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THE LEFSCHETZ NUMBER AND BORSUK-ULAM
THEOREMS

DANIEL HENRY GOTTLIEB

Let M be a manifold, with or without boundary, which
is dominated by a finite complex. Let G be a finite group
which acts faithfully and freely on M. Let /: M->M be a
G-map. Let Λf denote the Lefschetz number of / and let
o{G) denote the order of G. The main result states, under
the conditions above, that o(G) divides Λf. Even in the
case of compact M this result was not widely known. We
use Wall's finiteness obstruction theory to extend the result
from compact M to finitely dominated M.

The remainder of the paper is devoted to various easy applica-
tions of the result. In Theorem 5 we assume that π^M) is finitely
generated for all i > 1. Then we show that if πx(M) has torsion,
π*(M) cannot be only torsion.

In Theorem 6, we have a connected Lie group L acting on M
and / is an L-map. We show that the orbit map ω:L-^M induces
the trivial homomorphism on fundamental groups if Λf Φ 0. This
implies that the action of L on M can be lifted to any regular
covering space.

We show that any linear transformation T: Rn —> Rn which com-
mutes with the based free action of a finite group G of order
greater than 2 must have a non-negative determinant (Theorem 8).

Then we come to the Borsuk-Ulam type results. We consider
maps /: (Cn+1 — 0) —> Cn. A primitive k-voot of unity ξ gives rise to
a free ^-action on C\ We show that the equation S*"J !'/(£*&) = 0
always has a solution x e Cw+1 — 0. This result gives various condi-
tions on the degeneracy of the images of the orbit of the Zk action
in Cn. In particular, we show that if /: Sn —> Rr and if n^r(p-l),
then some orbit of the Z^-action must be mapped into a point. The
proof uses the equation above and Vandermonde determinants.

2* Free actions and the Lefschetz number* A manifold M
(or space) is dominated by a finite complex K if there exists maps
f:M—>K and g:K->M such that g f is homotopic to the identity
of M. We will need various facts about finitely dominated spaces
in order to prove the result that o(G) divides Λf for noncompact
M. It is easily shown that this is true for compact M. We use
the theory of C.T.C. Wall, [8], to extend to the noncompact case.

LEMMA 1. Let M be a finitely dominated manifold. The orbit
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space M/G is a finitely dominated manifold.

Proof. Consider the universal principal G-bundle G —> Ea-* BG.
Since G acts on M, we may replace the fibre to obtain the bundle
M-> MG-*BG. Since G acts freely on M, we know that MG is a
homotopy equivalent to M/G. Since G is finite and acts freely on
M, we see that M-+M/G is a covering, so M/G is a manifold, and
hence it is finite dimensional.

We know from Wall's work [8] that a space is finitely dominated
if and only if it is homotopy equivalent to a finite dimensional CW-
complex and also homotopy equivalent to a possibly different CW-
complex of finite type (i.e., a complex whose ^-skeletons are finite
complexes for all n). Thus M is homotopy equivalent to a complex
of finite type. Since MG is the total space of a fibration whose
base and fibre are of finite type, MG is homotopy equivalent to a
complex of finite type [4; Lemma 1.1]. Also, by the first paragraph,
MG is homotopy equivalent to M/G which is a finite dimensional
complex. So M/G is finitely dominated.

REMARK. The above lemma follows from Lemma 5.5 in [2].

Now we come to the main result.

THEOREM 2. Let M be a finitely dominated manifold, and let
G act freely and faithfully on M and f: Λf-> M be a G-map. Then
o(G) divides Λf.

Proof. First we show the result for a compact manifold M
with a finite group G acting freely on M and a G-map f:M-*M.
We obtain a commutative diagram

M/G -£-> M/G

where the vertical maps are covering projections and / is induced
by /. Now M/G is a finite CTF-complex and we may adjust / by
a homotopy so that it has finitely many isolated fixed points. Now
/ restricted to a fibre over a fixed point maps the fibre onto itself
and it either leaves all the points fixed or leaves no points fixed.
Thus if x is a fixed point of / then all the points in the fibre, which
is an orbit of G, are fixed, and they all must have the same fixed
point index. The fibre contains o(G) points, so o(G) must divide Λf.
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Now suppose that M is a finitely dominated manifold. It follows
from Wall's theory [8] that the cartesian product of M with a
finite complex, whose Euler-Poincare number is zero, must be a
homotopy equivalent to a finite complex. Thus we have a compact
manifold K and homotopy equivalences h: K —> S3 x (M/G) and
h"1: S3 x (M/G) -> K. We let G act on S3 x M by letting #(s, m) =
(s, g(m)). Then G acts freely on S3 x M and gives rise to a
diagram

K-^S3 x M

K-^S3 x(M/G)

where K->K is in the pull back of the G-bundle S3 x M->S3 x
(M/G). So JSΓ —> j£ is a covering space and Λ is a G-map. Also there
is some lifting h~ι of h"1 which is a G-map and h ° ΛΓ1 is homotopic
to the identity by equivariant homotopies.

Now let F: S3xM-^S3xM be given by F(s, m) = (sQ, f(m)) where
s0eS3 is a base point. F is a G-map and so the composition h^Fh:
K-+K is a G-map. Now ΛU-JJ™ = Λ*. = Af and by the theorem for
compact complexes o(G) divides Λ\-\F\ and hence it divides Λf.

REMARK. An earlier version of this theorem was proved in [1;
Theorem 4] by transfer methods for G a cyclic group and M homo-
topy equivalent to a finite complex. Nakaoka in [7] developed a
transfer based on the coincidence number Λfig for maps / and g
from M to itself where M is a compact manifold. Using a result
related to these transfers he succeeded in showing that o(G) divides
Λftg where / and g are G-maps. This result gives Theorem 2 in
the compact case. The compact case was originally proved by G.
Hirsch [3a].

COROLLARY 3. o(G) divides X(M), the Euler-Poincare number.

COROLLARY 4. If f: ikf—> M is a G-map where G acts freely and
is finite, then f cannot be homotopic to a constant map.

3. The fundamental group* At this time, despite our great
knowledge of homotopy groups, we do not possess a single example
of a finite complex, with nontrivial higher homotopy groups, whose
homotopy groups are completely known. The following result illus-
trates a difficulty. It generalizes the famous result that if π has
torsion, then K(π, 1) cannot be a finite complex.
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THEOREM 5. Assume that M is a manifold such that πt{M) is
finitely generated for all i > 1. Then if some nontrivial element of
πx(M) has finite order, some element of ΊC^M) does not have finite
order for some i > 1. {Here we need not assume that M has finite
type.)

Proof. Consider the universal cover M of M. Now M has finite
dimension and πt{M) ̂  π^M) is finitely generated for i > 1, and
πx(M) = 0. Hence it follows from Wall's theory that M is homotopy
equivalent to a finite complex. Now πλ{M) acts freely on M and
if it contains an element of finite order, then a finite cyclic group
G acts freely on M and o(G) divides X(M) by Corollary 3.

Now if Ki(M) = Ki(M) were all torsion groups for i > 1, then
by the Hurewicz theorem mod finite groups, the homology groups
of HIM) would be finite for all i. Thus X(M) = 1 so o(G) = l which
contradicts the hypothesis that G is not trivial.

Now we turn to the action of a Lie group L on a compact
manifold M with or without boundary. There is the orbit map or
evaluation map ω:L-+M given by evaluating leL at a base point
m0 6 M. Thus ft): 11—• Z(m0). We are concerned with the induced
homomorphism ft)*: TC^L) —» πx(M).

THEOREM 6. Let L be a connected Lie group acting on a com-
pact manifold M with or without boundary. Suppose there is an
equivariant map f: M-> M such that Λf Φ 0. Then ft)*: πλ(L) -* πx(M)
is trivial.

Proof. Every element aeπx{L) can be represented by a homo-
morphism S1 —> L. Thus we need only prove the theorem in the
case of L = S1.

We shall show that the S1 action must have a fixed point and
this will give us ft)* = 0. There is an element t e S1 such that
{tn\ all neZ} is dense in S1. There is a sequence speSλ for p a
prime such that sp converges to t and sp has order p. Since only
a finite number of primes divide Af9 all but a finite number of sp

must have a fixed point xp by Theorem 2. Now the sequence {xp}
must have a cluster point x since M is compact, thus x must be a
fixed point for t and hence a fixed point for all of S1.

COROLLARY 7. With the hypotheses above, the action of L on
M can be lifted to any regular covering M of M.

Proof. By Corollary 11 of [3], ft)* = 0 is sufficient.
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REMARK. Theorem 6 is related to Theorem 5 of [1]. Using
the first paragraph of the proof of Theorem 6 and Theorem 5 of
[1] we can eliminate the compactness condition on M. Theorem 6
and the result from [1] that ω*: H*(L) —> H*(M) is zero for integral
homology under the hypothesis of Theorem 6 are interesting to
compare.

4* Borsuk-Ulam theorems* In this section we study spheres
and complex and real vector spaces. The classical Borsuk-Ulam
theorem involves a continuous map /: (Rn+1 — 0) —> Rn and states that
some orbit of the action cc i—> — x on Rn+1 — 0 is mapped onto a
single point of Rn. We investigate the situation of a map (Cn+1 —

0) -> Cn and ask if an orbit of the action x ι-> ξx is mapped onto a
single point.

But before we begin with the Borsuk-Ulam theorems we prove
a different result on the determinant of a linear transformation.
We say that a finite group G acts based freely on Rn if it acts
faithfully on Rn and freely on Rn — 0. We say a linear transfor-
mation T: Rn —> Rn commutes with the action of G if T commutes
with every element geG.

THEOREM 8. If G acts based freely on Rn and if T is a linear
transformation which commutes with the action of G, then det T^O
or o(G) = 1 or 2.

Proof. If det T Φ 0, then T is an isomorphism and we can
regard T: Rn - 0 -»R n - 0. Now Λτ = l + {-l)n~ι deg T and deg T =
det Γ/|det T\. Assume o(G) > 2. Then n must be even since other-
wise X(Rn - 0) = 2 and o{G) divides X(Rn - 0).

Thus Λτ = 1 - (det T/\ det T |) and so Λτ can either be 2 or 0.
But it cannot be 2 since o(G) > 2 and divides Λτ. Then Λτ = 0 and
hence det Γ > 0.

Now we come to the main underlying result for the Borsuk-
Ulam theorem.

THEOREM 9. Let G be a finite group acting based freely on a
vector space V and let W be a proper invariant subspace. Then
any G-map f: (V — 0) —> W must contain 0 in its image.

Proof. Suppose 0 is not in the image of /. Then the composi-
tion ( F — 0)^ W — 0 ^ F — 0 is a G-map and it must be homo-
topic to a constant, so by Corollary 4 either G is trivial or f(χ) = 0
for some x e V — 0.
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THEOREM 10. Let ζ be a primitive ftth root of unity. Let
f:Cn+1 — 0->Cπ be any continuous map. Then there is an xeCn —
0 such that Σ< «o ?£/(f*x) = 0.

Proof. This follows from Theorem 9 after noting that x H* ζx
leads to a based free action of Zk on Cn+1 — 0 and that Cn can be
regarded as an invariant subspace and F(x) = Σ?=i ?/(£*#) is a n

equivariant map.
Observe that we may let S2n+1 be the unit sphere in Cn+1 and

Theorem 10 guarantees that Σt=i £'/(£'&) = 0 for some a? 6 S2n+1 and
/:S 2 " + 1 ->C\

We will call the set {x, ξx, , ί*""̂ } a A -orbit on S2n+1 where f
is a primative Λth root of unity.

COROLLARY 11. Given k and f: S2n+1 -»C71, there is a k-orbit
whose image lies in a k — 2 dimensional complex hyperplane.

Proof Choose α? so that Σ !*/(£*») = 0. Let a?< = /(fiα?). Consider
the set of & — 1 vectors. {(ajx — %), , (xk_x — %)}. These lie in
a fe — 2 dimensional subspace since they are linearly dependent since
they satisfy Σ*=i f*(̂ i — $*) = 0. Hence the translation by xk of this
subspace is a ft — 2 dimensional hyperplane which contains the
vectors xu , ccfc.

COROLLARY 12. Give^ ft and f: S2n+1 -> iίn, there is a k-orbit
whose image under f lies in a k — 3 dimensional real hyperplane.

Proof The equation Σ?=i !*/(£*#) — 0 gives two equations, one
for the real part and one for the imaginary part.

COROLLARY 13. A map f: S2n+1 -»R n carries some 3-orbit to a
point.

COROLLARY 14. A map f:S2n+1-*Rn carries some 4-orbίt into
one or two points so the two pairs of antipodal points are each
carried into a point.

Proof Let xs = f(ξjx). Then

— ix1 — x2 + ixs + x4 = 0 .

So x1 — x3 and x2 = a?4.

THEOREM 15. Suppose p is a prime and f: Sn -> Rr. If n ^
r(p — 1), then there is a p-orbit whose image is a single point.
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Proof. For p — 2 this is the classical Borsuk-Ulam theorem.
For p > 2 we see that n must be odd and r(p — 1) must be even
so we may assume that n > r(p — 1).

Let n = 2k-l. Then we extend /: S2*"1 —> Rr radially to a
map g:Ck->Rr by letting g(z) = \\z\\ f(z/\\z\\). Then we double the
dimension of the range and domain and define a map G: C2k —> Cr by
setting G{zu z2) = g(zt) 4- ig{z2) where (zί9 z2) eCk®Ck ~ C2k. Now
we define a mapjF: (C2 f e-0) -> C r (*- υ by letting J^s) = (G(«), G(z)\ --.,
(τ(^)2)~1) where we understand that a vector v = (vίf •• ,v r) raised
to the ji'th power is the vector vj ~ (v(, , vi).

Now since 2k > r(p — 1) (because n ^ ? (p — 1) by hypothesis),
we can apply Theorem 10 which guarantees a solution to the equation

Σ
ί=0

Let Xj = G(ξjx) and ^ ^ . Then we obtain the vector equations

Σ

These equations are vector equations since x) is a vector. If
we look at, say, the first coordinates of the vectors {%)} and use
x) to denote its own first coordinate then the set of equations can
be written in matrix form as

1

X

\

xΓJj f*-1 \0

Now the matrix gives the Vandermonde matrix and

1 l

— 11 \χj

Then an easy induction argument shows that the row echelon form
of the Vandermonde matrix consists of rows composed of entries
which are 0's or 1's. We have the equation
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/I 0 0 1 0 0\ / 1 \

f

\o/
Since p is a prime and ξ is a primitive pth root of unity the only
sum of these roots which equals zero is the sum of them all, 1 +
£ + • • • + ί3""1 = 0. Thus the row echelon form must be

A 1
0 0

\o .

which can only happen if χx = x2 = = xp^. Thus all the 1st
coordinates of the vectors xu , xv_x agree, and similarly all the

coordinates agree. So

G{x) = G(ξx) =

This implies that

= G(ζp-ιx) for some x e C2k - 0 .

= g(ξz) = • = giξ'-'z)

for some z e Cfc — 0 and since # is a radial extension of / we see
that / maps an orbit to a single point.

REMARK. Theorem 15 was proved by Munkholm [5] and
Nakaoka [6], In both cases their methods apply in a more general
situation. On the other hand Corollary 14 is new and is different
from Mumkholm's and Nakaoka's work in that it considers an action
of a cyclic group of order 4 and 4 is not a prime.
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