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UNITARY ANALOGS OF GENERALIZED
RAMANUJAN SUMS

KENNETH R. JOHNSON

The multiplicative properties of a certain type of gener-
alized Ramanujan sum have been studied by several authors.
In this paper we investigate the multiplicative properties of
the unitary analog of this function.

Cohen [2] defined the unitary product of two arithmetic func-
tions / and g, by

(1) /Xflr(n)= Σif(d)g(n/d)9
d\\n

w h e r e d\\n indicates t h a t d is a u n i t a r y divisor of n, i.e., d\n and
(d, n/d) = 1. He also defined a u n i t a r y analog of Ramanujan ' s sum
ck(n) by

(2) cΐ(ri) = Σ exp (2πijn/k)
j mod k

where (j, As)* denotes the largest divisor of j which is a unitary
divisor of k. Cohen then demonstrated that, paralleling the Dirichlet
product result, we have

(3) ci(n() Σ
d\n
d\\k

Here μ* is the unitary Mobius function and μ* = I"1 with respect
to the unitary product (l(n) — 1 for all ri). The function μ* is
multiplicative and μ*(ΐ) — 1, μ*(pk) = — 1 for all primes p and posi-
tive integers k. It is easy to see that (3) may be rewritten

(4) ei(n)= Σ dμ*(k/d)
d||(n,fe)*

Cohen also defined φ*(n) = c*(0), and paralleling the Dirichlet
case showed that φ*(ri) counts the number of integers unitarily
semi-prime to n, i.e., the number of integers k such that (ft, n)* — l.
He also showed that φ*{ri) — ί x μ*(n), where i is the identity
function, which is also analogous to the well known Dirichlet result.

Anderson and Apostol [1] defined a more general Ramanujan
type sum by

sk{n) = Σ f{d)g{kjd) ,

d\(n,k)

and studied the multiplicative properties of this new function. In
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this paper we study the multiplicative properties of the unitary-
analog of sk(ri), defined as follows.

DEFINITION 1. For arithmetic functions / and g, let

*?(")= Σ f(d)g(k/d).
d\\(n,k)*

The proof of the following lemma is straightforward.
LEMMA 2. If (a, k) = (6, m) = 1 then (αδ, mfc)* = (a, m)*(6, &)*

and ((a, m)*, (δ, ft)*) = 1.

THEOREM 3. If f and g are multiplicative then st(n) has the
following multiplicative properties:

( i ) sZk(ab) = βϊ(α)8*(δ) whenever (a, k) — (6, m) = 1
(ii) sί(αδ) = 8Ϊ(α) whenever (δ, m) = 1
(iii) s*k(a) = sϊ(α)flf(ft) whenever (α, fc) = 1.

Proof Suppose (α, A?) = (δ, m) = 1. Then

ώ(αδ) = Σ f(d)g(mk/d) = Σ f(d)g(mk/d), by Lemma 2,
ώ||(αδ,mfc)* d| | (α,m)*(6,fc)*

= Σ /(dMm/d,) Σ /(dtMk/dJ, since (dlf d2) = 1

= «:(α)βif (&).

This proves (i). Now let k — 1.

sj(αδ) = s;(α)sf(δ) = 8Ϊ(α) which is (ii). Not let δ = 1 in (i)

α) = 8*(a)g(k) .

The function s*(w) is multiplicative in another sense.

THEOREM 4. 1/ / and g are multiplicative then s£(ri) is multi-
plicative in k for each fixed n.

Proof Suppose (ft, m) — 1 and n is fixed. Then

st{n)st{n) = Σ Adjgφ/di) Σ f(d2)g(m/d2)

= Σ Σ AdAMkm/dA) = Σ f(d)g(km/d)
diWirtfk)* d2 | |(n,m)# (i||(n,Λm)*

= δ?w (n) .

The case 8*(w) = c*(w) was proved by Cohen [2].

THEOREM 5. / / / cmc? ^ are multiplicative, and g{n) = ± 1 /or
aίί n, then for fixed ft the function g(k)8*(n) is multiplicative in
the variable n.
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Proof. Choose (n9 m) = 1 and fix k. Now

g(k)s*{ri)g(k)st(m) = s%(ri)s*(m), since g\k) = 1 .

Since both sides of the equality

are multiplicative in & (by the previous theorem), it is enough to
prove the same when & is a prime power.

st(n)sϊ(m)= Σ AdMk/dd Σ f(d2)g(kld2)

but since fc is a prime power either dx or d2 is 1, so g(k/d1)g(k/d2) =
g{k)g{kldxd2) and

8i(n)8ϊ(m) = Σ
dd\

Σ
dΛd2\\{nm,k)

= ff(fc) Σ f(d)g(kld) = g{k)s*k{nm) .
d||(nm,fe)

In particular,

COROLLARY 6. For fixed k, the function μ*(k)c*(n) is multipli-
cative in the variable n.

The Dirichlet analog of Corollary 6 was proved by Donovan and
Rearick [4].

Theorem 4 is also useful in the proof of another unitary version
of a Dirichlet result [1]. A somewhat weaker theorem of this type
was proved by V. Sitah Ramaiah [6].

THEOREM 7. Suppose g and f are multiplicative and F{n) =
/ x g(n) Φ 0 for all n. Then

where N = k/(n, &)*.

Proof. After Theorem 4 it is sufficient to show that the right
hand side of (5) is multiplicative in k and demonstrate the equality
when & is a prime power. But F is multiplicative [2, Theorem 2.1].
Using this and the fact that (n, k)%(nf m)* = (n, km)* if (&, m) = 1,
it is easy to see that the right hand side of (5) is indeed multipli-
cative. So without loss of generality we may assume k = pv — P,
a prime power. If PJfn, then (n, P) # = 1 and F(k)g(N)/F(N)
reduces to g(P). If P\n then (n, P)* — P and the right hand side
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of (5) reduces to f(ϊ)g(P) + f(P)g(l). In either case the value
obtained is the value of 8*(n)f thus establishing the theorem.

COROLLARY 8. ct(n) = Φ*(jk)μ*(k/(n, k)*)/φ*(Jc/(n, &)*).

Proof. As stated earlier φ*(k) = i x μ*(k).
This particular special case of Theorem 7 has been proved by-

several authors [3], [5], and [7].
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