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THE EXPECTED MEASURE OF THE LEVEL SETS OF
A REGULAR STATIONARY GAUSSIAN PROCESS

SALOMON BENZAQUEN AND ENRIQUE M. CABANA

If X(tlf t2, - - -, td) is a sufficiently regular, centered,
stationary Gaussian process, the (random) level set over a
measurable domain T a Rd

A(u) = {teT: X(t) = u}

is a d — 1-dimensional manifold embedded in Rd. Our main
result states that its expected measure is given by

(1) Eμd^(A(u)) = λ(T)E|| gradX|| e"*2''2/V2ί

where μd~ι{A) is the d — 1-dimensional volume of the hyper-
surface A, λ is the Lebesgue measure on Rd and the
variance of X is assumed to be one.

The expression (1) holds even for d = 1. In that case
μo(A) is a counting measure that gives the number of points
in A. (μλ and μ2 give respectively length and area.)

1* Preliminary notations and results.

DEFINITION 1. ( i ) A stationary centered Gaussian process X
with parameter t = (tlf t2, , td) e Rd and covariance function

( 2 ) Γ{t) = EX(s)X(s + t)

is said to be regular when it has continuous derivatives X — grad X =
(Xlf , Xd), X&) - dX(t)ldtt (i - 1, , d) and Γ is continuously
differentiable up to the sixth order.

(ii) When, in addition, Γ(0) = -Γti(0) = 1 (ΐ = 1, 2, , d) and
Γi3 (0) = 0 (i Φ j , i, j — 1, , d), the process is said to be normalized.
(Here and in what follows, the partial derivatives of Γ are denoted
b y Γt = dΓ/dti9 Γu - dΨ/dUdtj, ••)

The strong requirement imposed to the covariance of a regular
process (which is justified by the use of a theorem by R. J. Adler
and A. M. Hasofer, here stated as Lemma 1 (ii)) largely implies the
existence of a version of X with continuous derivatives (see for
instance [5]). The vector variable

X = (Xu X2, , Xd)

has covariances

V a r X - -((/V0))).

A change of scale in the process and a linear change of para-
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meter, lead to a normalized process, namely,

Even if a process is not normalized, we shall assume in what
follows, without loss of generality, that Γ(0) = 1.

The following lemma states known results. We indicate the
corresponding references and omit the proofs.

LEMMA 1. Let X be a regular process. Then:
( i ) (Belyaiev [3] Thm. 3.2). Given u and the interval

(3) T = A[ai,bi]c:Rd ,

with probability one there is no point teT such that

( 4 ) X(t) = u and X(t) = 0 .

(ii) (Adler [1] (proof of Theorem 2) and Hasofer [2, 7]). The
number of points teT such that X(t) = u and all but one of the
scalar conditions (4) hold, has a finite expectation. (The references
give in fact the actual value of the expectation.)

Given T by (3), let us introduce the notations T\rι) = R}> Tf] =
(ait bi), Γ υ = {bi}. If k = (ku , kd) is a multi-index with components
h = - 1 , 0 or 1 (i = 1, , d), we abbreviate Tk for Πf-i Z 7^- The
set T* will be called a face of T of dimension |ft| = Σ t i ( l - |ft4|).
(In particular, the interior T° of Γ is the only eZ-dimensional face.)

DEFINITION 2. Given a d — 1-dimensional manifold AcT with
continuous normal £(<) = (^(t), , fd(ί)) 9̂  0, teA, a point

such that all but one of the \k\ conditions

hold, will be said to be a k-critical point.

COROLLARY 1. The level set

(5) A(u) = {teT:X(t) = u)

of a regular process X is a d — 1-manifold with continuous normal
X φ 0 with probability one. The number Xlu) of k-critical points
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of A(u) has a finite expectation for each ke K = { — 1, 0, l}d.

Proof. The first assertion follows readily from Definition 1 and
Lemma l(i). The second one follows from Lemma l(ii) applied to
the restriction of X to Tk, when \k\ > 1.

The critical points for \h\ = 1 are the crossings of the level by
the one-dimensional restriction, and its (finite) expected number is
computed in [5] by a well known formula, namely, (1) with d = 1.
Finally, for \k\ = 0, the conclusion is trivial.

LEMMA 2. Given A as in Definition 2, if

α/r, = ψi(T) = max # {x e R: t + xet e A) ,
teT

[0 if i Φ J

(1 if % = 3

and if <%fk is the number of k-critical points, then, for each
i = 1, , d,

( 6 ) Σ
keK

(Notice that ¥t is the maximum number of intersections with A of
a line, parallel to the ith coordinate direction. Our estimate is a
very rough one, but sufficient for our purposes.)

Proof. Let us assume i = 1 for ease of description, and proceed
to sweep T starting with the closure of a one-dimensional face in
the given direction, say ,^\~ y<o,i,i, -,υβ ^s a first step, let us
translate this face in the second direction, until it describes the
closure of the two-dimensional face ^\ = r10'0'1'1'"*1. Then S\ is
translated in the third direction until it descibes ^ 7 = f^'0'0'1'"'^ and
this procedure is continued until ^ = T° = T has been described.

At each step, the maximum number of intersections with A of
the lines in the given direction already described, is estimated as
follows: At the beginning, we count the intersections of ^7, which
are precisely the critical points on the faces that compose ^19

namely ^ l f l,... fu + ^o.i.i. o + «^M-I,I,I. > When ^\ is translated,
each increase of the number of intersections (in the amount of one
or two) is produced when the face passes through a critical point.
This is a necessary condition, through a critical point may produce
a decrease (of one or two intersections) or no change. Therefore
2Σz t c r 2 ^ i is an upper bound of W^^l). Now, ̂ 7 is translated,
and each increase in the number of intersections must be produced
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when the face transverses a critical point, hence, since the increase
is in the amount of one or two as before, ϊ r

ί ( y ί ) ^ 2 Σ r j k e y - 3 ^ .
Going on in the same way, we reach finally the required inequality
(6).

COROLLARY 2. The maximum number Ψίu) of intersections of
lines in the ith direction with the level set A(u) of a regular process
X, has a finite expectation.

Proof. Use Lemma 2 and Corollary 1.

2* The expected measure of A(u). Given a regular process X,
let T and A(u) be defined by (3) and (5). We introduce the cones

^"CLR* defined by

^ ? = {£ = (£i, , ξd): \ξj\ < α|£*l for each j Φ i)

and denote their relative solid angle by

=1})
^ ( { f : II £ 11 = 1}) '

Since \X,\ > 0 on Aϊ(u) =\{teA(u): X(t)e<tf?}, the portion
of A(u) can be locally parametrized in the form tt = F(tlf , tt_lf

ti+u •• , t ί ) , where F satisfies dF/dt, = —Xj/Xi (j Φ i) because of
the Implicit Function Theorem.

Hence the d — 1-dimensional volume of Aί(u) is given by the
integral (see for instance [6], p. 334):

μ*-i(A!!(u)) = dtd .

If &n = {ί 6 Γ; 2% is an integer for each ΐ = 1, , d), is the set
of diadic points in T, then the integral is approximated by the sums.

= Σ
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Where lc is the indicator function of G, for any set C. More
precisely, it is easily seen that for each ε > 0, lim^*, Si~ε(n) g
μd-ι(Aΐ(u)) <Ξ limn_oojSf(w), and, since

and

then Si(n) is dominated by the random variable v/~daΨi(u)(X(T)/(bi — α<)),
whose expectation is finite from Corollary 2.

Applying the Dominated Convergence Theorem, and noticing that
μd-i(A"(u)) is increasing in α, it follows

7 ) lim ESrε(n) ^ Eμd^(A;(u)) ^ lim

In order to compute limn_«, ES"(n), we write

ES't(n) = Σ 2 - ^ ( 1 ^ ( 1 ( 0 ) 2 " ™ I' P{(X(£) - «)(Z(ί + 2-e4) -

and the stationarity of X leads to

lim ES?(n) = λ(Γ) lim 2nE(u*(X(Q)) ^ ̂ w " P{(X(0) - n){X{2'nei) - u)

< 0/X(0)}) .

Let us abbreviate Γ.(<5) = (Λ(δ), - -, Γd(δ))tr. The conditional
distribution of (X(0), X(2"n^)) given X(0) is Gaussian, with expecta-
tion (0, -Γ.(2-7lβί)((-Γ,i(0)))-1X(0)) and variance

\Γ(δ) 1 - ΓΛ(2"X)((-Γ

and the Taylor expansions of Γ, Γt are

r-it) = Σ /̂  -(0)ί + — y1
 JP ί•£ ̂
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therefore, it is easily seen that the conditional distribution of

has conditional expectation of (0,1 + 0(2~n)) and conditional variance

/ 1 0(2"")

\0(2-) 0(2-2").

Then we have

lim - MMp((i(0) - u)(Z(2-"et) - u)< 0/1(0) = x}
\Xi\

-nxtZn + X(0) - u)< 0/1(0) = *}

thus

lim ES?(n) = X(T)φ(u)E(U«(X)\\X\\) .
n-*oo

This limit is a continuous function of a, hence

furthermore, the inclusions

U A\{n) c A(u) c U Af («) (« > 1)

and the fact that A{(u), Ai(u), , Ai(^) are disjoint, imply

) ^ Σ Eμd_x{A%u)) .

We use again the continuity in a to obtain the result stated as
follows.

THEOREM. ( i ) The expected measure of the level set of a regular
process X corresponding to a measurable set T and a level u, is

( 8) Eμ*-i{A{u)) - X(T)φ(u)E\\ X\\ ,

where X is Gaussian, EX = 0, Var X = ((—ΓiS(0))), and φ{u) =
27Γe-u2/\
(ii) When X is normalized, (8) reduces to
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where B is Euler Beta function.

The proof of (8) for an interval T is contained in the preceding
context; since the expectation is an additive function of T, the same
result holds for measurable T.

When X is normalized, a straightforward calculation gives the
final result.

3* Comparisons with previous results* For d = 1, (8) reduces
to the formula

expected number of crossings of u = λ(T)V — Γ"(0)e~u2/2/π ,

given in [5].

In the case d = 2, Benzaquen [4] proved that if πt is the projec-
tion 7r<(*i> , td) = (ίi> , *<-i, ίi+i, * , td) and μ^1(A(u)) = μd^1(πi(a(u)))9

where the points are taken with its corresponding multiplicity, then

( 9 ) EμϊUAW) £ X(T)V~ΓU(O) e'^/π .

It is not hard to prove the equality in (9) with our assumptions
of regularity, and to extend the same formula for d > 2.

Clearly, the inequalities

S Σ

hold, and the compatibility of (8) and (9) require

τ/27τri/-Γ<<(0) £E\\X\\£ \

and, in the normalized case,

Σ
3=1

These inequalities are trivially verified by a direct calculation
of expectations in \Xt\ ^ | | Z | | ^ ΣiUil^il
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