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QUASI-ISOMETRIC DILATIONS OF OPERATOR-VALUED
MEASURES AND GROTHENDIECK'S INEQUALITY

MILTON ROSENBERG

Let M(') be a strongly countably-additive (s.c.a.) (con-
tinuous linear) operator-valued measure on an arbitrary
(j-algebra & of subsets of an arbitrary set Ω from a Hubert
space W to a Hubert space 3ίf. Is there a Hubert space
JΓ~=> J^and a s.c.a. quasi-isometric measure M(-) (cf. Masani,
BAMS 76 (1970), 427-528) on & from if to X such that
M(') = PoM(.) where P is the projection on ^f onto <̂ T? In
other words, has such an M(-) a "quasi-isometric dilation
M{Ύ'Ί We show that when W or £ίf is finite-dimensional
the answer is affirmative, and that when W is finite-dimen-
sional there is a unique (up to isomorphism) quasi-isometric
dilation M(-) of M(>) such that tτ&ce{M(Ω)*M(Ω)) is a mini-
mum. This generalizes results of Miamee and Salehi, and
Niemi. Our results depend on Grothendieck's inequality.
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1* Introduction* In 1977 Niemi [15] proved that a countably-
additive (c.a.)1 measure f( ) on the Borel family έ%? of a locally
compact Hausdorff space Ω with values in a Hubert space ^f over
F,2 is the projection of a countably-additive orthogonally-scattered
(c.a.o.s.) measure f( ) on & with values in a larger Hubert space
3fΓ. More fully, ς(B) = P{ξ(B)}, Be<^, where P is the projection
on 3ίί onto £ίf. Stated differently, £(•) has an αorthogonally-
scattered dilation to !(•)"•

Niemi was influenced by Abreu's 1976 paper [2] in which he
gave a sufficient condition [2, Th. 3] for an .^-valued measure to
be the projection of a c.a.o.s. measure with values in a larger space
J%Γ. However, Niemi interpreted vector-valued measures not as set-
functions but as linear operators on spaces of continuous functions
which vanish at infinity. As early as 1970 Abreu [1] had shown

1 We shall abbreviate "finitely additive", "countably additive," "weakly countably
additive," "strongly countably additive", repectively, as "f .a.", "c.a.", "w.c.a.", "s c.a.".

2 Throughout this paper F will stand for the real number field R or the complex
number field C.
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that every process harmonizable in the sense of Cramer is the
projection of a stationary process. In 1978 Miamee and Salehi [14]
guided by the work of Niemi, in the course of generalizing Abreu's
theorem for processes harmonizable in the sense of Rozanov ([14,
Main Th. 5]), derived Niemi's theorem for the case Ω — R, cf [14,
Cor. 6].

To understand the relation of our work with the preceding, we
must recall the definitions of an orthogonally-scattered measure and
of a quasi-isometric measure, cf. Masani [11], [12]. Let Sίf be a
Hubert space and & be a σ-algebra over a set Ω. An ^"'-valued
set function ζ( ) on & is said to be countably-additive orthogonally-
scattered (c.a.o.s.) if and only if

where μ is a c.a. nonnegative real-valued measure on ^ . 3 Now let
W and 3ίf be Hubert spaces and let M{ ) be a W-to-Sίf (continuous
linear) operator-valued set function on έ%. Then M(-) is said to be
strongly countably-additive quasi-isometric (c.a.q.i.) if and only if

M(B)*M(A) = H{A n B) , A , B G ^ ,

where H( ) is a s.c.a. ΫF-to-IF nonnegative hermitian operator-valued
measure on ^ . 4

It is natural to ask if, in analogy to the result of Niemi, every
s.c.a. W-to-J%f operator-valued measure Λf( ) on & is obtainable by
projection from a W-to-JΓ* c.a.q.i. measure M( ) on ^ , where the
Hubert space 3f is larger than Jg^; specifically if

M(B) - PoM(B) , 5 e ^ ,

where P is the projection on 3ίΓ onto ^f. Stated differently, the
question is whether such an M(-) has a "quasi-isometric dilation
M( Γ

This paper is addressed to the operator-valued question just
described. In it the fundamental concept of a 2-majorizable measure
due to Persson and Pietsch [17] plays a fundamental role, as it does
in the papers of Niemi and of Miamee and Salehi. However in our
paper this concept, defined so far for vector-valued measures, has
to be defined for operator-valued measures. In §2, in our main
Theorem 2.9 we give a set of equivalent conditions pertaining to
dilatability, 2-majorizability, and the positive definiteness of certain
kernels (2.8). In this theorem and in the rest of this paper, we
interpret dilatability in terms of injections into Hubert spaces rather

3 In [12; 2.1] it is indicated that such a £(•) is necessarily c.a.
4 In [12; 8.6(e)] it is shown that such an M(-) is s.c.a.
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than imbeddings into Hubert spaces, cf. [13; §1], In light of
Theorem 2.9 the central question is whether every W-to-J%f s.c.a.
operator-valued measure Af( ) is 2-majorizable? In the case of a
vector-valued measure with Ω locally-compact HausdorfF, an affirma-
tive answer was given by Niemi [15, Th. 4] on the basis of earlier
work by Pietsch [18] and Rogge [20]. In §3 for the purpose of
proving a generalization of this result for operator-valued measures,
we give a new proof of the vector result (3.9), with & an arbitrary
tf -algebra over an arbitrary set Ω, in which a central role is played
by Grothendieck's inequality (3.2). We also give a new proof of the
uniqueness of a minimum 2-majorant (3.10) valid for any Ω, original-
ly due to Pietsch, for compact Hausdorff spaces [18, Satz 2].

In §4 we turn to the question of the 2-majorizability of any
W-to-<β^ s.c.a. measure Λf( ) We are able to give an affirmative
answer only in the case where either W or ^f is finite-dimensional
(4.1), (4.3), unfortunately. We also show for finite-dimensional W
the existence and uniqueness of a minimum trace 2-majorant (4.7
and 4.14). We exhibit the explicit form of the minimum trace 2-
majorant in the case where Ω consists of 2 points (Example 4.15).

We refer the reader to [22] for facts on the generalized inverse
A* of an operator A. In general, for an operator A we let &(A) —
range A, A* = adjoint of A, τA = trace of A, \A\ = Banach norm
of A, I A\E = euclidean norm of A = v/(rA*A). We denote P^ as
the orthogonal projection with range

2* Definitions and the equivalence theorem* In this section

( i ) & is a σ-algebra over an arbitrary set Ω
(2 1)

((ii) W, gίf, and 3ίΓ are Hubert spaces over F.

DEFINITION 2.2. Let Ω, &, W, ^Γ be as above.
(a) A W-to-3t^ (continuous linear) operator-valued set function

M( *) on & is said to be a strongly countably additive quasi-isometric
(c.a.q.i.) measure iff

M(BYM{A) = H(A n B ) , Λ

where H( ) is a s.c.a. W-to- W nonnegative hermitian operator-valued
measure on ^ . 5 Jϊ( ) is called the control measure of iί?( )

(b) A S%~-X,Q>-51ί operator-valued set function E(*) on ^ is said
to be a spectral measure iff 2£( ) is s.c.a. on ^ , £7(5) is an orthogonal
projection for each S G ^ and E{B)E{A) = i?(A Π -B), A,

With the notation of (2.1) we assume
5 In [12; 8.6(e)] it is shown that M( ) is s.c.a.
6 Note, we do not stipulate that E{Ω) = J.
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((i) Λf( ) is a s.c.a. W-ϊo-J%f operator-valued measure on &\

((ii) jff( ) is a s.c.a. W-to- W nonnegative hermitian operator-

valued measure on &.

DEFINITION 2.4. Let Λf( ) and £Γ( ) be as in (2.3). We say that
ikf( ) is 2-majorizable with respect to H(-) or that JEΓ( ) is a 2-
majorant of Λf( ) iff for all ^ ^ 1 and all B^ •••, Bne& and all

Σ
i = l

2 n n

ίS Σ Σ \H\Bi Π
Ύ7 i=l j=l

DEFINITION 2.5. Let Λf( ) be as in (2.3). We say that
(a) M(-) has a quasi-isometric dilation jβf( ) iflp J0( ) is a W-to-S?"

c.a.q.i. measure on & where 3ίΓ is a Hubert space, and 3 an iso-
metry J on £ί? to ^ such that

(b) Λf( ) has a spectral dilation E(-) iff J&( ) is a
spectral measure on ^ where JίΓ is a Hubert space, and 3 continu-
ous linear operators S on W to ^Γ~ and T on ^ί to ĝ̂ 7 such that

ΛΓ( ) = TE(-)S .

In the vector case (i.e., W — F) the above definitions assume
the known forms which we now state.

DEFINITION 2.6. Let Ω, &, 3(f be as in (2.1). Let £(•) be an
£ίf-valued c.a. vector measure on & and let μ( ) be a nonnegative
real-valued c.a. measure on &. We say that ξ(-) is 2-majorizable
with respect to μ( ) or that ^( ) is a 2-majorant of f( ) iff for all
w ^ 1, and all Bu —, Bne& and all alf , aneF

n n
^-* X T ' > Γ « _ = • - * / D θ Z ? \

^ 2LI ^ZJ Q'iQ'jftK&i i I -£>ίV

DEFINITION 2.7. Let f( ) be as in 2.6. We say that
(a) £(•) has a c.a.o.s. dilation | ( ) iff | ( ) is a ^"-valued c.a.o.s.

measure on ^ where ^ " is a Hubert space, and 3 an isometry J
on 3$f to «j%̂  such that

(b) £(•) has a spectral dilation J5( ) iff £/(•) is a
spectral measure on ^ where SίΓ is a Hubert space, and 3 a
continuous linear operator T on J^~ to J%f and a vector x0 e
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such that

ξ(-) = TE( )x0 .

LEMMA 2.8. Let M( ) and H{ ) be as in (2.3), and let

K(A, B) = H(A n 5) - M(B)*M(A) , A

Then (a) vBlf •• ,Bne.^! and Vwu •• ,wneW

± Σ {K{Bt, Bjwt, w,)w = Σ Σ i.H{βt Π B
i 1 ' 1 ί 1 1

/ * \

M(B()wt

2

(b) Jϊ( ) is a 2-πιajorant of Λf( ) iff the kernel JSΓ( -, •) m (a)
ΐs positive definite on & x ^ , i.e., L.H.S. (*) is always 2̂ 0

, A)*.

Proo/. (a) Just expand the L.H.S. (*) after making the sub-
stitution K{Bi9 Bs) - HiBiΠBj) - MiB^MiBt).

(b) Immediate from Definition 2.4. •

2.9. Tήβ Equivalence Theorem. Let Λf( ) be a s.c.a. W-t
operator-valued measure on & where &, W, and £tf are as in (2.1).
Then (a) the following conditions are equivalent:

(α) lf( ) has a 2-majorant fl( )>
(/3) M( ) has a quasi-isometric dilation JGΓ( -),
(7) M(-) has a spectral dilation E( );
(b) jff( ) is a 2-majorant of M{-)<=>M(-) has a quasi-

isometric dilation M(-) with control measure H( )

Proof, (a) (α)=>(/3):7 Note (α) implies that the kernel K( , •)
defined in 2.8 is positive definite, cf. 2.8(b). By the Kernel theorem
(Masani [13; p. 421]) 3 a Hubert space ^gt, and a function X( ) on
& such that X(B) is a continuous linear operator on W to ^ t a n ( i

A, Be <&.

Now define X = ̂ r 0 ^ = {(«; x'): ^ e ^ x ' G ^ } and for
define M(B): W~> 3T by jff(B)w - Jlf(JS)w 0 X(B)w. We shall show
that

(1) M{B)*M{A) = fl(A Π B) , i , 5 G , # .

Note for A,Be& and w,w'eW
7 An alternative more direct proof of "(a) «=>(£)" is in the Appendix, cf. A. 8.
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( 2 )

(M(B)*M{A)w, w')w = (M(A)w, M(B)w')w

= (M(A)w, M{B)w')^ + (X(A)w, ^

= (M(B)*M(A)w, w')w + {X(B)*X(A)w, w')w

= ({M(B)*M(A) + X{B)*X{A)}w, w')w = (H(A n B)w, w')w .

So by Definition 2.2(a) M( ) is c.a.q.i. Finally let VxzSίf, J(x) =
(x; 0) 6 J r : Then J is an isometry on 3έf to 3!Γ and therefore /* =
J- 'PΛ,,, . SO J*M{B) - M(B), ΰ e ^ .

(β) => (7): For each B 6 έ%, let Λ€B be the subspace spanned by
{M(A)(w): A s j ; A £ 5 , W 6 TF}, and let ^(JS) be the projection on
J%Γ onto ^ B . Then £/(•) is a spectral measure on & for J%Γ such
that

( 3 ) = E(B)M(Ω) (cf. [13; (5.8)-(5.11)]) .

Hence M{ ) = J*J0(.) = J*E( )Mψ).
(7) => (α): Let Λf( ) = Γ^( )S» cf. 2.5 (b); and let

and Wi, , wn e TΓ. Then

( 4 )
= 12T

f n Bi)

by is a 2-majorantSo jff(.) defined fop
of Λf( ).

(b) The forward implication "=>" has been shown in the proof
that (a) => (/3), cf. (1). To prove the converse " « " , note that for

( 5 )

So fl( ) is a 2-majorant of Λf( ).

2

n

D

In the case that έ%f = TΓ and the values of Λf( ) are hermitian
operators on 17 to W the Equivalence theorem can be augmented
as follows.

COROLLARY 2.10. Let M(-)bea s.c.a. W-to-Whermitian operator-
valued measure on έ%. Then each of the conditions (a), (β), (7) of
2.9 is equivalent to a "Jordan decomposition":

(<?) 3 two s.c.a. W-to-W nonnegative hermitian operator-valued
measures Mx{-) and Λf2( ) such that Λf( ) = Λf̂  ) — Λf2( )
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Proof. (7)=»(δ): By hypothesis we have v £ e ^ , TE(B)S =
Af(B) = ΛΓ(JB)* = S*E(B)T*. Thus V 5 e ^ ,

= [TE(B)S + S*E(B)T*]/2

- [S*E(B)S + TE(B)T*]/2

(g)=>(7): By the Naimark Dilation theorem, cf. [13; 5.12],
JHi(.) = TfE^)Tl9 M2( ) = T*E2( )T2 where ^ ( . ) and #2( ) are
spectral measures on &, respectively for two Hubert spaces 3^[ and
3ίΓ2 and where 2\ and T2 are continuous linear operators, respectively
on W to JTΪ and to ^ . Thus VB e &, we may write

( 2 )
0 Et(B)±Ttj

= TE(B)S ,

where £7(0 is spectral measure on & for X © X S = Γy1! is a

continuous operator on IF to ^ 0 J ^ and T = [Γf, — Γ2*] is a
continuous operator on ^%^ φ ^%J to W. •

It should be noted that upon taking W — F that Lemma 2.8
and the Equivalence Theorem 2.9 assume the following form for
vector-valued measures.

LEMMA 2.11. Let £(•) and μ(-) be as in Definition 2.6, and let

k(Af B) = μ(A f)B)- (ζ(A), ξ(B)) ,

Then (a) VB19 -- tBne& and Val9 - , ane F

Σ Σ &(£„ B ^ α y = Σ Σ μ(B< Π

(b) ^( ) is a 2-majorant of ξ(-) iff the kernel jfc( , •) in (a) is
positive definite on ^ x ^ , i.e., L.H.S. (*) is always >̂ 0 and

ifc(A, JS) = ft(B, A).

THEOREM 2.12. Let £(•) 6e α c.a. 3ίf-valued measure on &.
Then (a) ίfee following conditions are equivalent:

(a) ζ( ) has a 2-majorant μ( ),

(β) ί ( ' ) has a c.a.o.s. dilation ξ(-),
(7) £(•) /ιαs α spectral dilation E(-);
(b) j«( ) is α 2-majorant of ζ( )<=>ξ( ) has a c.a.o.s. dilation

| ( ) whose control measure is μ{-) [i.e., (ξ(A), ξ(B))^ = μ(A Π J5)].
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Result 2.12 (b) is found in Niemi's paper [15; Th. 12].

3* Existence of 2-majorants for Hubert space-valued measures*
The proof of our main theorem in this section depends heavily on
a remarkable inequality of Grothendieck to discuss which we first
introduce the Grothendieck norms:

DEFINITION 3.1. For an n x n matrix A = [a^] with entries in
F and 3ίΓ an arbitrary Hubert space over F, define \A\jr by

IA U- = sup I Σ Σ α*;fe, Vi)*- : xu Vi e ^ Γ and | xt U, \ yά U- ^ if .

(Note this definition also holds for 3ίΓ = F in which case (xif yό)F =

LEMMA 3.2. (Grothendieck's inequality, cf. [10; p. 68], [19]). 3
α positive constant 7 > 1 swcfe £&α£ for all n ^ 1, all n x n matrices
A = [αί3 ] ^ΐίfe entries in F and all Hilbert spaces ^Γ over F

A more useful formulation of the condition (*) reads as follows:
For all xlf , xnf ylf , yn in

(3.3)
n n

^ 71A \F max | xt \^ max | yi \

We now stipulate that:

and £ίf are as in (2.1) and

(£(•) is an £ίf-valued c.a. measure on

We consider F-valued ^-measurable simple functions ψ and
t h e i r integrals Eξ{ψ) w i t h r e s p e c t t o ξ(>):

n

(a) ψ = Σ bi%B., Bi e &, bi e F

Γ n

(b) jδ̂ (α/r) = I ψ(o))ξ(da)) = Σ biζ(Bi) e ^g^.

It is easily shown that the definition of 23^) is independent of the
representation of ψ. We shall denote the set of F-valued ^?-
measurable simple functions by S(F) — S{&, F).

It readily follows, cf. [6 (I), p. 323], that for each ψeS(F)

(3.6) I J^(^) U ^ II ξ II (Ω) max | ψ(ω) \ ,
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where ||f||(i2) is the semivariation of £(•) [6 (I), p. 320]. It is
known that \\ζ\\(Ω) is < oo, cf. [6, p. 320, 4(b)].

It is easy to see that for φ = ΣΓ=i o,xlA., ψ = Σ?=i ^ZB,-
we have

(3.7)
(a)

(b)

We next prove the key lemma needed for our main Theorem 3.9.

LEMMA 3.8. 3 a real number K > 0 such that for all positive
integers m and all ψl9 , φn e S(F)

£ K max±\φk(ω)\2 .
ωeΩ k-l

Proof. Let φ = Σ? = 1 atXBi, f = Σ«?=i h^Bi e where ? is a
disjoint sequence. Then by (3.7)(a) and (3.6) we have

= \(E,(φ),

^ || ζ1| (Ωf max | a( | -max | bs | .
( 1 )

Without loss of generality, we may assume that each φk in (*) is of
the form φk = Σ?=i bkiXBi, with the same disjoint sequence (Bt)ϊ for
each k. Then

m n n

) I1*- = Σ Σ Σ

= ΣΣ
ί = l 3 = 1

, 2 \

But then letting xi = (6fcί)Γ=1 e ^5^ = F w and noting that (xi9 Xj)^ =
ΣΓ=i ^ 6 ^ , it follows from (3.3), and equation (1), on taking [ati\ =

that

R.H.S. ( 2 ) ^ 7

( 3 )

Thus (*) is true with K = 7 ||f ||(i3)2. •
THEOREM 3.9 (Existence). Corresponding to every £%f-valued c.a.

measure £(•) ou α σ-algebra & over Ω, 3 α c.a. nonnegative real-
valued measure μ(-) on & with respect to which ξ(-) is 2-majoriza-
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ble, cf. Def. 2.6.

Proof. Taking K as in Lemma 3.8, let for all ψ e S(R)

(1) S(ψ) = inf {max \κψ{ω) + K±\ φk(ω) I2 — Σ,! Eζ(φk) \*Λ

cf. Pietsch [18]. Then, by elementary considerations, it may be
shown that S( ) is a positive homogeneous subadditive functional on
S(R) such that K minωβχjψ(α)) ^ S(ψ) <; K- maxω e βf(ίϋ). Thus by
the Hahn-Banach theorem, cf. [25; Cor., p. 103], there exists a
linear functional Γ on S(R) such that Γ(^) <: S(^), from which it
readily follows that for ψeS(R)

(2 ) K min f (ω) ^ - S ( - ψ ) ^ Γ(ψ) ^ S(ψ) ^ ίC max f (α>) .
ωεi? ωefl

Moreover from (1), it follows that for φeS(F),

S(-\φ\η ^ max[K{-\φ(com + K\φ(ω)\> -
(3) Ω

Thus since -Γ(I^Γ) = Γ(-|^Γ) ^ S(- |^ | 2 ) , it follows that for φeS(F)

(4) \

Define v on ̂  by v(JS) - T(Zβ). Note by (2) that T(XΩ) - K. Then
v( ) is a finitely-additive (f.a.) nonnegative real measure on &. To
complete the proof we need to replace v(-) by a countably additive
measure. Let μ(>) be the c.a. measure defined from v( ) as in
Lemma A.I (see Appendix). We shall show that for each φ =
Σ?=iW S i e5(F) with (£<)? disjoint, that

(5)

i.e., by the sentence following (3.5) (b), that μ( ) is a 2-majorant

of f( ):
Let for 1 ̂  ί ^ n and m ̂  1 (£®Γ=i be a disjoint sequence in

^ such that 5, = U*-iB« a n d M-B*) = lî !m->oo Σ?=i K^"),8 cf. A.I.
Then for each m, ̂  = Σ?=i MΣf=i ZB*J.} converges to ̂  as N-> oo
and by (4) for each m and N

So on letting N-> oof we obtain for each m
8 Km I means "nonincreasing limit", i.e., limit of nonincreasing values.
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( 6 ) μ

Thus, by the definition of μ(>), on letting m->°o, we obtain (5)
from (6). •

THEOREM 3.10 (Uniqueness of minimal 2-majorant). Given an
3$f-valued c.a. measure f( ) on & there exists one and only one 2-
majorant μQ( ) of ξ( ) such that

μQ(Ω) = inf {/*(£): μ( ) is α 2-majorant of £(•)} .

Proof The proof which depends on Pietsch's inequality:
4(α~1/2 + δ~1/2)-2 <; (a + 6)/2 for α, b > 0 with equality only if a = b,
is subsumed in the proof we shall give in §4 of Theorem 4.14.

4* The problem of the existence and uniqueness of 2-major-
ants for operator-valued measures* Let Ω, £%f be as in (2.1).

THEOREM 4.1. Let W be a q-dimensional Hilbert space over F
and Sίf be an arbitrary Hilbert space over F. Then corresponding
to every s.c.a. W-to-J%? operator-valued measure M(-) on &, 3 a
s.c.a. W-to-W nonnegative hermitian operator-valued measure H(-)
on & with respect to which M( ) is 2-majorizablef cf. Def. 2.4.
Moreover H( -) may be chosen to be of the form

where Pu , Pq are rank 1 orthogonal projections on W to W such
that Σj-i Pj — If PίPj — 0 for i Φ j , and μ^-), - , μq(-) are c.a.
nonnegative real-valued measures on &.

Proof. Let βl9 , βq be an o.n. basis of W. Then ξk(-) = M(-)βk

is c.a. on & to ^f and therefore by 3.9 has a 2-majorant vk( ).
We shall show that we may take as a 2-majorant of M( )

where Pk is the projection onto the space spanned by βk: For
Blf , Bn e &, wl9 -' , wne W we have on representing wt —
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2

by the Schwarz ineq .
λ;=l i = l " ' 3?

ΣΣΣ^ « Σ Σ Σ CufijMiBt n Bj) by Def. 2.6 ,

since vk( ) is a 2-majorant of £*(•)• Thus

(2)

On the other hand it is easily checked from (1)

( 3 ) (H(Bt Π Bi)wi9 wd)w = g Σ *>*(#< Π -By)

Combining (2) and (3) we get the inequality of Def. 2.4. •

Unfortunately we are as yet unable to prove the last theorem
for infinite-dimensional W. To point out some other aspects of the
existence problem for finite-dimensional W, we need the following
lemma, part (b) of which is an adjunct to the Equivalence Theorem
2.9.

LEMMA 4.2. Let Λf( ) be a s.c.a. W-to-Sίf operator-valued
measure on &. Then (a) Λf( )* is a s.c.a. βέf-to-W operator-valued
measure on g&.

(b) M( ) has a 2-majorant <=> Af( )* has a 2-majorant.

Proof (a) We have the sequence of implications: Λf( ) is
s.c.a. =>Λf( ) is w.c.a. =>Λf( )* is w.c.a. =>Λf( )* is s.c.a., where the
last implication follows from [9; Th. 3.6.2].

(b) By 2.9, we have the following sequence of equivalences:
AΓ(.) has a2-majorant<=>ikf( ) = TE(-)S<=* M(-)* = S*E(-)T* <=> M( )*
has a 2-majorant. •

COROLLARY 4.3. Let W be an arbitrary Hilbert space over F and
^ be a q-dimensional Hilbert space over F. Then corresponding
to every s.c.a. W-to-^f operator-valued measure M(-) on & 3 a
s.c.a. W-to-W nonnegative hermitian operator-valued measure H{ )
on & with respect to which Λf( ) is 2 majorizable.

Proof By 4.2 (a) and 4.1, Λf( )* is s.c.a. and 2-majorizable.
Thus by 4.2(b) Λf( ) is 2-majorizable. •

Let fl, ^ , TΓ, ^ T be as in (2.1). Let Λf( ) be a s.c.a. TΓ-t
operator-valued measure on & and let iϊ( ) be a s.c.a. W-to-W
nonnegative hermitian operator-valued measure on έ%. We now



QUASI-ISOMETRIC DILATIONS 147

introduce the concepts of TF-valued ^-measurable simple functions
f, g, etc., and the integral EM(f) of / with respect to M( ) and the
integral 1 (dHf, g) of the (ordered) pair {/. g) with respect to H(-):

JΩ

(a) / = Σ wtXBt, g=± w'ίlCί (Bit C, e &, w{, w\ e W)
->• — 1 Λ — 1 J

3 =

(b) EM(f) = \ M(dω)f(ω) - Σ M^w, e
(4.4) \ >Ω

(c) 1 (dHf, g)w = \ (H(dω)f(ω), g(ω))w
JΩ JΩ

m n

It is readily shown that the two integrals defined in (b) and (c) are
independent of the representations of / and g and that when the
Bi are disjoint we have

(4.5) \ (dHf,f)w = ±(H(Bi)wi,wi)w.
JΩ ί=i

We shall denote the set of W-valued &-measurable simple functions
by S(W) = S(^f W). We note by (4.4) and Def. 2.4, that

is a 2-majorant of Λf( ) iff

£ \Q(dHf,f)w VfeS(W) .

THEOREM 4.7 (Existence of a minimum trace 2-majorant). Let
W be a q-dimensional Hilbert space over F and S^f be an arbitrary
Hilbert space over F. Given a s.c.a. W-to-Sff operator-valued
measure M(-) on &, there exists a s.c.a. 2-majorant Ho(-) of M( )
such that

trace H0(Ω) = inf {trace H(Ω): H(-) is a 2-majorant of M(-)} .

Proof. By 4.1 the class of 2-majorants of Λf( ) is not empty.
Let

(1) K = mΐ{τH(Ω): JEΓ( ) is a 2-majorant of M( )}

and let (jffn( ))n=i be a sequence of 2-majorants of Λf( ) such that
τHn(Ω) \ K. To prove the theorem we introduce the following space
and linear functional.

Let /«, be the linear space of bounded real functions φ(») on iV+.
9

Define the functional S on /«, by S(φ) = lim^oo φ(n) and observe that
9 N+ and Ro+ denote, respectively, the set of positive integers and the set of non-

negative real numbers.
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it is positively homogeneous, and subadditive. Hence by the Hahn-
Banach theorem there exists a linear functional T on /^ such that
T(φ) ^ S(φ) and therefore for each ^( ) e 4

( 2 ) lim φ(n) = -S(-φ) ^ T(φ)^S(φ) = ϊϊm φ(n) .

So T is nonnegative and continuous with respect to the sup norm
o n sM.

Now let 5 e ^ be fixed and define for w e W, gw(n) = £*(w) by

( 3 ) g w ( n ) = H n ( B ) 1 / 2 w , n ^ l .

Since | Hn(B)| ^ τiJn(£) ^ τ£Γn(i2) ^ τH^β) Vw ^ 1, it follows

( 4 ) I gw(n) |V - (Hn(B)w, w)w ^ τH^Ω) \ w |V , Vw ^ 1 .

Thus |flrw( )IVe<o. Define for each w e TΓ

( 5 ) ΛΛ(w) = Γ(|flrw( )IW.

Then by (2) and (4) it follows for Vw e W

( 6 ) O ^

We now proceed to show i?5( )1/2 is a seminorm on W satisfying the
parallelogram law. We do this by exhibiting the connection between
RB(-)ι/2 and an /2-norm. Since Te/L (the dual of /«,), we have for
all f ( )G/ w

( 7 ) T(ψ) = \ f(n)a(dn),

where a is a finitely-additive measure on 2*+ to R0+,9 cf. [6; p. 296,
Th. 16]. Now consider the space 4 = 4 (JV+, 2*+, α; TF) of ΐ^-valued
functions on N+ which are square-integrable with respect to a.
This is a pre-Hilbert space under the usual 4-norm, | |2, cf. [6; p.
120, Lemma 3(b)]. By (7) and (5)

\

= T(\gw( )\\v) = RB(w) < - .

Thus Vw e W

( 8 ) ^ ( ) e / 2 and RB(w)^ = | ^ ( )|2 .

From (3) it is obvious that for c e R and wf wu w2e W

( 9 ) gew( ) = cgw( ) a n d gWl+W2( ) = flrWl( ) + gW2( ) .

Since | |2 is a norm satisfying the parallelogram law, it follows
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readily from (8) and (9) that RB(-)1/2 is a seminorm satisfying the
parallelogram law. Since by (6) RB(-) is bounded, it follows from
the J-VN Lemma A.2 (in the Appendix) that RB(>) comes from a
bounded nonnegative hermitian sesquilinear functional on W x W to
F, and thus from a continuous nonnegative hermitian linear operator
N(B) on W so that

RB(W) = (N(B)w, w)w VweW.

Thus using (8) and (3) we see that for Vw e W

(10)
= \ \Qw(')\wa(dn) = \ (Hn(B)w, w)wa{dn) .

J JV+ J N+

This shows that JV( ) is a finitely additive measure on &, from the
finite-additivity of Hn(-), n^l.

Let H(') correspond to this N( ) as in Lemma A.3. Then

H( ) is a s.c.a. W-to-W operator-valued measure on &, and

0 < H{B) < N{B) < N(Ω) .

We claim that the iJ( ) just obtained is the desired J3"0(0- We first
show that this jEΓ( ) is a 2-majorant of Λf( ).

Let / = Σ^=iWjB.eS(W) with JBt's disjoint, then by definitions
(4.4)(b)(c) and since each Hn( ) is a 2-majorant of M(-) we have

EM(f) \^ £ \ (dHnf, f)w - Σ {Hn

where the last equality follows by (3) and (4). But thus by (2), (5)
and (10)

£ Urn Σ I βk(n) IV £ T(Σ I flr2*( ) lΐ

dWt, w<)w ,

i.e., IΣΓ-iAΓWWilV^ΣΓ^ίiV^^wO.Γ. But then for iΓ( ) cor-
responding to N( ) as in A.3 it readily follows, as with Theorem
3.9 (5), that

(13) I EM(f) IV ^ Σ (HC^OWi, wt)w = (
ί JΩ
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i.e., cf. (4.6) and the statement after (4.4), H( ) is a 2-majorant of
M(').

We denote by (11) that

(14) τH(Ω) ^ τN(Ω) .

Next, on noting g°w{n) = gw(n) and letting βu , βq be an o.n. basis
of W we obtain

τN(Ω) = Σ (N(Ω)βk, βk)w = Σ R*{βk)
(15)

= £ T(\gβk( )\*w) = T(±\gβk( )\%) .
k=l \fc=l /

But by (3) and (4)

n a λ Σ I gβk(n) IV = Σ (Hn(Ω)βk, βk)w

(lb) *=i k=ι

= τHn{Ω) \ ^ iΓ as w > cx> ,

cf. (1). Hence by (2), R.H.S. (15) = K. Thus

(17) τN(Ω) = JS:.

Therefore by (14) τH(Ω) <: K. But since ίΓ is the infimum of the
traces of 2-majorizing measures, it follows that τH(Ω) = K. So
existence is established. •

To prove uniqueness of the minimum trace 2-majorant we need
to introduce further results on integrals.

Throughout the rest of this section we assume W is a finite-
dimensional Hubert space with o.n. basis (βi)j=i For a s.c.a. W-to-β^
operator-valued measure M( ) on ^ we define the semivarίation

of Λf(O by

(4.8) \\M\\(B) =

where the supremum is taken over all finite partitions (S<)Γ of B
and all wteW with \wt\w ^ 1.

Since each wt — Σi=i<W3i> with 1 ^ 1 ^ ! ^ = Σ?=i I«ϋl2> ^ follows
that ||ΛΓ||(i2) ^ ΣJ-i II M(0/9,11(12) < oo, cf. [6 (I); p. 320].

We shall call a function /(0 on Ω to W ^-measurable iff for
each open sphere S(x, r) = {y: \y — x\w < r} we have f"\S(xf r)) 6 ^ .
We shall denote the set of bounded ̂ -measurable W-valued functions
on Ω by B(W) = B(&, W). Since W is finite-dimensional it is easily
proven that B(W) is the closure of the linear space of simple
functions S(W) under the sup norm.



QUASI-ISOMETRIC DILATIONS 151

DEFINITION 4.9. For feB(W) we define

EM{f) = \ M(dω)f(ω) - lim EM(fn) ,

where (/JΓ is any sequence of simple functions converging uniformly
to /, cf. (4.4) (a, b).

Since for a simple function / we have

(4.10) \EM(f)U £ \\M\\(Ω) suv\f(ω)\w ,

it follows that the integral in 4.9 exists, is well-defined, and also
satisfies (4.10).

Next we recall some facts on s.c.a. T/F-to-ΫF nonnegative
hermitian measures £Γ( ) on £%? when If is a finite-dimensional
Hubert space, cf. [21; §2] and [22 (I); §2 and p. 207 (1)]. The
symbol v shall denote a σ-finite nonnegative real measure on &.
We say H{ ) is absolutely continuous with respect to v [H < v] iff
v(J3) = 0 => H(B) — 0. Because W is finite-dimensional it follows
that H(-) is c.a. in the euclidean norm | \E and has a finite total
variation measure \H\E(B) = sup (Σ?=i \H(Bi)\E) (taken over all finite
partitions (J5J? of B). Further

THEOREM 4.11. Let H < v. Then (a) 3 a unique a.e. (v) ^ >
measurable10 W-to-W operator-valued function H[{-) on Ω such that

H{B) = \ H[{ω)dv
JB

where the last is a Bochner integral, and

(b) \H\E(B) = \ \H[{ω)\Edv

Moreover, (c) 0 < H'υ(ω) a.e. (v) [We may always take a version of
ίf'( ) which is ^0 everywhere.]

The use of 4.11 (a) allows us to adopt the definition

(4.12) ( (dHf,g)w = \ (Hl(ω)Λω), g{ω))wdv Vf9geB(W)

where v is any measure such that H < v. It is readily shown: for
f — Σ7*- w % 9 — Σ^- 'w' Z 6 iS( W)

\ (dHf, g)w = Σ Σ H{B( Π C,)wi; wj)y

10 Le, with respect to the Borel cr-algebra in the Banach space of W-to-Abounded
operators under the norm
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and that if ffge B( W) are uniform limits of sequences of simple

functions (/JΓ, (flOΓ, then \ (dHf, g)w = Hindoo ( (dHfnf gn)w (which
JΩ JΩ

limit exists).
From (4.6) and Definitions 4.9 and (4.12) it readily follows that

when W is finite-dimensional

(H(-) is a 2-majorant of Λf( ) iff
(4.13) \ f

j|^(/)|!r^^(diί/,/V VfeB(W).

In the subsequent discussion, we shall be concerned with ^ -
measurable W-valued functions and ^-measurable W-to- T7 operator-
valued functions and with various functions formed from these by-
various operations. In all cases the new functions are again &-
measurable by virtue of the finite-dimensionality of W.

THEOREM 4.14 {Uniqueness of the minimum trace 2-majorant).
Let W be a q-dimensional Hilbert space over F and £(f be an
arbitrary Hilbert space over F. Given a s.c.a. W-to-§(f operator-
valued measure M(-) on &, there exists one and only one s.c.a. 2-
majorant Ho( ) of Λf( ) such that

trace HQ(Ω) = inf {trace H( ): H(Ω) is a 2-majorant of Λf( )}

Proof By Theorem 4.7 existence is assured. Now suppose
that Hji -) and H2{ ) are both 2-majorants of M( ) such that τHλ{Ω) —
K = τH2(Ω), where K is as in Theorem 4.7 (1). Let m(-) be the
measure τH^ ) + τH2(-) and let, for brevity, Gr̂  ) = H[tJί ), G2( ) =
Him{-) as in 4.11. So, by (4.13), for feB(W)

I EM(f) ^ £ \Ω (G,(ω)/(α>), f{ω))wdm , i = 1, 2 .

Let Pt(ω) = projection onto range of Gt(ω) for i — 1, 2. The first
step in our proof is to prove Pγ(a)) = P2((θ) a.e. (m): It is readily
shown that EM(PJ) = EM{f) = EM(P2f)

n for all feB(W) and thus
for P(o>) = projection onto ^{Gx{ω)) Π &(G2(ω))12 it readily follows

and thus for all feB(W)

, P{ω)f{ω))wdm ,

11 We use the convention that Pi/ is the function defined by {Pif)(ώ) = Pι(ω){f{ω)},
etc.

12 For proving ^-measurability, note that by [3; Th. 8]

Pκω) = 2P1{ω)(P1{ω) + P2(ω))*P2(ω) .
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i = 1.2. So we must have Py = P = P2 a.e. (m) (for otherwise since

S V
τH'u(ω)dv, there is a 2-majorant with trace smaller than

q \

K, which is a contradiction). Thus ^(G1(o>)) = έ%{Gz{ώ)) a.e. (m).

The proof of uniqueness shall now be accomplished by showing
G,(ω) = G2(α>) a.e. (m): Let F{ω) = (GL(ω)m* + G2{ω)i/nf and note
that P(ω) = (Gι(ω)1/tt + G2{ω)im)F{ω) a.e. (m). Let

B, = {ft): IG^Γ'ίXftOU ^ w, |G2(α))1/2*F(α>)U ΞS

So Bn/Ω as %-> oo. Then for feS(W)

( 1 )

Thus

( 2 )

G2(ωr2ψf(ω), f(ω))wdm

where clearly by A.7 (*) in the Appendix, we may replace Bn by Ω

(on letting n-» <*>). So by (2) JΪ8( ) defined by H3(B) = ( AF(ω)2dm
JB

is a 2-majorant of ΛΓ( )
Let C = {ω: G,(ω) Φ G2(ω)}. Since W is separable it follows

C = UΓ=i {(*>'- ((Giίω) — G2(ω))wif wt)w Φ 0} 6 ^ , where {wjΓ is a dense

subset of W. Then by A.7 (*) Aτ(F(ω)2) ^ (1/2)7(^(0)) + G2(α>)) with
strict inequality on the set C. But thus if m{C) > 0, it follows
that

\τ{F(ωf)dm < \ (l/2)r(G1(rt)) + G2(ω))dm
Ω-G/ JΩ

+ τ£Γ2(β)) - iΓ,

i.e., τH3(Ω) < iί, which contradicts 4.7 (1). So we must have

m(C) = 0, i.e., G^ω) = G2(α>) a.e. (m). Π

We conclude this section with the following

EXAMPLE 4.15. Explicit form of the minimum trace 2-majorant
in 4.14 when Ω = {ωly ω2) and & = 2Ω: Denote Mx = MfωJ, M2 —
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M{ω2}. Then the explicit H(-) of 4.14 is

Hx = MfMi + (M*M,M*Mύ1/2

H2 = MfMt

such that

M*M1

MfMx

0

0 on

and trace (JHΊ + H2) is a minimum. [The proof which is lengthy, is
presented elsewhere. See "Added in proof" section.]

APPENDIX. We begin by proving two lemmas on nonnegative
real-valued and on nonnegative hermitian operator-valued measures
on a (j-algebra & over a set Ω.

LEMMA A.I. Let v( ) be a f.a. nonnegative real-valued measure
on &. Define for each

μ(B) = inf j g »(*«)} ,

where the infimum is taken over all countable partitions (J3?)Γ of B
into sets in &. Then μ( ) is a c.a. nonnegative real measure on
& such that for each Be&

0 ^ μ{B) ^ v(B) ^ v(Ω) < oo .

Proof. We leave it to the reader to show μ( ) is f.a.
We now show that μ( ) is continuous from above at 0 : Let

An\0. We shall show μ(An)\0. [Proof. Note for each n^l,
An~\j7=n (Ai—Ai+i) and that since v is f.a., we have ΣΓ=i^(Λ~Λ+i)^
v(A,) < oo. Thus

0 ^ μ(An) g Σ »(Ai - ^-i+i) > 0 as w > oo .
i=n

Hence, cf. Halmos [8; p. 39, Th. F], μ(-) is c.a. Π

To generalize Lemma A.I we need the following form of the
Jordan-Von Neumann theorem, which is further used in the proof
of Theorem 4.7.

A.2. Jordan-Von Neumann Lemma. Let Sίf be a Hubert space
over F and let 22( ) be a function from έ%f to RQ+ such that

( i ) iϋ( )1/2 is a seminorm,
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(ii) i?( )1/2 satisfies the parallelogram law, i.e., R(x — y) +
R(x _ y) = 222(05) + 222(i/), each x,yz3ίfy

(iii) there exists iΓ > 0 such that 22(sc) ^ jK"|a?|V V α e ^
Then (a) 22( ) can be recovered from a unique bounded nonnegative
hermitian sesquilinear functional Γ( , )18 on £(? x ^ ^ to F, i.e.,

= Γ(α, α?) and |T(α, j/)| ^ J

(b) 3 a unique bounded nonnegative hermitian linear operator
A on ̂  to ̂  such that \A\<^K, T(x, y) = (Ax, T/), and necessarily
22(a?) = (Ax, x)jr.

Proof, (a) Follow the proof of J-VN Theorem in [24, p. 124,
Th. 1] and obtain the second part of (*) by use of the Schwarz
inequality.

(b) Cf. [4, Th. 21.1]. •

We now generalize Lemma A.I.

LEMMA A.3. Let έ%f be a Hubert space over F and let N( ) be
a f.a. nonnegative £ίf-to-έ%f operator-valued measure on <5&. Let
for each x^Sίf, ^( ) = (N( )x, x) [which is obviously a f.a. non-
negative real-valued measure on &\ and let for each x^Sίf, /*»(•)
be the nonnegative real-valued measure on & corresponding to vίC( )
as in Lemma A.I. Then

(a) for each Be& 3 a unique bounded £(f-to-£ίf nonnegative
hermitian operator H(B) such that

(H(B)x, x)jr = μjβ) , each x e

(b) the set function 2ϊ( ) is s.c.a. on & such that

0 < H(B) < N(B) < N(Ω) , each Be^.

Proof, (a) Let B be a fixed set in &. We shall prove that
the function 22B( ) defined on ^f by RB(x) = μjβ) satisfies the
conditions (i), (ii), (iii) in the J-VN Lemma A.2. To carry out the
proof we introduce some notation. Let & ~ (J3?)Γ denote a partition
of B into subsets in &. Define for

(1) ±
1 3 A functional Γ( , •) on £έf X <%f to F is called bounded; nonnegative; hermitian;

sesquilinear iff, respectively, 3C > 0 such t h a t [ T(x, y)\ ^*C\x\&r * \y\w Vx, y^^f\

~ T(ax + by, z) = aT(x, z) + bT(y, z),

T(z,ax + by) = aT{z,x) + ϊ>T{z,y) Vα, δθF, Vx, y, z€3tf. In [4], the words "positive"
and "symmetric" are used respectively for "nonnegative" and "hermitian".
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Then, by definition, cf. A.I,

(2) μx(B) = inf {»,(&*): & is a partition of B) .

F r o m (2) i t e a s i l y f o l l o w s t h a t f o r e a c h xeβ^ a n d ceF t h a t
μx(B)^0 and μcx(B) = \c\2μx(B).

By the superposition ^ Ί ° ^ 2 of two partitions ^ , ^ 2 of B we
mean the partition of B composed of all intersections of pairs of sets,
one from &>19 one from &*2. It follows similarly as in A.I that

( 3 ) ^ o ^ ^ ^ , ^ .

We now prove condition (i) holds: It only remains to show that
as a function of x e βίf, Vμx(B) satisfies the triangle inequality

( 4 ) Vμx+y{B) ^ Vμx(β) + V μy(β) f o r x,y

Note that since in (2) μjβ) is the infimum of a set of nonnegative
real numbers, there exists a sequence of partitions (&ϊ) of B such
that μx(B) = lim j ^ * , vx(^). Similarly there is a sequence of
partitions {0*1) such that μy{B) = limi^oo vy(&**). Let for each n,
gpn = ^ n

s o^f . Then by (3) it follows that

( 5 ) μx(B) = lim u ^ J , Λ(B) = lim

Now let & — (-Bi)Γ be an arbitrary partition of B. Then

( 6 )

where each of the sequences (N(Bt)
mx)T=1, (,N(Bi)

w

y)t=1 is in the Hubert
space 4(N+, 2N+, μ; £ff), where μ{ ) is the "counting measure". But
thus

R.H.S. (6)^ ^(±\N{Bt)^x\%) + ^(tlNiB
( 7 )

i.e., ]/vx+t(^) £ Vvjy^) + Vvy{^). Therefore, using the sequence
J of (5) we have

Vμx+y(B) ^ lim l
n—>oo

< lim i
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- Vμx{B) + Vμyiβ) by (5) .

So (4) holds.
We now prove condition (ii) holds, i.e., that for x, y e

( 9 ) μx+y{B) + μx_y(B) = 2μx(B) = 2μy(B) .

Let (^:+y), (^:~y), (0*1), (&**) be sequences of partitions of B such
that μz(B) = l i m j ^ vz(&*Z)foτ z = x + y, x - y, x, and y. Let for
each n, 3?n = &tv °&Γ* °&*ϊ°&ϊ. Then μz{B) - l i m ^ P , ( ^ J for
z ~ x -\- y, x — y, x9 and ?/. So (9) readily follows. Moreover for
each n, Px(^n) ^ (N(B)x, x)^. So μx(B)<,(N(B)x, x)^, and thus con-
dition (iii) holds. Therefore by A.2 (b) there exists H{B) such that
(a) holds.

(b) Note that for x,ί/

(10) (H(B)x, y)* = {^+,(B) - ^_,(B) + iμx+iy(B)

[since μz(B) = (H(B)z, z)& for ze^]. But by A.I each μβ( ) is c.a.
Thus jffί ) is w.c.a. and therefore by [9, Th. 3.6.2] H(-) is s.c.a.
The inequality H(B) < N(B) follows immediately from μx(B) <£

Our goal now is to obtain a matrix generalization of the follow-
ing inequality.

LEMMA A.4. For 2 real numbers a, h > 0

(α2 + ¥)/2 ^ 4(α~x + 6"1)'2

with equality holding <=> α = b.

Proof. This is equivalent to the fact that for χ9 y > 0 (x + ?/)/2 ^
4xτ/(x1/2 + y1/2)~2 with equality holding <=> x — yy whose proof is con-
tained in [18]. •

In the next two results we deal with linear operators on an n-
dimensional Hubert space over F. We shall switch from an operator
to its matrix representation (with respect to a given o.n. basis) as
appropriate.

LEMMA A.5. Let A = [aiά\ > 0 and let A"1 = [c4i]. Then czi ^ l/ait

for i = 1, , n with equality holding simultaneously for all i<=> A =
diag (α,<). Equivalently, α^ ^ l/c« /or i = 1, , n with equality for
all i <=> A = diag (α«).

Proof We show the case i = 1: Let A be partitioned as
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A =

an
eta c

D α? D

0

a.D'1

0 D -'α*D-'α

Then det A = det D det (α u - a.D^aί) = (det J3)(αu - aJD^a}),. and
cofactor (αn) = det D. Thus

c u = cof (αn)/det A = l/(αu — αxJD"1^*) ̂  l/α u

with equality holding <=> αx = 0, i.e., <=> α12 = α13 = = aln = 0. Π

We now prove the generalization of A.4.

THEOREM A.6. Let A, B be linear operators on an n-dimensional
Hilbert space over F suck that A, B are > 0. Then

( 1 ) τ{(A2 + Bη/2} ̂  4ΓKA-1 + B~T2}

with equality holding <=> A = B.

Proof. We first show that if A = [aiά\ with respect to a given
o.n. basis, then

(2 ) τ(A2) ^ with equality holding <===> A = diag (α«) .

[Proof: τ(A2) = Σ?-i Σ?-i α*^* = Σ?,i-i I <ht I
2 ^ Σ?-i <&•]

Now choose an o.n. basis such that A"1 + B~x is diagonal, i.e.,
dj]> B-1 = [diS], A'1 + B-1 = diag (ci( + du), eiS = - c
Then by (2) and Lemmas A.5 and A.4,

for

( 3 )
Σ
ί=l

4

^ Σ
ί=l

where the first 2 inequalities are each equality <=> A = diag (α«), -B =
diag (δM). The last inequality is equality <=> cΰ1 = d«S all i. We
note that if A = diag (aif) and B = diag (δw), then cϋ1 = α« and
dϊi1 = ba. So equality holds in (1) <=> A = diag (α«), ΰ = diag (bu) and
α« = bu for all i. Thus equality holds in (1) => A = S. Conversely,
A = I? ==> equality holds in (1). •
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The following inequality is crucical for proving uniqueness in
Theorem 4.14.

COROLLARY A.7. Let A, B be linear operators on an n-dimen-
sional Hubert space over F such that A, B are > 0 and

Then

( * ) 4τ{(A1/2# + J31/2*)2#} ^ (l/2)τ(A + B) (# denotes generalized inverse)

with equality holding if and only if A = B.

Proof. This is an easy consequence of A.6. •

We conclude the appendix by giving the alternate proof of
"(a) => (β)" in Theorem 2.9 promised in footnote 7.

THEOREM A.8. (α) ==> (β) in Theorem 2.9.

Proof. Cf. (4.4) and (4.6). Define an inner product ( , \ on
S(W) by

(/, Q\ = \Q (dHf, g)w - (EM(f), EM(g))»r ,

where we identify / and g if \f — g\± = 0. Denote by Sifx the com-
pletion of S(W) under | |x and define ^ r = J T 0 ^ t . Define

, M{B): W'-> 3T by

M(B)w = M(B)w 0 lBw 6

Then for B9Ce^ and wx, w2 e W it follows that

0 Z^!, M(C)w2 0

( ί , ( ) \\ (dHXBwl9 Xcw2)w

( 1 ) i []

Π C)wu w2)w , i.e., M(C)*M(B) = H(B n C) ,

i.e., by Definition 2.2 (a) ]£f( ) is c.a.q.i. Clearly J*M( ) = Λf( ) for J
defined as earlier after 2.9 (2). •

ACKNOWLEDGMENT. The author thanks the referee for his sug-
gestions.

Added in proof (1) The proof of Example 4.15 will appear
as the article "Explicit structure of the 2-majorant of an operator-
valued measure in a special case." To appear in the book "Prediction
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and Harmonic Analysis. The Pesi Masani Volume," edited by V.
Mandrekar and H. Salehi, North-Holland Pub. Co.

(2) In Theorem 4.14, the proof that EM{f) = EM(Pf) follows
readily from John Von Neumann's Alternating Projection Theorem,
which is Theorem 13.7 in his monograph "Functional Operators II,"
Annals of Math. Studies, No. 22, Princeton Univ. Press, Princeton,
1950.

(3) After submitting this paper, we found that fragments of
the Equivalence Theorem are proved in the paper of Jose L. Abreu,
"Transformation-valued measures," Advances in Math. 27 (1978), 1-11.
Inadvertently, we also left out some relevant references to Niemi,
which are stated in [14].
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