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STRONG RESULT FOR REAL ZEROS OF
RANDOM POLYNOMIALS

M. N. MISHRA, N. N. NAYAK AND S. PATTANAYAK

Let Nn be the number of real zeros of Σr=o arXrx
r=0

where Xr

9s are independent random variables identically
distributed belonging to the domain of attraction of normal
law; αo,αi, α2 αn are nonzero real numbers such that
(kjtn)=o(logn) where kn=msLX0^n \ar\ and i»=minOssrssn \ar\.
Further we suppose that the coefficients have zero means
and P{XrΦ0}>0. Then there exists a positive integer nQ

such that

P{sup {NJDn)<μ}>l-μf {log ((knjtno) log log n)Hog nύγ-*/2

n>nQ

for n>n0 and l>ε>0 where Dn=(log nllog (kjtn)log\og n)a~ε)/2.

1* Let Nn be the number of real roots of a random algebraic
equation

r=0

where Xr's are independent, identically distributed random variables.
The problem of finding the lower bound of Nn has been considered
by various authors. Considering the coefficients as normally distri-
buted or uniformly distributed in [—1, 1], assuming the values
+ 1 or —1 with equal probability Littlehood and Offord [8] have
shown that Nn > μ log n/log log n except for a set of measure at
most μ'/log n, n being sufficiently large. Evans [4] has studied the
strong version of Littlehood and Offord and has shown that in case
of Gaussian distributed coefficients Nn is greater than μ log n/log log n
except for a set of measure at most μf (log log w0/log n0) for n > nQ.
The above result is strong in the following sense.

Theorem of Littlehood and Offord is of the form

P{{NJD'n) <μ) > 1 as n

where D'n = log n/log log n. But the theorem of Evans is of the
form

P{sup (NJD:) <μ) > l a s ^ 0 > oo .
n>n0

Considering the coefficients of Σ?=o arXrx
r — 0 as symmetric stable

variables Samal and Mishra [13] have shown that
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P{(NJDn*) <μ}>l- / — Γ if 1 £ a < 2
{log (kjtn) log n}(log n)-1

_ μ' log (kjtn) log n i f α = 2 ,
log w

and

where kn = maxo^r^n |α r | , ίn = min o ^ r a \ar\ and D* = (log w/log ((kj
tn) log n)). Samal and Mishra [13] have studied the strong version
of the above theorem and have shown that P{supn>no (NJD*) < μ)

> 1 ί- where a > 1 .
{log (log no/log (kjtj log O}*"1

Mishra and Nayak [9] have proved that

P{(NJDn*) <μ}>l fμ}>l f

for every positive ε < 1, when the coefficients belong to the domain
of attraction of the normal law.

Object of this paper is to show that

P{suVn>no(NJDn)<μ}

> ! _ ,
log n0

for 0 < ε < 1, when the coefficients belong to the domain of attrac-
tion of the normal law. Therefore it is a strong result of Mishra
and Nayak.

Throughout this paper we shall denote μ's for positive constants
which may assume different values in different occurences and F( )
for the variance of a random variable.

2* In the sequel we shall need the following definition, and
theorem due to Karamata, (cf. Ibragimov and Linnik [6] p. 394),
for the proof of our main result.

DEFINITION. A function H: R+-+R+ is called a slowly varying
function if

(2.1) l i m ^ L ^ l , ( 7 > 0 ) .

We have a few characterization of the slowly varying functions
due to Karamata.

By writting H(l/t) = h(t), we may define a slowly varying func-
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tion h: R+ -> R+ with the property that

(2.2) lim Jϋψ±- = 1, (7 > 0) .
- o h{x)

With this the Karamata theorem, (cf. Ibragimov and Linnik
[6], p. 394), may be stated as follows.

THEOREM 1. A slowly varying function h with the property
(2.2) which is integrable on any finite interval may be represented
in the form

h(x) =

where

lim c(x) — c Φ 0, lim έ(x) = 0 and a > 0 .

We establish the following formulae which will be necessary for the
proof of the main theorem.

Let a sequence of independent and identically distributed random
variables {Xr} with mean zero belong to the domain of attraction
of the normal law. Then their common characteristic function φit)
is given by (cf. Ibragimov and Linnik [6], p. 91),

(2.3) logφ(t) = -Ϊ-H(\tn(l + 0(1)) ,
Δ

where Hit) is a slowly varying function as t —> °o and is given by
the formula

(2.4) Hix) = -[Xu2dψ(x) = Γ u*dG(u) ,
Jo J-s

where Ψ(x) — 1 — G{x) + G(x) and G{x) is the common distribution
function.

Also

(2.5)

If we put H(l/t) = L(ί), then L(t) is slowly varying as t-*0. Then
(2.3) and (2.5) will take the forms

and
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\φ(ί)\~exj>{~U\t\)}

respectively. Since L(\ 11) is positive we can write the characteristic
function φ as

(2.6)

where hit) = L(|ί|)(l + o(l)) with the property

(2.7) h(t) = Re λ(ί)(l + o(l)) ,

as

Now h(t) is slowly varying as t —> 0, since for 7 > 0,

= lim L(Ύ\t\)(l + o(D) = 1

L( | | ) ( l (l))h(t)

Consider the function /^(t) determined by

"Re Λ(t) if V(Xr) =
y if V(Xr) = σ2 < co .

Clearly h^t) is slowly varying in a neighborhood of the origin.
By (2.7),

(2.8) h(t) = Wί) (1 + o(l)), in both cases as ί > 0 .

Since expectation is zero, by virtue of (2.4), we have

lim H{x) = Γ u*dG(u) = σ*.
X—»oo J — o o

Therefore when variance is infinite, lim^oo H(x) = 00, so that

0 L(t) — 00. Thus we have for infinite variance,

(2.9) limhM = 00 .
ί->0

THEOREM 2. Let

fix) = Σ arXrx
r

be a polynomial of degree n, where Xr's are independent and iden-
tically distributed random variables which belong to the domain of
attraction of the normal law, have zero means and P{Xr Φ 0} > 0.
Let α0, al9 a2 an be nonzero real number such that (kjtn) — 0 (log n)
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where kn = rnB,xQ^rSn \ar\ and tn = minOί;r£n \ar\. Then there exists a
positive n0 such that the number of real roots of f(x) = 0 is at least
μ{log n/log ((kjtn) log log n)}1/2 outside a set of measure at most
μ'{log {{kjtn) log log O/log noγ

ι~t)n for n > n0 and 1 > ε > 0.

3* Proof of the Theorem 2* Take constants A and D such
that

(3.1) 0 < D < 1 and A > 1 .

Let

(3.2) χm = m log log n .

Let

(3.3) Mn = [cf(loglog n ) ! ( W ( / 2 " + mAe/D)] + 1 ,

where b is a positive constant greater than one whose choice will be
made later and [x] denotes the greatest integer not exceeding x.

It follows from (3.3) that

(3.4) /*i(— l o £ l o £ n) = Mn ^ j " 2 (— log log n) .

We define

(3.5) φ(x) - ^[ logίC]+a? .

Let k be the integer determined by

(3.6) φ(8k + T)Mik+7 ^n< φ(8k + l l )Λf n

8 * + 1 1 .

The first inequality of (3.5) gives

log φ(8k + 7) + (8k + 7) log Mn ^ log n ,

or

(8k + 7) log Mn <logn,

which by help of (3.4) yields

k<
log (-2. log log n )

Again the right hand side inequality of (3.4) gives

log n < log φ(8k + 11) + (8k + 11) log Mn

= (log (8k + 11) + 8k + 11) log (8ft + 11) + (8ft + 11) log M.

< 2(8k + II)2 + (8Aι + 11) log Mn < μz¥ log Mn ,
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whence by (3.4), we have

Therefore

(3.7) μ L T g S * Y" < ft <
\ loer (kJt- loer loer n) J

μ
log (kjtn log log n) / log (jkjtn log log n)

Since (kjtn) = o(log n) by hypothesis, it follows from (3.7), that
h —» °o a s % - * oo.

We have /(a?m) = Um + Rm at the points

(3.8) «•

for m = [k/2] + 1, [A /2] + 2 k, where

17. = Σ arXχm
1

and

Λ = (Σ + Σ)^rX^; ,
2 3

the index r ranging from φ(4m — VjMT'1 + 1 to φ(4m + 3)M£m+s in
Σi, from 0 to φ(4m - ^MίT'1 in Σ 2 and from φ(4m + 3)MΓ+8 + 1
to w in Σs (We shall use the notations Σi> Σ2 and Σ 3 to carry
the above meaning throughout this paper.)

We have also

(3.9) f(x2m) = U2m + R2m, f(x2m+1) - ί/2w+1 + i? 2 m + 1 .

By (3.7), we have 2k + 1 < n for large ^. Also the maximum
index in U2m+1 for m = k is φ(8k + 7)Λff+7, which by (3.6) is con-
sistent with (3.9).

We define normalizing constants Vm starting from the relation

(3.10) (1/ VI) Σ alxZhάarXtfl VJ ,
11

where θ is a small positive number whose final choice will be dealt
with later. Such normalizing constants Vm always exist when θ is
sufficiently small. (Cf. Ibragimov and Maslova [7], p. 232.)

Now if V(Xr) = 00, we have

VI = Σ aWZKiaXJlVn) > Σ aK
1 1

(by (2.9), since θ is small),
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> ft Σ

Or

(3.11) M? < (Ae/Z> φ(4m + W*( VJtn) .

Again if V(Xr) = σ2 < <», then

> αV(4m + 1)M?(D/Ae) .

Or

(3.12) Λβ- < (Aβ/2) ?5(4m + l))1/2( VJσQ .

The following lemmas are necessary for the proof of the
theorem.

LEMMA 1.

except for a set of measure at most μ/X2

m

 ε for ε > 0, where

(3.13) Wi = Σ α^?λi(αrfljW/WJ .
2

Proof. The characteristic function of (1/ Wm) Σ 2 α rX rα^ is given

by

where

(3.14) Λ.(ί) = (V Wl) Σ alxZhiaXJI Wm) .
2

We have by Theorem 1 for \t\<θ,

if I ^ ' T . I e(M) , )

where lima._0 c(*) = c Φ 0, lima._0£(x) = 0. Again since limu_oi(ίt) =
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there exists a positive ί0 such that for 11 | < θ < t^1 and ε > 0,
I ε(u) I < ε. Thus we have

Now

Re hjjb) = (1/Wϊ) Σ alxlh^aA

(by (3.13)) .

But by (2.7), hm(t) = Re hm(t)(l + o(l)) as t -* 0. Therefore for
111 < ί Γ1 and ε > 0, we have

\K(t) <^|ίr .

Thus in a neighborhood of zero,

(3.15) exp

By Gnedenko and Kolmogorov [5],

P{\Σ,arXχm\>XmWJ<2 φm(t)dt

V i "^ (λJ2)ίV i" I φjfi - 11 dί ^ λ ^ Γ^l ί I*—<2* (by (3.15)) ,
J-2/Xm O

Hence the result.
Adopting the above procedure we can also prove the following

lemma.

LEMMA 2.

except for a set of measure at most μ/X2^ε where

Now we proceed to estimate Rm. By virtue of Lemma 1 and
Lemma 2, we have

for sufficiently large value of m.



Σ
3

STRONG RESULT FOR REAL ZEROS OF RANDOM POLYNOMIALS 517

Now if V(Xr) = oo, we have

(ft 1 (V) I 7? I <f \ h di(V /v2rV/2 4- (V τ2ίΛ
\ / ''ίΛ ^ * ^ /wmWπwl \ x I win,) iΓ V / i wm)

where

c£ = max

We have

4- 3) _ (4m) [ l o g ( 4 m + 8 ) : ] + 4 m + 8(l

Therefore

(3.17)

and similarly

(3.18)

Now

(3.19) ? ^

and

1) (4^)[ loS(4m+l)]+4rn+l/ £ _j_

4772-) o g m 'J/ w = l b W (4^

^ ( 4 w + 3) >̂ ΎYi2φ(4t7ϊi

φ(4m + 1) > m2φ(im

< (2/m2)^(4m + l)M 4 m ~ 1

+ 1)

- i ) .

(by (3.18)) ,

(since by (3.17), mV(4m + 1) < mV(4m + 3)) ,

+ l)Afi» \Mnl ±

m + l)M*me-m*M« < ψ(4m + VjMTim'M,,)-1 (since

(3.20) = (l/m*)φ(4m + l)Afr - 1

Hence by (3.19) and (3.20) we have from (3.16),

\RJ< iι/2 + l)

m

d{\/2 + l){AelDy\kJtn) log log nVn

(by (3.2) and (3.11)) , < Vm (by (3.3)).

Again if V(Xr) = σ2 < °o, then
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\RJ< λ«σ{Σ 4D1/2 + ( Σ a4T2}
2 3

log log n(\/~2 + 1)(D/Aer\kjtn) Vm

Ml"

(by (3.2) and (3.12)),

<d(V2 + l)(kJt)loglognV^ ( β i n β β t ί > 1 0 < F w .
Af*/2

Since jfc -» oo as n —> oo, it follows that when w is sufficiently
large

for m = [&/2] + 1, [k/2] + 2 , - —,h, except for a set of measure a t
most

(3.21) (μ/X2~ε) .

Thus we have | R2m \ < V2m and | R2m+1 \ < V2m+1 for m = m0,
m0 + 1, , k9 where m0 = [k/2] + 1.

The measure of the exceptional set is at most

(3.22)

Again we proceed to estimate

P * = P{U2m> V2m, U2m+1 < - F2m+1} U {272m < - F 2 m , C/2m+1 > V2m+1}

= P{?72m > F2m}P{C72M+1 < - F2m+1}

+ P{U2m < - F2w}P{f72w+1 > V2m+1} .

Let Gm(α?) and gm(t) be the distribution function and the character-
istic function of (UJVm) respectively. Then

gjf) = exp j |

Let

(3.23) F(x) = [X exp (-u2/2)du .

It follows from (3.11) and (3.12) that Vm-+ oo as m-^oo and
then (αX,t/VJ->0. Therefore when m-^ oo we have by (2.8),

h(arx
r

mt/Vm) = hidrXlt/VJ (1 + o(l))

and by Theorem 1, it can be shown that

hAaAt/VJ - Wθ/tlΓh^xlθ/VJ (1 + o(l))

and as such
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gm(t) = exv\-^p:
0(1)

12—0(1)

(1 + o(l)) (by (3.10)) .= exp

Therefore a s m - ^ c o , gm(t) —> exp (—tf/2) uniformly in any bounded
interval of t-values. Hence

(-l) - F(-l)\ <e

(3.24)
x

Then we have for ε > 0,

(3.25) \G

and

(3.26) | G 2 m + 1 ( - l ) - F ( - l ) | < ε .

By (3.25) and (3.26), we have

P{U2m< - F 2 w } > F ( - l ) - ε

and

P{U2m+1< - F 2 m + 1 } > F ( - l ) - ε .

In the similar way using (3.24) we can show that

P{U2m> F 2 m } > l - F ( l ) - ε

and

P{U2m+1> V2m+1} > 1 - F(l) - ε .

Therefore P * > 2(F(1) - ε)(l - F(l) - ε). Thus P * is greater than
a quantity which tends to 2F( — 1)(1 — JP(1)) as m—>OO with n.
This limit being positive we conclude that

(3.27) P* > δ > 0 for all large m .

Now we define events Em and Fm as follows:

By (3.27), we have

U2m> V2m, U2m+1 < - V2m+1} ,

U2m<- V2m, U2m+1 > F2m+1} .

P{Em U FJ > δ > 0 .

Let P{Em U FJ = δm, so that δm > δ > 0.
Let 7/w be the random variable such that it takes value 1 on

Em U Fm and 0 elsewhere. In otherwords,
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1 with probability δm,

0 with probability 1 — δm .

The ym's are thus independent random variables with E(ym) = 0 and
V(yJ = dm-δl<l. We write

0 if \R2m\< V2m and |i22w+1

1 otherwise .

< V2

Moreover, we have f(x2n) = Z72m + i22w and f(x2m+1) = ί72m+1 + Λ2w+1.
Let am = ym- ymzm. Now am = 1 only if ym = 1 and zm = 0, which
implies the occurrence of one of the events

( i ) U2»> F 2 m , | i ? 2 w | < F 2 W ;

( i i ) - F 2 m ί

^ r2m + l

F 2 M ;

" ^ * 2

It is obvious that (i) implies f(x2m) > 0 and f(x2m+i) < 0, and (ii)
implies that /(x?m) < 0 and f(x2m+i) > 0. Thus if αm = 1, there is
a root of the polynomial in the interval (x2m9 a?2m+1). Hence the
number of roots in (#2wo, sc2*+i) must exceed Σ t m 0 <̂m

We appeal to the strong law of large numbers in the following
form. The technique has been earlier used by Evans [4], Samal
and Mishra [12] and [13].

Let Vi, V2, '' * 9 be a sequence of independent random variables
identically distributed with V{yτ) < 1 for all ί, then for each ε > 0,

(3.28) P sup 1 *
~kk

B/e%

where B is a positive constant.
In the present case,

k

Σ
(3.29)

k

Σ <

Σ (i/« —

k

v (since yn<Ll) .

Since ^ ( 2 j = 1 -P{zm = 1} < P{|i2.,| > FM} we have from (3.21),

(3.30) E{zm) <

Now we have

ϊ)ε
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Hence outside an exceptional set of measure at most

we have

and therefore,

sup

sup - m0 + 1)) < Si

- m0 + 1)) Σ (α. -

^ sup (l/(As - Wo + 1)) Σ - E{ym))

Now by using strong law of large numbers,

Pi sup
{k-

m0 + 1)) > 6

By (3.1)

λ2

m~
ε = (m0 log log nf~ε .

For large n, mQ log log n > m0, and therefore

Σ (μM7) < Σ (μ/mf).

Hence outside a set SkQf where

(3.31) P(SkQ) < μ/k0 + ( f c _ m Σ } ^ {μlm

we have

(3.32) (1/(4 - m0 + 1))

Also

k

m Σ <ε .-J5(2/w

...... = δ M > δ .
Therefore,

Nπ > Σ α . > Σ δ - (A - m0 + l)s >(A - [Jc/2])
m—mQ m=m0

%/log((An/ίJloglog%))1/2 (by (3.7)) ,

521

for all k such that k — mQ + 1 > kQ, or in otherwords for all n > nQ.
Now

P(Sk0)< (μ/h) + μ Σ (l/mo)
2-£

/Cέ(2fc1)

r + μ W- + 2VAPTΪ
 + ApTi +

+ 2μ Σ
4 *
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It can be easily shown that for 0 < ε < 1,

Σ (W" ε) < (1/(1 - eWo") .
kzk0

Hence

P(Sk0) < (μ/kQ) + (1/(1 - eWΓ) < μJΊ$-

(since by hypothesis 0 < ε < 1, ko> k^~ε)/2),

< μ'{log((kjtno)\og\ogn0)/\ognoy-* (by (3.7)) .

The authors are thankful to the referee for his valuable comments.
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