T), and let x e T have order r. Set N =
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Nσ(T). Since x is locally regular, CN((x)) = CN(x) = T. Now (x) <\ N
by (2.4), so N/T is embedded in Aut(<#». But (x) is cyclic of
prime order, hence Aut(<#>) is cyclic, and (a) follows.

As for (b), we observe that N*(^~)F ^ N always holds. Now
if neN, then ^~ and J7~n are both maximal tori of gf containing
x, which is regular by (2.2a). Therefore ^~ = J^"n and neN^(^')F,
as desired.

3* Special conjugacy classes and special primes* Henceforth
we fix a maximal torus T = ^ ^ of G and we set N = NG(T). We
assume that the set S^(G, T) — {rx, , rm} of special primes of G
relative to T is not empty. As justification for invoking (2.4), we
assume also that ^~ Φ g?.

N acts by conjugation on Γ", and we denote by JV* the stabilizer
in N of θe ϊ7". Note that by (2.10b), θ is in general position if and
only if Nθ = T.

For each j (1 ^ j <; m), let i?̂ - be the unique ry-Sylow subgroup
of G contained in T whose existence is guaranteed by (2.4). Set
R = Et x . . . x jβw, and let Q be the unique subgroup of T satisfy-
ing T^=QxR. Set ζΓ = {α/r6 Γ": i2^ker f) and i2^ = {λe Γ":Q^kerλ}.
Denote by Y the set of regular elements in Γ, and by Y" the set
of characters in T~ which are in general position. Set

X = {x e T: Tj \ \ x \ for some j} , and

χ~ = {QeT~:r5\\θ\ for some j} .

In view of (2.2a), 0 ^ I S 7 . Each element xeT can be ex-
pressed uniquely in the form x = ab (aeQ, beR), and a e l if and
only if b Φ 1.

Analogously, Γ" = QΓ x ϋΓ, so that each character θeT^ can
be written uniquely in the form θ — ψλ, (ψeQ~, XeR~), and θeX"
if and only if λ Φ lτ.

LEMMA 3.1. 0 Φ X~ Q Γ".

Proof. Since ϊ7" = Γ as abstract groups, 0 ^ X" is clear. Let
θ — ψλe X~ (ψe £Γ, lτ Φ λ e JB"), and choose w e iSî . It follows that
neNλf whence xnx~xe ker X\B where x is a generator of the cyclic
group R. Since λ Φ lτ, we may choose k ^ 1 such that (ΛΓ1)* =
1 =̂ ccfc. It follows that n centralizes xk, whose order is divisible by
some special prime. This forces neT, thus concluding the proof.

LEMMA 3.2. X is the union of a set of special conjugacy classes
of N in G.
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Proof. We prove first that the assertion holds with X replaced
by Y. Indeed, 7 is a union of conjugacy classes of N, for if y e Y
and neN, then since by (2.10b) N = N#(^~)F ^ N*(^~), we obtain
CΛvΎ = (C^(y)°)n = J^n = ̂ 7 thus forcing #n to be regular. Let
{Vu ''' 9 Vu) be a complete set of representatives for the classes of N
contained in Y.

For each i, S~ - CM° < C^y,) implies that C,{y%) ̂  2V* (.5H,
hence CG(^) - C , ( ^ ̂  N^{^)F = N.

Now if #? = yk for some i, some k, and some geG = &F, then
^ " ' - (C*fo«)°)' - CΛvl)° - C . ω 0 - ^ 7 so that geNΛ^h = iV.

Finally, suppose that <#> = (yt) for some 7/GiSΓ and some i.
Then Cy(4r)° = CA(v))° = CA<Vi»° = CM* = JΊ therefore y is
conjugate in N to some yk. We have proved the assertion for Y.

Now X is clearly a union of classes of JV, and we represent
these classes by xl9 - * ,x s 6X (a) and (b) of (1.1) hold for the xi

by inheritance from Y. As for (1.1c), if xeN satisfies (x) = <α?t)
for some i, then XG Γ and \x\ = 1^1, so the lemma follows.

In view of (3.2), (1.2b) guarantees the existence of a basis of
virtual characters of N for the C-space of class functions of JV which
vanish off X. Our goal is the construction of such a basis. Since
Q <\ N, N acts by conjugation on ζΓ. Fix a complete set Ω of orbit
representatives for this action. R <\ N, so for each ψeΩ, Nψ acts
by conjugation on ΈΓ — {1Γ}. Fix a complete set Λ(ψ) of representa-
tives for this action.

DEFINITION 3.3. For each ψeΩ and each λ e i ( f ) , set θ+tλ =

JV plainly acts by conjugation on X".

LEMMA 3.4. {ψX: ψ e Ω, λ e A(ψ) U {lτ}} is a complete set of re-
presentatives for the orbits of T~ under the action of N.

Proof. By the uniqueness of the expression for each of the
members of Γ" in the form ψλ (ψ e ζΓ, X e BΓ) and by the identity
(ψχ)n = ψnχn (φ e Q", X e BΓ, neN), one may deduce easily that
{ψX: ψe Ω, Xe Λ(ψ)} is a complete set of representatives for the JV-
orbits of X^. The lemma then follows from the disjoint union
T~ = ζΓ U X~.

We are prepared now to discuss the irreducible characters of
N. Henceforth, for each θ e T", we denote by C(θ) the set of
irreducible constituents of ΘN°, and by n0 the index [Nθ: T].
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PROPOSITION 3.5. (a) For each ψ e Ω, the maps δ\->δN (δe C(ψ))
and ψλ h-> (ψλ)N (λ e Λ(ψ)) are injective. Moreover,

Irr (N) = U WN: δ e G{f)} U {(ψX)N: λ e Λ(ψ)}) ,

all of the indicated unions being disjoint.
(b) Let ψeΩ. Then \ C{f) | = n+, δ \τ = ψ for each δ e C(ψ), and

(c) For each ψeΩ, ψN\x = -n+Σι

Proof (a) Set Δ = i2 (J {f λ: feΩ,xe Λ(ψ)}. Since T < iSΓ, and
by (3.4), the Clifford theory (see, for example, Isaacs [8]) implies
that all irreducible characters of N are obtained, each once, in the
form δ(θ)N, where θ ranges over A, and for each θe A, δ{θ) ranges
over C{β). By (3.1), each θeA of the form ψλ (ψeΩ,xeΛ(ψ)) has
stabilizer T, hence δ(θ)N — (ψλ)N is irreducible. This proves (a).

(b) By (2.10a), N/T is cyclic. Let N/T = <^T> where weN,
and set m = |iV/Γ|. Then wm = ί0 for some toe T. Given φeΩf let
Ci, , Cn̂  be the Tty distinct zeros in C of X71^ — ψ(t0). Now iV"̂  =
<Γ, nm/nt), and each of its elements may be expressed uniquely in
the form tnίm/n* (t 6 T, 0 ^ i < ^ ) . For each i e {1, , n+), define

Then the δ, are distinct linear characters of N+ satisfying δs\τ — φ.
Now Frobenius reciprocity implies that (δjf ψN^)Nψ — 1 for all i,
hence by comparing degrees we obtain ψNt = Σ i ŷ It follows that
^ = Σyίf» thus proving (b).

(c) Fix ψeΩ. Let p be the regular character of R. Then by
decomposing elements of X relative to the decomposition T = QxR,
it is straightforward that Σλβ^^ί^λ)^ coincides on X with α^ (x)
do — 1B), hence with — ψ. Therefore, choosing a right transversal
i) of Nψ in iSΓ, we compute that for each x e X,

This concludes the proof of the proposition.

PROPOSITION 3.6. The set {θψtX: ψ e Ω, λ e Λ(ψ)} forms a basis of
virtual characters for the C-space of class functions of N which
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vanish off X.

Proof. If ψeΩ and xeA(φ), then θψΛ = (ψ — ψX)N is clearly a
virtual character of N, and it vanishes off X since ψ — ψλ vanishes
off X. Moreover, the set S — fcfeβ,λe4(f)} is easily seen to
be linearly independent.

The dimension of the space V of class functions of N which
vanish off X is equal to the number of classes of N contained in X,
and since each such class consists of locally regular elements of T,
we conclude that dim V = \X\/[N: T]. Similarly, the number of
orbits in X" under the action of N is \X~\/[N: Γ]. Therefore, since
\X~\ = \X\, the result follows from the fact that \S\ is equal to
the order of ffλ: f e β , XβΛ(ψ)}, which by (3.4) is a complete set of
representatives for the orbits of X" under the action of N.

4* Block theory for special primes*

LEMMA 4.1. Fix r3-eS^(G, T) and let B(r3 )e B/rj(G) have non-
trivial defect. Then R3 is a defect group of B(r3).

Proof. Let D be a defect group of B(r3) satisfying D <L Rό <^ T.
By inheritance from R3 , D is generated by a locally regular element
of T, thus CG(D) = T. Now by Brauer's theory (see Theorem 64.10
of Dornhoff [6]), there exists a block b{r5) e B/rj(T) with defect group
D and satisfying b(rd)

G — B(rs). But since T is abelian, D = Rd

follows, as desired.
Our objective now is the application of Dade's results (1.3) to

our present setting. For each j , let Q3> be the unique subgroup of
T satisfying T = Q3- x R3 . Set Q] = {θeT~: Rβ ^ ker θ) and R] =
{#e T": Qά <: ker θ). Since Q3-<\N, N acts on QJ by conjugation.
Let Ω3 be a complete set of orbit representatives for this action.
We may, and henceforth we shall, assume that Ω Q Ωό. Set X3 =
{xeT:r3\\x\}. Then clearly X3 Q X. If B(r3 )eBsr3(G), we denote
by δ(B(r3)) the defect of B(r3).

LEMMA 4.2. (a) For each j , the set {h(rά)
f: b(r3-) e Bsr.(T)}

coincides with the set of cosets of R} in T~. Moreover, ifb(r3)e
B/rj(T), then b(Tj)ff contains precisely one element φ which is
determined uniquely by the property that for all θ e b{r3-)'', φ = θ\Qj.

(b) For each j there is a bisection

Ωs < > {B(r3.) e B/r.{G): δ(B(r3)) Φ 0}

given by ψ^ b(r3-)G, where b(r3) is the unique rrblock of T such that

ψeb(r3)'.
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Proof, We omit the proof of (a), which is straightforward and

holds when T denotes an arbitrary abelian group and r5 an arbitrary

prime.
As for (b), fix i e { l , ,m}. Then T = CG{Rά) since Rά is

generated by a locally regular element of T. Therefore, in view of
(4.1), (a), and the fact that since T is abelian each r r block of T has
defect group Rd, the result follows from a version of Brauer's first
main theorem (see Theorem 64.10 of [6]).

DEFINITION 4.3. For each je{l, --^m} and each ψeΩj, denote
by bψ(rά) the unique r r block of T satisfying bψ{rά)' — ψRJ, and
denote by Bψ{rό) the r r block of G given by Bψ(rά) = bψ(rά)

G.

PROPOSITION 4.4. Fix j e {1, , m) and φeΩ,-. Then there are
nψ distinct nonexceptional characters Xφ,u

 m* ,Xφ,nφ i n Bφ(Tj)>
there exist signs βψfl, , βψίn, — ± 1 such that

for all ie {1, , nψ).

Proof. By (4.2b) and (4.1), Bψ{r5) has nontrivial cyclic defect
group Rjf so we may apply (1.3) with r = rj9 B — Bψ{rό), and D = i ^ .

We observe that if 0 ^ ft < α, then Ck = T and JSΓ* = N in (1.3).
The first equality holds because Dfc is generated by a locally regular
element of T. The second follows from the facts that N normalizes
every subgroup of Rj9 and if Nk normalizes a subgroup H of G,
then it must also normalize Cβ(H). Therefore, for 0 <̂  k < a, we
replace Ck by T and i\Γfc by N in (1.3).

Now bψ(rά)
G = B, so we may take b0 = bψ{rό) in (1.3). By (4.2a),

and since T~ = QJ x RJ and No = ΛΓ, we conclude that E = N^ in
(1.3), hence e = [iV :̂ Γ] = n+.

Let Z^;1, , Xψ,nψ be the nonexceptional characters of B and
εψ>lf '-,εψ>nirf 70, 7 l f •• ,7α_ 1 the signs given in (1.3c). We show
that these signs may be chosen so that 70 — 7X = = 7α_x = 1.
Indeed, invoking (1.3d), we choose the signs so that 70 = 1, and we
apply (1.3) to Ca^ and 6 ^ . But Ca_λ = T = Co and &«_! - 6^(r, ) by
our previous observation, so in effect we are applying (1.3) to CQ

and bψ(rό). Thus by (1.4) we obtain new signs (70)' — (7^' — =
(7α_J' = 1, which, by (1.3d), forces 70 = Ί1 = = 7α_x = 1.

With this choice of signs, and in view of (4.2a), (1.3c) enables
us to compute that if x e Rf and y e Qjf then for each i e {1, , nψ),

Σ
neN
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Σ
neN

Since xy is a typical element of Xjf this concludes the proof of the
proposition.

COROLLARY 4.5. With notation as in (4.4), ifψeΩ and XeΛ(ψ),
then (Xψti> ψ

G — (ψX)G)G = £ψ,% for all i e {1, , nψ}.

Proof. In the following calculation we employ Frobenius
reciprocity, the fact that ψN — (ψX)N vanishes on N — Xjf the
proposition, and (3.5):

5* Irreducible characters of (?• We now assimilate the infor-
mation of §4 in such a way that all primes in S^{G, T) are dealt
with simultaneously. Denote by E the set

{geG:r5\\g\ for some je{l, •• ,m}} .

LEMMA 5.1. (a) E = \JyeGX
y, the union being disjoint in the

sense that Xy Π Xz Φ 0 if and only if Xy = X\
(b) ΊG\X = 7| x /or αZΪ complex-valued class functions Ύ of N.

Proof, (a) Xy Q E is plain for all yeG, and the other inclusion
follows by applications of Sylow theory and (2.2b) to the r r p a r t of
an element g 6 E, where rό \ \ g \. The assertion on disjointness holds
since by (3.2) and (1.2a) X is a T. I. set in G.

(b) It suffices to show that if xeX and geG, then x9eN
implies that geN. But again by applications of Sylow theory and
(2.2b) to the r,~part of x9 in N, where r, ||flc|, we conclude that
x9eX, thereby forcing X{\gXg-χΦ 0 . Since X is a T. I. set in
G with normalizer N, it follows that g e N, as desired.

In view of (5.1a), the values of a class function of G are known
on E if they are known on X

THEOREM 5.2. For each ψeΩ, there exists a sign βψ — ± 1 ,
together with an irreducible character Xψfi of G and a sign e^ti ~
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± 1 for each iβ{ l , •••, w^}, and an irreducible character XψtX of G
for each XeΛ(ψ)f such that the following assertions hold:

(a) For each ψeΩ and each \

(b) The map

f: {(α/r, λ): ψeΩ,xe Λ(ψ)} Ό {(f, i): ψeΩ,l^i^nψ} > Irr (G) ,

given by f{{ψ, β)) — Xψ)β, is injective.
(c) Given ψeΩ, the set {Xψti: 1 5* i ^ nψ) coincides with the set

of nonexceptional characters in Bψ{rό) for all rjeS^(G, T).
(d) For each ψeΩ and each is{l, •• ,w^},

&+,$>+t<\x — — ^ I J Γ = ~εψ Σ y<ψAχ -

(e) For each ψeΩ and each XeΛ(ψ),

Σ XA

(f) Let X 6 Irr (6?) be distinct from all Xψtί and all Xψ,χ. Then
X vanishes on E.

REMARK. We shall see in §6 that εψ is independent of ψeΩ,
and that (e), (f), and the first equality of (d) all hold if X is replaced
by Y and E by \Jg,G Y'.

Proof, (a) Let ψ e Ω and λ e Λ(φ). Since Ω £ Ωlf (4.4) and (4.5)
imply that there exist signs εφfl, , εψ>nψ and distinct irreducible
characters XψtU , %^,n^ 6 Bψ{rJ (i.e., the nonexceptional characters
in Bψ{r^) such that

(5.3) χ ^ j = i £ i ^ | a n d ( χ ^ , (?$.f2)β = e^..,.

For each ζ e l r r C ^ ) and each Z e l r r (G), let αζ = (ζ, θ+tλ)N and 6χ =
(Z, θ+,x)σ* Then by (3.2) and (3.6), we may invoke (1.2c) to obtain

Σ b\= Σ a\,
χeΙrr(G) ζe Irr (N)

which by (3.5) forces Σxb\ = n++ 1. Now by (5.3), Σ Γ ί δϊ*,< = %•,
and it follows that there exists a sign βftλ and an irreducible
character Xψ>λ of G, distinct from XψΛ for each i, such that

ί\G ί ^Λ c y \ c y
\i=ι ' J '
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The signs βftλ are independent of XeΛ(ψ), for if ψeΩ and
Xl9 X2eΛ(ψ)f then (1.2c) and (3.5) imply that ( Σ S s y + ^ M ^
n^ + 1, thus forcing ε ^ = ε^>;.2. Therefore we are justified in
replacing $ψtλ by ε^.

(b) We have remarked already that for each ψ e Ω and each
λ e i ( f ) , the characters Xψtl, , Xψ,nψ, Xψ,χ are distinct. Moreover,
if ψeΩ and Xl9X2eA(ψ), then Xψyλi — Xψ^ implies by (a) that
ΰψΛx — θ%,h- Now it follows from (5.1b) that induction is an iso-
metry, hence a monomorphism, from the C-space of class functions
of N vanishing off X into the C-space of class functions of G. We
conclude that θψiλι = θψ>λoJ whence {ψXx)

N = (ψX2)
N. (3.5a) now forces

XL — X2.
Therefore in view of (a) we must show that if ψl9 ψ2 e Ω are

distinct with X^AiψJ and X2eA(ψ2)f then no irreducible constituent
of θ%lth can be an irreducible constituent of # ^ 2 , v But by the proof
o f ( a ) , {X+lti: l ^ i S n Ψ l ] S B + f a ) ' a n d { l ψ 2 Λ : l ^ ί £ nψ2) S B + % { r $ .
And by (4.2b), Bψx{ry Π Bψjj y = 0> so it suffices to show that
χ ^ Λ φ Xψ2fλ for all ί e { l , •••, w^J and all XeΛ(ψ2), because then by
(a), Xψvll = Z^2ι;2 (λ, 6 Λiψj), j = 1, 2) cannot occur since (0^,^, 0? 2,;2)σ =

In order to do this we invoke (1.2d). The class functions 0^ίλ

may be indexed by pairs (ψ, X) (ψeΩ, Xe ^ί(^)). Let C be a complete
set of representatives of the classes of N contained in X. By (1.2d)
there exist uniquely determined complex numbers ex.ψfλ (x e C, ψ e Ω,
X G A(f)) satisfying

(5.4) ζ(x) = Σ Σ ^ ^^tt^^ r
y/>6β ;.s/ί(<A)

for all ζ6lrr( iV) and all xeC, where aψ)λ,ζ = {Z,θψΛ)N. Moreover,,
the numbers c ^ ϋ also satisfy

(5.5) X(x) = Σ Σ cx,ψt2bψtλa

for all Z e Irr (G) and all α? 6 C, where δ^>A;χ = (Z, 0^tX)G. Now by (3.5)^
for all ψeΩ and all XeΛ(ψ),

( 1 if ζ = δN for some δ 6 C(ψ)

(5.6) α^f,;ζ = 1-1 if ζ = (ψK)N

I 0 if ζ e Irr (N) is otherwise .

And by (a), for all ψeΩ and all xeA(ψ),

( εψΛ if X = Z ,̂i for some i e {1, , nψ)

(5.7) 6 ,̂̂ ;Z = \-εΨ if Z = Z^,;

0 if Ze Irr ((?) is otherwise .
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Fix ψ'eΩ and ie{l, ---,n+>}t and set

B — {ψ e Ω: Xψ,Λ = Xψ>λ for some λ e

We must show that B — 0 . By our previous discussion, ψ' g i? and
if ψeB, then there is a unique element XψeΛ(ψ) such that X^^ =
Z*,^. Let aeXxΠΛ*. Then by (5.3), (5.5), (5.7), (5.6), (5.4), and
(3.5c) respectively,

y

Σ

+ Σ Σ

Σ
ψeβ

.i Σ,
λeΛ(ψ')

Σ

It follows that Σ^6Bβ (̂α/rλ )̂̂ (x) = 0.
Next we observe that for each ψeB, sψ(ψkφ)N{x)

Indeed, it follows from (a), (5.3), and (5.1b) that

= ( 2 —

since and
and the observation follows. Therefore 0 =
l-BKε^.i/^O^^) by (5.3). Finally, t '^W = [^
^Gi2, so 0 = \B\εγ'ti[N: N+>], whence B = 0 .

(c) In the proof of (a), the characters XψΛ (1 ^ i ^ w )̂ arose
as the nonexceptional characters in Bψ(r^). So if S^(G, T) = {rj
there is nothing to prove. Therefore, let rόe<9*(G, T) be distinct
from r lβ Let Zi (1 <Ξ i ^ ^ ) be the nonexceptional characters in
Bψ(rό) (see (4.4)). As in the proof of (a), Z£ is an irreducible con-
stituent of ψG — {ψX)G for all i and all λ 6 Λ(ψ). Suppose Xt £ {Xψ,k: 1 5Ϊ
A5*^} for some i. It follows from (a) that Xi~Xψ,ι for all xeΛ(ψ),
and then from (b) that \Λ(ψ)\ = 1. Since i?Γ is invariant under the
action of N on R~, this forces i?^ = Rϊ, and ^ ( G , Γ) = {rj follows,
in violation of our choice of rs .

(d), (e) In view of (c), the proof of (a) may be adapted to show
that for each ψe Ω and each ie {1, , nψ},
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ΛiA> , y •—f\ίΓ γ
r >*l A Q γ Λ j

for all ie{l, ,m}. Since X=[JJXSf the first equality of (d)
follows. This equality, together with (a), implies the first equality
of (e), which in turn, together with (3.5c), implies the second
equality of (d). Finally, for each ψeΩ and each xeΛ(ψ), ψG — (ψX)G

vanishes on G — E since ψ — ψx vanishes on T — X. Therefore the
last part of (e) follows from (a).

(f) By (a), bψ,λ.x = 0 for all feΩ and all λ e i ( f ) . Thus (5.5)
implies that X vanishes on E, and this concludes the proof of the
theorem.

COROLLARY 5.8. The following congruences (mod|iϋ|) hold in
Z:

(a) Xψ,i(l) = (εψ,ilnψ)ψN{l) (ψeΩ, 1 <5 i ^ nψ).
(b) X-̂  ^l) = Sψ^ijfX) (1) (^ G Ωf λ/G/ί(α^)).

(c) Z(l) = 0 whenever X e Irr (G) is distinct from all XψΛ and

Proof. Fix ψ' G Ω and i e {1, , nψ,}. Set Ωr = β — {α/r'}. From
Frobenius reciprocity and (5.2a, b), it follows for all ψeQ~~ and all
X G JR" — {1Γ} that

(ε^/fί if ψn = a/ for some neN

0 otherwise .

Therefore, setting aψ = (ψ,Xψ'Λ\τ)τ for all ψeΩ, we conclude
that for all w e iV and all λ G JB" — {1Γ},

Jr' — &ψ',i l ί ty :~ ^JP

y i f ΊJP Φ ΊJΓ .

Now for each ψe Ω, let c£̂  be the order [iV: Nψ] of the orbit of
ψ under the action of JV on T". Then by the uniqueness of the
expression θ = ψx (ψe Q~, X 6 JB") for each θ e ΓA, we compute that

= 2u &Ψ 2-*
r\JreΩ l e R

This proves (a), from which, in view of (5.2a), (b) follows. The
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proof of (c) is similar to but easier than that of (a).

Since i?* is a union of conjugacy classes of JV, each of order
[N:T], we conclude that (\R\, [N: Γ]) = 1. Therefore for all Xe
Irr(G) it follows from (5.8) that \R\\X(l) if X is distinct from all
XψΛ and all XφfX, whereas Z(l) is relatively prime to \R\ otherwise.

6* The connection with the Deligne-Lusztig theory* Let
ε - (-i)"('>(-_i)^>, as in (1.5b).

THEOREM 6.1. For each ψeΩ> each ΐe{l, , w }̂, and each
XeA(ψ), let Xψti, eψti9 Xψ,χ, and εψ be as in (5.2). Then εψ = ε.
Moreover, (after a possible relabeling of the characters Xψilf , Xψ>nψ>
XψjX and the signs eψ>u , £ψ,nφ, ε in case | Λ(ψ) \ = 1)

R^ (ψx) = εXψtX and R%-{ψ) = Σ εψtJLψti

Proo/. For 0 6 ϊ7", we write R^ (θ) in the abbreviated form
R(θ). Fix ^ e i2. Since by (2.2a) each element of X is regular, (l.δd)
implies that for all XβΛ(ψ), R(ψ) — R(ψ\) and ψσ — (ψX)σ agree on
-^ = UgeaX9- From the fact that ψ — ψλ, vanishes on T — X for
all λ e A(ψ), it follows that ^ — (ψX)G vanishes on G — E, and the
character formula (1.5c) implies that R(ψ) — R(ψX) vanishes on G — E
as well. Thus by (5.2a),

(6.2) ΛίOψO ~ R(ψX) —

for all λ
Now using (1.5a, b), it suffices to show that for all ψeΩ and

X 6 A(ψ), R(ψX) = εZ ,̂̂ . Fix ψ 6 Ω. (1.5) implies for all X e Λ(ψ) that
εR(X) e Irr (G) and R(ψ), R(ψX))G = 0, If λ0 e Λ(f) satisfies R(ψxo) Φ
εXψ,χQ, then (6.2) implies that εR(ψX0) = Xψtk for some Jc. It follows
that Xψtk is not an irreducible constituent of R(ψ). But then by
(6.2) again, Xψtk = $R(fX) for all xeA(ψ). By (5.2b) this forces
\A(ψ)\ = 1. So again we conclude that R = <x> where |a?| = r and
r is the unique element of £*(G, T).

It follows (see Dade [4]) that Bψ(r)' consists precisely of
Xψ,u - -, Xf,nψ (the nonexceptional characters of Bψ(r)), and Xψ,χ^
Since Λ(ψ) — {λ0}, the action of N on R^-{lτ} is transitive, hence
(1.3c) is independent of which characters in Bψ(r)f are called the
nonexceptional ones. Therefore all of our previous results remain
valid if we relabel the elements of Bψ(r)' and the corresponding
signs in such a way that Xψ>λo = εR(ψX0). Then (6.2) implies that
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ψ) = Σ ? ί εψ,i%γ,i> a s desired. This concludes the proof of the
theorem.

It should be remarked that the information contained in (6.1) is
complete in the sense that

{R'lr(β)\ ^ e T > {RUψ^)' fefl,λe Λ(γ) U {1Γ}} .

This follows by (3.4) and the character formula (1.5c).
Thanks to (6.1), the multiplicity of each Xelrr (G) in each m\θ)

is known (up to sign). Therefore for Zelrr(G), we may apply the
formula 7.6.2 of Deligne-Lusztig [5], which states that for all regular
elements y in T,

Άv) = Σ (Z, RUΘ))Gθ{y) .

Familiar arguments then show that (5.2e), (5.2f), and the first
equality of (5.2d) remain valid if X is replaced by Y and E by
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