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A GENERAL VERSION OF VAN DER CORPUT'S
DIFFERENCE THEOREM

RUDOLF J. TASCHNER

Let ω(n) be a real-valued sequence, and let us assume that for all
positive integers g the difference-sequences Δ gω(«) = ω(n + g) — ω(n)
are uniformly distributed modulo 1, then ω(/z) itself is uniformly distrib-
uted modulo 1. This is van der Corput's difference theorem or the
so-called main theorem in the theory of uniform distribution. In this
paper I present a rather generalized version of this theorem which not
only enables us to prove the original van der Corput theorem, but also
the general approximation theorem of Kronecker in its discrete and in its
continuous version. Moreover, a few other examples of uniformly distrib-
uted sequences can be constructed by this general difference theorem.

The proof of the difference theorem was given by van der Corput in
using his so-called "fundamental inequality". M. Tsuji, E. Hlawka,
J. H. B. Kemperman and R. J. Taschner formulated stronger versions of
this fundamental inequality and by doing this reached to new aspects of
the difference theorem. A different approach to the difference theorem
was investigated by J. Bass and J.-P. Bertrandias: they related it to the
Bochner-Herglotz representation theorem about positive definite func-
tions. This method was further elaborated by J. Cigler. In particular,
Cigler proved the uniform distribution of na modulo 1 for irrational a
only by using his version of the difference theorem. Cigler tried to extend
his theorem for uniformly distributed functions, defined on a local com-
pact commutative group. He recognized, however, that the topology of the
group troubles the application of the difference theorem. It is, for exam-
ple, impossible to derive Hlawka's difference theorem about C-uniformly
distributed functions by Cigler9 s method.

In this paper we will follow the way, indicated by Bass, Bertrandias,
and Cigler, but we separate the domain of the uniformly distributed
functions from the group which makes it possible to define difference
sequences. By doing this, the difficulties raised by the topology of the
group can be avoided.

Before formulating the main theorem, we list all necessary prere-
quisites: Let Xbe a compact group and let χ be the normed Haar measure
on X. Eh, h E H, designates a "main system" of representations of X, this
means: a set of irreducible unitary representations so that each irreducible
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unitary representation of X is equivalent to one and only one member of
the Eh. By E°, i.e. if h = 0, we designate the trivial representation:
E°= 1.

Let Σ be a measure space and σR, R E 91, a net of measures on Σ; 91
designates an inductively ordered set. We postulate the following two
assumptions: the σR shall be uniformly bounded, i.e.

- 0 0 ,

and finally normed, i.e.

lim σΛ(Σ) = 1

A measurable function ω: Σ -> X is called uniformly distributed, if for all

lim Eh(ω(s))dσR(s) = 0.
Λtz Λ*2ι

From this formula, it is easy to derive

lim f f(ω(s))dσR(s) = f f(χ) dχ(x)
RG<$ίJΣ JX

for all continuous /: X -> C, and the converse is true too.

Let Γ be a local compact commutative group and let each g E Γ be a
measurable function from Σ into Σ, i.e. g: Σ -> Σ so that for all s E Σ
gs E Σ is well defined. 1 E Γ stands for the unit. We postulate the
following conditions: for all g', g" E Γ and all s E Σ we have g\g"s) —
(g'g")s, and g's — g"s implies g' = g". If the limit

lim ίf(s)dσR(s)

exists for a measurable and bounded/: Σ -* C and a cofinal 91 C 91, then
the limit

lim ίf(gs)dσR(s)

shall also exist for each g E Γ and coincide with the former limit. We
assume the existence of a sequence yn of measures on Γ, which is finally
normed, i.e.

lim γ ι l(Γ) = l,
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and finally translationinvariant, i.e. if the limit

lim ίf(g)dyH(g)

exists for a measurable and bounded/: Γ -> C, then the limit

lim ff(g'g)dyΛ(g)

exists also for each g ' G Γ and coincides with the former one.

Γ designates the group of the characters g of Γ; ϊ stands for the trivial
character. Instead of g(g) we write (g, g).

For all functions ω: Σ -> X we tacitly assume that the functions
g ι-» Eh(ω(gs)) are uniformly continuous in s E Σ.

We can now formulate the main result:

Let ω: Σ -^ X be a measurable function. We consider for each g E Γ the

difference function Δgω(s) = ω(s)~ιω(gs), and assume that

( g )

ηh
exists for all h E H. We construct a measure ηh on Γ with the property

Urn j f i ^ Δ ^ ) ) daR(s) = j_(g, g) ^

/ / η h vanishes at the set consisting only of 1 for all Λ ^ O , i.e. if η h(ϊ) — 0,
then ω is uniformly distributed.

Before proving this theorem, we want to illustrate its value in several
examples of applications:

(1) X = R/Z, χ = Lebesgue measure, Eh(x) = e2πih\ h<ΞZ.Σ = Z.
We define σR to be the counting measure on the points {1,... ,i?}, normed
by the factor R~ι. Γ = Z with the addition as operation. If the sequence
Δgω(n) = ω(g + n) — ω(n) is uniformly distributed for each g ^ O , then
we obtain for all h φ 0

f i = lim 1 |

otherwise.
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Thus ηh coincides with the Lebesgue measure and vanishes at the one-
point-set consisting of 0, ήh(0) = 0. This proves van der Corpufs dif-
ference theorem.

(2) All prerequisites as in (1), only Γ = mZ with an arbitrary positive
integer m. The same inference as before establishes an assumption of
H. Delange: It is sufficient for the uniform distribution of ω(n) that the
difference sequences Δgω(«) — ω(g + n) — ω(n) are uniformly distributed
for all multiples g — mn of a positive integer m.

(3) X, χ, Eh as in (1). Σ = R. By defining σR as Lebesgue measure on
the interval [0, R]9 R G R + = <3l, normed by the factor R\ we are
dealing with the C-uniform distribution. We take Γ = μZ with an arbi-
trary μ G R + and the addition as operation. The same calculation as in (1)
leads to Hlawka's difference theorem: If the difference functions Δ gω(ί) =
ω(g + 0 ~ ω(0 are C-uniformly distributed for all numbers g — μn, n G N,
then ω(t) itself is C-uniformly distributed.

(4) X, χ, Eh as in (1). Σ = Γ designates a local compact but non-com-
pact commutative group, σR, R G N, is a sequence of measures on Γ,
which converges weakly to a normed translationinvariant measure on Γ.
These are Cigler's requirements for his difference theorem about uni-
formly distributed functions. Thus it is a special case of our theorem.

(5) X = R L / Z L , χ = Lebesgue measure, £*'(*,) = e

2vih'x'9 A, G Z L . /
ranges in {1,... ,L}, and we are using Einstein's sum convention in terms
like h/Xf. Given a monotone non-decreasing sequence of natural numbers
SR, R G N, we define ΣR to be the set of all functions ξ: N -> N o with
£O) < Λ for all n G N and £(«) = 0 for all n> SR.Ψe distinguish two
types of examples: type I is characterized by supΛ SR = S < oo, (ype // by
supR5'R = S = oo. Let Σ be the set of all functions ξ: N -* Z with
£(ft) — 0 for all « > S in the case of type I or with ξ(n) = 0 for all «
greater than a certain index n0 — no(ξ) in the case of type II. In any case,
let σR be the counting measure concentrated on Σ Λ , and normed by the
factor (R + 1)~5*. Γ = Z with the addition as operation. For any g G Γ
and £ G Σ, we define g + £ = ξ by f(w) = £(w) for all « except w = q,
and f(#) = g + £(#). The choice of q G N will be made afterwards, the
only condition, q must fulfill till now is q < S in the case of type I. Let
λ7(Λ), « = 1,2,... be a given sequence of points in RL and consider the
function

π = l
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The difference function Δgω(£) = co(g + ξ) — ω(£) = gλ^q) is constant
and by the formula

lim ίe2vih<***M dσR(ξ) =
R~+OQJΣ

we derive that ήhι is a point measure, concentrated on hfλ^q) modulo 1.
The proof of the theorem will show that the choice of Γ may depend on
A,; we only have to look for a q < S with ht\t{q) as 0 (mod 1). ω(£) is
uniformly distributed modulo 1, ///or eαcA A7 E Z L — {0} ίAere exists a

Z.

This is, in the case of type I, a proof of Kronecker 's general approxi-
mation theorem in discrete variables. If S = 1, we reach H. WeyΓs theorem
about the uniform distribution of n\ι modulo 1 for linear independent λ,
over Z.

In the case of type II, all \t(n) can be rational.

is an example of an uniformly distributed function of this type.

(6) All prerequisites as in (5). We assume at least S > 2 and consider
the function

If we define £(0) = 0, we have

Δgω(£) = g(ξ(q - l)λ#(

which is a function of the kind we discussed in (5). The condition
§£ Z leads to

, otherwise,

i.e. ηΛ/ is the Lebesgue measure and therefore vanishes at the one-point-set
consisting of 0. ω(£) w uniformly distributed modulo 1, ///or e#cA A7 E
Z L - {0} /Aere ejcwte έϊ q E N, ςr < S, such that ht\t{q) $ Z.

(7) The last two examples can be extended to the following case which
we describe by type III: Let ΣR be the set of all functions £: N -> No with
ξ(n) < i? for all n E N. For any r E {0,1,... ,R} and any n E N we



236 RUDOLF J. TASCHNER

define ER(n; r) as the set of all ξ G ΣR with ξ(n) = r. The sigmaalgebra
o n Σ Λ shall be generated by the finite intersections of the ER(n; r) and the
measure σR is defined on ΣR in the following way: for any rl9...,rκ€z
{0, l,...,i?} and n],...,nκwithnk φ nm for A: φ m, we have

°R{ER{*X\ rx) Π ΠER(nκ; rκ)) = (R + l)~κ.

Let Σ be the set of all bounded functions ξ: N -» Z. Analogue results to
(5) and (6) can easily be derived, one has only to guarantee that

Σi(n)λ,(n) resp. ! €(/ι)€(n
n-\ n=\

converges (e.g. by postulating | \t{n) |< αΛ with 0 < α < 1).

(8) X, x, Ehl{xι) as in (5). Let ΣR be the set of all functions {:
N -* Rj with ξ(n) < i? for all n G N and ξ(n) = 0 for all w > S .̂ Here R
ranges over 91 = R+ , but as before SΛ designates a non-decreasing net of
natural numbers. Let σR be the Lebesgue measure concentrated on [0, R]SR

and normed by the factor R~SR. We define Σ as the set of all functions ξ:
N -> R with ξ(n) — 0 for all n > S in the case of type I resp. with
ξ(n) — 0 for all n greater than a certain n0 — no(ξ)m the case of type II.
Γ = μZ with the addition as operation, μ is a positive real number which
will be specified later. For any g G Γ and ξ G Σ we define g + £ = £ by
f(n) = ξ(n) for all Λ except n — q, and f(#) = g + ξ(q). The choice of
q G N, # < S, will be made afterwards. Given a sequence of points
λz(«) G RL, we consider

ω(ί) = 1 ί(»)λ,(n).
Λ = l

The same calculation as in (5) shows that ηhι is a point measure con-
centrated on μhfλ^q) modulo 1. As μ is at our disposal, we only have to
postulate h^^q) Φ0 for establishing μh^^q) & Z. Thus we gain the
following result: ω(£) is uniformly distributed modulo 1, if for each hι G
Z L - {0} there exists a q G N, q< S, such that h^^q) φ 0.

This is, in the case of type I, a proof of Kronecker 's general approxi-
mation theorem in continuous variables. For S = 1 we have as a special
case the C-uniform distribution of t\ι for linear independent λ7 over Q.

(9) All prerequisites as in (8). We assume at least S > 2 and consider
the function
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The same calculation as in (6) shows: ω(£) is uniformly distributed modulo
1, if for each A/ E Z L — {0} there exists a q E N , q < S, such that

(10) X = R/Z, χ = Lebesque measure, Eh(x) = e2iΓ/Λ*, A E Z. Σ =
Q + , <3l = N, but ordered by the divisor relation. For each R E N let σR be
the point measure concentrated on the positive divisors of R and normed
by dividing it by τ(R), the number of the positive divisors of R. Let Γ be
the set of numbers g = pk, k G Z, p & prime number, with the multiplica-
tion as operation. We consider the example

co(n) — log n.

As Δgω(rc) = co(gn) — ω{n) — logg = klog/?, and as

lim

we see that ηh is concentrated at the point A log /?, which is z 0 (mod 1)
for all A E Z, A 7̂  0. Therefore ω(n) — log n is uniformly distributed in this
sense of uniform distribution. It is well known that log n is not uniformly
distributed in the usual sense of uniformly distributed sequences.

Now we come to the proof of the main theorem: Suppose A:Σ -* CN'N

is a measurable and bounded function with range in the set of all
TV X TV-matrices. We derive the norm in CN'N from the inner product
(A I B) — trace(5*yl). A function a: Γ -> C is called correlation function
of A, if there exists a cofinal <3l C <3l with

hm^J{A(gs)\A(s))dσR(s) = a(g)

for all g E Γ. The formulas α(l) >: 0 and a(g x) =a(g) are obvious. As
p = sup s G Σ IM(5) | | 2 supΛ G^σΛ(Σ) < oo and as {z E C: | z | < p}Γ is com-
pact by Tychonoff s theorem,

i? E<&,

represents a net in a compact space. Thus there exists at least one
correlation function of A. The set of all these correlation functions is
designated by G(A). If gv+A(gs) is uniformly continuous in s9 all
α E 6 ( i ) are continuous. It is easy to check that all a E G(A) are
positive definite. "Positive definite" means that a function φ: Γ -> C
fulfills for any gv...,gN E Γ and c , , . . . , c ^ E C the condition

N _
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Referring to a theorem of Raikov (cf. the book of M. A. Neumark), we can
construct a measure a on the character group Γ for each correlation
function a so that

In the case of discrete groups Γ—which we used in almost all of our
examples—one only needs the theorem of Bochner and Herglotz for the
same result. By using the formula

H m f { g , g ) d Ύ l , ( g ) = \ l > i f f = 1

w- oo τ 10, otherwise,

we establish

lim

The exchange of integral and limit is justified by Lebesgue's theorem
about dominated convergence. If we have for some cofinal 9t C $1

lim_ I A(s) dσR(s) = M9

RG<31JΣ

we can derive

| |M||2< Bm α(ϊ).
α<Ξβ(Λ)

We prove this by defining B — A — M, considering the formulas

lim f B(s)dσR(s) = 0,

(A(gs)\A(s)) - IIMII2 + (M\B(s)) + (B(gs) \ M) + (B(gs) \ B(s))9

and concluding a(g) = I | M | | 2 + β(g) for any a E &(A) with a suitable
β E 6 ( 5 ) so that

α(ϊ)>lim ία(g)^(g)H|M|| 2+ Km /β(g) dyn(g)

which establishes the asserted formula. If Q(A) represents the set^>f all
measures a, corresponding to a E &(A), and if ά(ϊ) = 0 for all ά E &(A),
then we have

lim (A(s)dσR(s) = 0.
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Now we specialize to A(s) = Eh_(ω(s)). Let ηh be the elements of 6(Eh(ω))
and let ηh be the measures of 6(Eh(ω)). From the former arguments we
imply (by simply writing Eh(Δgω) instead of (Eh(Δgω) | E0))

ton jfisA(Δg«(s)) dσR(s) = J_(g, g) drjh(g),

if the limit on the left side exists, and

lim ίEh(ω(s)) dσJs) = 0,

if fjh(ί) = 0. This proves the theorem.
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