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CORONA PROBLEM FOR RIEMANN SURFACES
OF PARREAU-WIDOM TYPE

MITSURU NAKAI

It is shown that there exists a hyperbolic regular
Riemann surface R of Parreau-Widom type that is not
dense in the maximal ideal space ~^{R) of the Banach
algebra H°°(R) of bounded analytic functions on R.

It has been close to twenty years since Carleson [1] positively
solved the corona problem for the unit disk. Since then various
subsequent developments appeared. Among them we are parti-
cularly interested in investigations on the corona problem for
Riemann surfaces of positive genus. As for the positive direction,
Gamelin [2], e.g., proved by using his localization principle that
the corona problem can be positively answered for finite Riemann
surfaces with analytic borders. As for the negative direction, B.
Cole constructed a Riemann surface for which the corona problem
is negatively answered (see Gamelin [3]). In connection with these
results, it is an interesting and also important problem to single
out the class of Riemann surfaces of general genus for which the
corona problem is positively settled. One might suspect that the
class of Riemann surfaces of Parreau-Widom type falls into this
category since the class H°°(R) of bounded analytic functions on a
Riemann surface R of this class is known to share various nice
properties with the class H°°(D) on the unit disk D (cf. Parreau [8],
Widom [10,11], Stanton [9], Hasumi [4, 5], Hayashi [6, 7], etc).
The purpose of this paper is to show that the above expectation
is unfortunately incorrect.

Consider a hyperbolic Riemann surface R so that there exists
the Green's function g{z, a) on R with its pole at any point a in
R. By the maximum principle for harmonic functions the set
R{a, a) = {z e R; g(z, a) > a} is a subregion of R for any a > 0 and
a in R. The surface R is said to be regular if R(a, a) is relatively
compact for any a > 0 and a in R. The first Betti number B(a, a)
of R{a, a) is the minimum number of generators of the first singular
homology group H^Ria, a)) of R(a, a). A hyperbolic Riemann

S oo

B(a, a)da < +
0

oo for one and hence for every a in R. We denote by ^^(R) the
maximal ideal space of H°°(R) equipped with the Gelfand topology.
We may view ^t(R) as the space {q} of multiplicative linear func-
tionals q on H°°(R) with q(l) = 1 equipped with the weak star topo-
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logy since q*-~*q~X0) is the bijective homeomorphism between {q}
and ^f{R). A point z in R corresponds to a functional qz in ^f(R)
defined by qz(f) — f{z) (point evaluation). If R is a hyperbolic
Riemann surface of Parreau-Widom type, then this natural mapping
s |-> Qz gives the injecti ve homeomorphism R —> ^t(R) and the image
of R under this mapping is open in ^?{R) (see Stanton [9]) and
therefore we may view R as an open subset of ^t{R). The corona
problem asks whether R is dense in ^£{β) or not. The main result
of this paper is the following

THEOREM. There exists a hyperbolic regular Riemann surface
R of Parreau-Widom type that is not dense in the maximal ideal
space "^t(R) of H°°(R).

The surface R in the above theorem which we will construct
is of infinite genus and infinite connectivity. It is obtained from
the B. Cole example by making a minor modification. This modifi-
cation is formulated as proposition in no. 1, and it is proved in
nos. 2-4. The construction of R in the above theorem is carried
over in nos. 5-9.

1. Consider a fixed sequence (Sn)J° of interiors Sn of finite
bordered Riemann surfaces Sn with analytic borders dSn, two fixed
sequences (bn)? and (cn)Γ of real numbers bn and cn with 0 < cn < bn,
and a variable sequence (̂ n)j° of real numbers rjn with 0 < ηn <;
min (cn, bn — cn). By using these sequences we will construct a
Riemann surface as follows.

Let Xn be a rectangular strip {0 ^ Re z <; 2, 0 < Im z < bn) and
Xf

n a rectangular strip Xn less two vertical slits σf

n = {Rez = 1, 0^
Im z <; cΛ — τ?n} and G" = {Re z = 1, cn + )?n ^ Im z ^ 6J, i.e., X'n =
^n ι— ή̂ U σ̂ ', for each ^. Observe that τn = {Re 3 = 1, |Im z—cΛ|<

ŵ} is a cross-cut of X^ with the length 2ηn for each n. The left
and right vertical sides of X'n (and hence of Xn) will be denoted by
an and βn respectively.

Weld XI to Sn and Sn+1 by identifying the side an of X with
an open arc in dSn and the side βn of X^ with an open arc in dSn+1

for each n. The resulting surface Un=i (S* U Xή) will be denoted
by

Here it is assumed that Sn Π Sm — <j> (n Φ m), Xn f] XL = Φ in Φ m),
and Z^ n Sk = ^ (fc =£ ti, tι + 1) in R. By using Xn instead of X'n we
construct the Riemann surface (JΓ=i ίSn U Xn) in the same fashion
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as R((Sn), (XJ, (37J) = UΓ=! (Sn U X'n). The resulting surface will be
denoted by

(2) R - R((Sn), (XJ) .

Hence R((Sn), (Xn), (Vn)) =. R((Sn), (Xn)) - U ^ (σ'n U <£). Clearly the
surfaces R in (1) or (2) can be embedded in a larger Riemann
surface W such that W — R Φ φ. Therefore the surfaces R given
by (1) or by (2) are hyperbolic. We will prove the following

PROPOSITION. // the sequence ()?JΓ converges to zero sufficiently
rapidly, then R = R((Sn), (XJ, (Ύ]n)) is a hyperbolic regular Riemann
surface of Parreau-Widom type.

It can happen that R = R((Sn), (XJ) is neither regular nor of
Parreau-Widom type. In such a case R = R((Sn), (Xn), (Ύ]n)) is of the
same sort if ()?JΓ converges to zero not so rapidly. The proof of
the proposition will be given in nos. 2-4.

2. We denote by Rn = U^i (Sk U X'k) ~ βn the initial part of
R = R((Sn), (XJ, {ηn)) and by R'n = R - RnU βn the terminal part
of R. Recall that the first Betti number B of a finite Riemann
surface W with border 3 W is given by J3 = 1 — X = 2g + m — 1
where X is the Euler characteristic of W, g the genus of W, and
m the number of components of dW. Let Bn be the first Betti
number of Rn. Observe that Bn is finite since Rn is the interior of
the finite bordered surface Rn and that Bn does not depend on the
choice of {ηn) since R{(Sn), (XJ, (rjn)) are homeomorphic to each other
for all choices of (ηj. Then fix a sequence (εn)Γ of positive numbers
εn such that en > εn+1 (w = l, 2, •), lim.ε^^O, and Σ ϊ ΰ JBn(en-.i-en) <

Fix a point α in St and let g(z, a) be the Green's function of
R = R((Sn), (XJ, {ηn)) with its pole at α. We also denote by g(z, a)
the Green's function of R = R((Sn), (XJ, (35O) with ^ = min(cn, δ n -
c j . Then every R is a subsurface of R and therefore g(z, a) ^
^(«f α) on R. Choose and fix ilf>0 so large that U={z;g(z, α)>M)
is contained in Sλ and simply connected. Then U — {z; g{z, a) > M)
is a subset of U and also simply connected. Hence the Betti number
Bo of U is zero.

Let Yn be the part {1 < Re z ^ 2, 0 < Im z < bn) of Xnf R'n the
terminal part of R, and wn the harmonic measure of τn with respect
to the region Yn U ^ 1 . Then

g(z9 a) £ Mwn(z) (zeYn{jR'n)
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and, in particular, s u p ^ ^ , a) ^ Ms\ipβnwn. It is clear that
lim^o wn — 0 uniformly on Yn U R'n less any neighborhood of the
left vertical side of Yn. We can thus choose a sequence (τ?n)Γ con-
verging to zero enough rapidly so that

(3) sup,Λ0( , α ) ^ e n (Λ = 1,2, •••).

3. We pause here to observe the following. Let Wo be a sub-
surface of a Riemann surface W. Consider the first singular homo-
logy groups HX{WQ) and H^W) of Wo and W, respectively. A cycle
7 on WQ is automatically a cycle on W and this gives a natural
group homomorphism 7 H T of J3i(W0) to H^W), Suppose that Wo

satisfies the condition (N): Any connected component of W — Wo

is not compact. Under this condition (N), the above natural homo-
morphism H^WQ) —> HX(W) is injective. To see this, let 7 be a cycle
on Wo which is homologous to zero on W, i.e., 7 ~ 0 on W. We
have to show that 7 is homologous to zero already on Wo, i.e., 7 ~ 0
on Wo. Since 7 — 0 on W and 7 6ίZΊ(TΓ0), we can express 7 as
7 ~ Σi=i dtή where each σ) is a simplicial 2-simplex on W with
3σ* ^ TΓo If °*i ί Wo for some j , then σ) must contain a component
of W — TΓ0 since 3σ} c Wo. This contradicts the condition (iV). We
have then σ) c TΓQ and therefore 7 ~ 0 on WQ.

4. We have already remarked that R(a, a) = {z; g(z, a) > a) is
a region for any a > 0 as a consequence of the maximum principle
for harmonic functions. In view of (3), R(a, a) c Rn for a > en.
Since #( , α) ^ εn on 9i2n, we see that R(a, a) is relatively compact
for every a > 0. This proves that ϋί is regular.

Again by the maximum principle, it is readily seen that R —
R(a, a) has no compact component. In particular, if a > ar, then
R(a, a) is a subsurface of R(a', a) satisfying (N) with respect to
R(af, a). Therefore the natural homomorphism HL(R(a, a)) —> H1{R{a'f
a)) is injective and a fortiori the minimum number of generators
of H^Ria, a)), which is the first Betti number B(a, a) of R(a, a), is
less than or equal to that of H^Ria', α)), which is B(a\ a). There-
fore we have

(4) B(a, a) ^ B(a', a) (a ^ a') .

Similarly R(a, a) is a subsurface of Rn for a > εn with the property
(N) and the natural homomorphism Hι{R{a, a)) —> iϊi(i2n) is injective.
Recall that the first Betti number of Rn is Bn and hence we have

(5) B(a,a)^Bn (a ^ εn) .

For a is M, the region R(a, a) is contained in U and simply
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S CO

B(a, a)da =
0. By (5) we see that I B(a, a)da £ Bt(M - ej. Again by (5),

S
εn—1 J £ l

J5(α, α)dα ̂  ^ (e^—ε n ) for every w ^ 2. Hence we have
\~B(a, α)dα
JO

which proves that R = R{{Sn), (Xn), {ηn)) is o/ Parreau-Widom type.

5. We proceed to the construction of ϋ? in our theorem. For
the purpose we will briefly describe here how the B. Cole example
W is constructed that is not dense in the maximal ideal space
^?(W) of H°°(W). The construction is done based upon two crucial
steps. The first is the following Existence of a malformed finite
surface: Let δ be an arbitrary real number with 0 < δ < 1 and m
an arbitrary positive integer. Then there exists a finite bordered
Riemann surface Wm with its interior Wm and with an analytic
border dWm and a pair /w, gm of functions in H°°(Wm) with |/m |,
|0W | <£ 1 and | / J + \gm\ ^ δ on T7m such that whenever /w# + ŝ α/r =
1 is satisfied on Wm for a pair ^ and ψ of functions in JEΓ°°(WW),

we have sup^l^i + &vφWm\ψ\ i> m. For its proof see Gamelin [3,
pp. 47-49].

6. Another important device for the construction is the follow-
ing Approximation theorem which is easily deduced by a standard
successive approximation procedure from the Bishop generalization
to Riemann surfaces of the Mergelyan approximation theorem: Let
(Kn)T be a sequence of compact subsets Kn of a Riemann surface R
such that Kn Π Km — φ {nΦ m), Ύn a curve in R — U?=i ^ except
its end points connecting a boundary point of Kn to a boundary
point in Kn+1 such that Ίn Π 7m = φ (n Φ m). Assume that R — F
has no relatively compact component where F = (J~=1 (iίn U 7n). To
each function ^ continuous on F and analytic in the interior of F
and each positive number e there exists an analytic function Φ on
R such that sup^U Γ w |Φ — φ\ <e/n (n = 1,2, —•).

7. Let TFOT be as in no. 5 for each m and Zm be a finite Riemann
surface obtained from Wm by attaching an annulus to each boundary
component of Wm. By using a sequence (LJΓ of rectangular strips
Lm we construct a Riemann surface R((Zm), (Lm)) defined in (2).
Let 7m be a curve in R({Zn), (LJ) — (JΓ ΐ^n except its end points
connecting a boundary point of Wm and a boundary point of Wm+i
for each m such that 7n Π Ύm = ^ (w =£ m). Then JP = UΓ (Wn U 7Λ)
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is qualified to be an F in no. 6 with respect to the Riemann surface
R((Zn), (Ln)). Consider continuous functions f0 and g0 on F such
t i a t / o | T Γ . = / m , go\Wm = gm\m = 1,2-..), |/ 0 | , \g*\£l and |/ 0 | +
I flτ01 ̂  δ on F. By no. 6 there exist analytic functions / and g on
R((Zn), (Ln)) such that

( 6 ) sup| / - / 0 | + sup \g-go\< δ/4m (m = 1, 2, • •) .

8. Let W be a connected neighborhood of F in R((Zn), (LJ)
such that I/I, \g\ ^ 2, | / | + \g\ ^ δ/2 on W". The surface W is
the B. Cole example (see Gamelin [3, pp. 49-52]). For each m, let
Sm be a finite surface with an analytic border dSm such that TΓmc
Sm(zSmc:Wn Zm and ΓTO a rectangular strip {0 ^ Re z <; 2, 0 <
Im 2 < 6W} in the sense of conformal equivalence such that the left
side of Ym is a part of dSm, the right side of Ym is a part of

as.+1, γm n (ur s j =" ψ, ur (S. u F j c TΓ, and ur (flf. u r j 3 F.
Consider the surface R((Sn), (Yn)) defined in (2), which may also be
called the B. Cole example since it is a neighborhood of F contained
in W. Let σ'n and σ" be as in no. 1 with cn — bn/2, for example.
We finally consider

( 7)• Λ = R((Sn), (ΓJ, ( 7 J) = R((Sn\ (ΓJ) - U « U O -

defined in (1). By proposition in no. 1, R = R((Sn), (Yn), {ηn)) can be
made to a hyperbolic regular Riemann surface of Parreau-Widom
type if the sequence (77JΓ is so chosen that it converges to zero
sufficiently rapidly.

9. Since the surf ace R given by (7) now so made that it is of
Parreau-Widom type, it has many nice properties concerning the
class H°°(R). For example, H°°(R) separates points in R and the
natural injection R —> ^f{R) of R into the maximal ideal space
^t(R) of H°°{R) is bicontinuous and the image in ^f(R), identified
with R, is open in ^f{R) (Stanton [9]). The proof of our theorem
is over if we show that R is not dense in ^f{R).

Observe that functions / and g in no. 3 may be viewed as in
H~(R) and, by (6), satisfy | / | , \g\£2, \f\ + \g\^δ/2onR,and

( 8 ) s u p | / - / J + suv\g-gm\<l/m (m..= l ,2, •••),

where \jTWnaR. Suppose that the indefinite equation fφ + gψ = 1
on R has solutions φ and ψ in H°°(R). Set fmφ + gmψ = λm on Wm.
Observe that sup^m11—λm |<(sup^m\Φ\ + ̂ ^ϊ>wmIψl)/w as a consequence
of (8). Therefore fm(φ/Xj + gm(ψ/Xm) = 1 on Wm with φ/Xm and
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in £Γ°°(WW). By no. 5, we then have sup^Λ |^/λj + sup^m\ψ/Xn\ ^ m
(m = 1, 2, -), which contradicts sup^m |l — λw | —> 0 (m—> °o). This
shows that there exists a maximal ideal Λf0 in ^t(R) containing
/ and g. Then f(M0) = flf(Λfo) = O and the assumption inf ( |/ | + | # | ) ^
δ/2 > 0 imply that Mo is not in the closure of R in ^t(R) so that
R is not dense in ^€(R).
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