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TREES AND PROTO-METRIZABLE SPACES

LUTHER B. FULLER

It is known that metrizable spaces are characterized as the compact
closed continuous image of a subspace of some Baire zero-dimensional
space and that compact metrizable spaces are characterized as the closed
continuous image of the Cantor set.

In this paper we investigate some of the properties of trees and
non-archemedian spaces and provide, among others, a characterization of
proto-metrizable spaces which generalizes the above characterizations of
metrizable spaces by showing that a proto-metrizable space is the image
of a non-archemedian space under an (irreducible) closed map such that
each point pre-image is either a point or a compact Gδ-set This result
specializes a characterization of paracompact spaces as the image under
a compact closed map of an ultra-paracompact space.

We then show that non-archemedian spaces and their irreducible
closed continuous images have a normality property, called Λf, -normal-
ity, and it follows that proto-metrizable spaces are Mλ -normal.

I. Introduction. The characterizations of paracompact and compact
metrizable spaces mentioned above are due, respectively, to Ponomarev
[14] and to Aleksandrov and Uryson [1]. The characterization of metriz-
able spaces may be found in [9, p. 218]. Proto-metrizable spaces were
introduced by Nyikos [12] as a generalization of non-archemedian and
metrizable spaces. Extensive background material on non-archemedian
spaces has been provided by Nyikos [10], [11], [12], [13] and will not be
covered here.

Recently, Gruenhage and Zenor [3] have characterized proto-metriz-
able spaces as spaces having a rank-1 pair-base. A rank-X base [2] is a base
such that if two elements intersect, then one is a subset of the other. A
pair-base is a collection of pairs (6(1), b(2)) of sets such that b(l) is open,
b(\) C b(2) and if the open set u contains x, then there exists a pair
(6(1), b(2)) with x G b(\) C b(2) C u. A rank-1 pair-base is a pair-base
such that if (Z>(1), b(2)) and (fc'(l), b\2)) are elements with b{\) Π b\\) φ
0, then either b(\) C b\2) or b\\) C b{2).

The set-theoretic notation used here is that of Jech [5, p. 1] with the
addition that we use S as the classifier instead of the more usual braces
(except when the elements of a set are listed, e.g. {x}). For example, "the
set of all x such that x has property P" is denoted &x (x has property P).
All other operations such as union, intersection, lub, etc., are assumed to
incorporate the classifier, thus, for example, " the least upper bound of the
set of all x having property P" is denoted lub x (x has property P).
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Ordinals are assumed to be transitive sets well-ordered by G , so we
denote "α is less than β " by a G β. See [5, p. 7]. The empty set is denoted
by the ordinal 0, the set of finite ordinals is ω and co(α) is the α-th infinite
cardinal.

The operations "closure" and "interior" are denoted Cl and In
respectively and the space in which these operations are carried out is
denoted by a subscript where necessary for clarity.

The "star" of a collection and Δ-refinement are frequently used [9, p.
50]: If U and V are covers of X, then V is a Δ-refinement of U, denoted
ϊ/< V, if for each x G X there exists u G U such that St(x, V) =
Uv(x G v and v G V) C u.

II. Proto-uniformizing families and ortho-bases. A proto-uniformizing
family for a space Xis a family % = &U(a) (a G γ) of collections of open
subsets of X such that:

(1) U U(a) (a G γ) is a base for X; and
(2) for each a G γ there exists β G γ such that Uί/(α) = UU(β)

and U(β) Δ-refines U(a).
% is said to be well-ordered by refinement if, in addition, for each α,
β G γ, a G β implies that U(β) Δ-refines U(a).

A base B for a space is called an ortho-base if whenever B' C B and
x G Π 5 ' , then either Π 5 ' is open or Bf contains a base at x. A space is
proto-metrizable if it is paracompact and has an ortho-base. It is known
[12, Theorem 4.3] that a space is proto-metrizable if and only if it has a
proto-uniformizing family well-ordered by refinement.

A collection of sets is said to be totally ordered if its ordering by set
inclusion is a total ordering. A sequence of open sets is said to be perfectly
decreasing if it is well-ordered by reverse set inclusion so that the closure
of each element is a proper subset of each of the preceding elements.

A base B for a space X is called a {perfectly) monotone ortho-base if
whenever B' is a totally ordered (perfectly decreasing) subset of B and
Π Br contains x9 then either Π B' is open or Br contains a base at x.

A set is said to be canonical if it contains the interior of its closure
and it is a subset of the closure its interior.

If U is a collection of subsets of a space, then U is said to be locally
finite-in-itself if for each x G U U, U is locally finite at x. Denote by
t(X) the set of all collections of canonical open subsets of the space X
which are locally finite-in-themselves.

Let B be a base for X and let <B denote the order on £( X) such that
for each t/, V G t(X), U <B Vif and only if for each v G V there exists
b G B and u G U such that VCbcClbC^=u unless u is an isolated
point, in which case v = b = Cl 6 = w. Notice that the ordering <1? does
not require that UV-UU whenever U <B V.
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LEMMA I. If X is a paracompact space and B is a base for X, then for
each U E £( X) which covers X there exists V E £( X) such that U U —
UVandU^B V.

Proof. Suppose U E £( X) is a cover of X. Since X is regular, for each
x E X, there exists u E ί/ and Z>(x) E 5 such that x E Z>(x) C Cl b(x)
CΦu unless the only element of Ucontaining x is {x} in which case we
havex E {x} — b(x) = u.

Let F(3) = &b{x) (x E X) and in the same manner construct F(2) C
B from F(3). F(2) is an open cover of X and since X is paracompact, F(2)
has a locally finite Δ-refinement F(l) covering X.

Let F = SlnCli>(t> E F(l)), then K G £ ( I ) . In order to show that
U < 5 F we observe that for each x E X there exists v(3) E F(3), ϋ(2) E
V(2) and w E [/ such that either St(x, F) C ClSt(x, F(l)) C Cl υ(2) C ^
ϋ(3) C Cl ϋ(3) CT^MOΓ St(x, F) = {JC} = v(3) = Cl t?(3) = u. •

LEMMA 2. Suppose X admits a perfectly monotone ortho-base B and % =
&U(a) (a E γ ) c £ ( X ) w/ίΛ the following properties:

(a) γ is α //mi/ ordinal and for each «, β E γ, α E β implies U(a)
«B U(β);

(b) for each a E γ and x E X, eiίAer x E U C/(α) or U £/(j8) (]8Gα)
contains a base at x; and

(c) /or eαc/z α E γ, U [/(α) = U U(a + 1);
ίAen ίAere ejcϋrj ί/(γ) E £( X) swcΛ ίΛαί:

(1) ί/(γ) w a pair-wise disjoint collection of closed-open sets]
(2) for each a E γ, ί/(α) < 5 ί/(γ); α«J
(3) for each x E X, eiί/ier x E U l/(γ) or U % contains a base at x.

Proof. For each a E γ and each x E U C/(α) let 6(x, α ) G 5 such
that there exists u E U(a) with St(x, ί/(α + 1)) C b(x9 a) C Cl b(x, a)
CLΦu, unless u is an isolated point, in which case b(x, a) = {x}. If
x ί U U(a), then let b(x9 a) = X

For each x E X, let B(x) = S6(x, α) (α E γ) and let U(y) = S Π
5(x) (x E Xand Π ί ( x ) is a non-empty open set). ί/(γ) is a collection of
open sets and since each B(x) is perfectly decreasing, the elements of
ί/(γ) are also closed.

We now show that t/(γ) is pair-wise disjoint. First, suppose x ^ y
and there exists a E γ such that x $ b( y9 α), then x € St(j>, ί/(α + 1))
and hence j ^ St(x, U(a + 1)). It follows that St(x, U(a + 2)) Π
St(j, ί7(α + 2)) = 0, since if there exists z in this intersection, then
St(z, U(a + 2)) contains both x and y9 which is impossible since
St(z, U(a + 2)) is a subset of some element of U(a + 1) and no element
of U(a+ 1) contains both x and j>. Now this implies that b(x9 a + 2)
Π Z>(j, α + 2) = 0 and thus we have (Π £(x)) n(ΠB(y)) = 0.
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Second, let x and y be such that ΠB(x) φ ΓϊB(y) and let z G
ΠB(x) — ΠB(y). There exists a G γ such that z & b(y, a) and hence
(ΠB(z)) Π (ΠB(y)) = 0, and since z E Π 5 ( J C ) we must have x G
ΠB(z), from which it follows that (Π j?(*)) Π(ΠB(y)) = 0.

(2) holds, since for each x G U ί/(γ) and α G γ, we have JC G v =
Cl ϋ C Cl b(x, a) Cφu, where v G £/(γ) and u G £/(α).

(3) holds, since for each x G X, if c $ U £/(γ), then B(x) is not
open, implying that &b(x, a) (a G γ) contains a base at JC and hence U %
contains a base at JC. D

THEOREM \. If X is a paracompact space with a perfectly monotone
ortho-base B, then X admits a proto-uniformizing family ( ? L = S t / ( α ) ( α G γ )
such that:

(1) for each α G j δ G γ , U(a) <B U(β); and
(2) for each a G γ, U(a) is a locally finite-in-itself collection of canoni-

cal open sets and if a is a limit ordinal, then U(a) is a pair-wise disjoint
collection of closed-open sets.

Proof. We construct % inductively, beginning with £/(0) = { X), using
Lemmas 1 and 2 and the ordering <2?. The fact that % is a proto-unifor-
mizing family having properties (1) and (2) follows directly from the
conclusions of the lemmas. D

This is a strengthening of a similar result of Gruenhage and Zenor [3,
Lemma 2.3].

III. Trees and proto-metrizable spaces. A tree [5, p. 91] is an ordered
set (T,<) with the property that for each t G T9 &>s (s < t) is isomorphic
to an ordinal denoted ord(/).

The length of the tree Γis len(Γ) = lub(ord(/) + 1 ) ( / E Γ ) . T(a) =
S/(ord(/) is isomorphic to a) is called the α-th level of T and if T(x) is a
tree, then T(x, a) is the α-th level of T(x).

A totally ordered subset of a tree is called a chain and a branch of a
tree is a maximal chain, that is, a chain which is not a proper subset of
some chain. For each t G T,[t] denotes the set of all branches containing
t. The branch space of a tree T is the set of all branches of T with &[t]
(t G T) as a basis and it follows from the definition of a tree that this is a
rank-1 basis. A chain V is said to be cofinal in the branch b if for each
/ G b there exists /' G V with / < t\

An element of a tree is said to be minimal with respect to some
property if no element which precedes it has that property. When referring
to a minimal element, it will be clear from the context which property is
meant.
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Call a point t of a tree inessential if either:
(1) [t] has only one branch and / is not minimal with respect to this

property; or
(2) t has exactly one immediate successor and [/] has more than one

branch.
A tree which contains no inessential point is said to be properly

branching. If the inessential points are removed from a tree then the
branch space of the resulting tree is homeomorphic to the branch space of
the original tree, so for this reason we shall assume that a tree is properly
branching unless stated otherwise.

If a is an ordinal or any well-ordered set, then the cofinality of α,
denoted cf(α), is the least ordinal β for which there exists a function/,
called a cofinality function, from β into a such that lub/(γ) (γ £ β) — a.
We shall always assume that a cofinality function is strictly order preserv-
ing. A cardinal K such that cf(/c) = K is said to be a regular cardinal.

The character of a point x of a topological space is the greatest
cardinal χ(x) such that no local base for x has cardinality less than χ(x).
Clearly, if b is a point of the branch space of a properly branching tree,
then cf(fe) = χ(6), a regular cardinal.

An anti-chain in a tree T is a subset A which is pair-wise incompara-
ble, that is, if t, tr E A, then neither t < t' nor t' < t. An anti-chain is
maximal if it is not a proper subset of some anti-chain.

\ί A is an anti-chain of the tree T9 then &[t] (t G A) is a, collection of
pair-wise disjoint closed-open sets in the branch space of T and if this
collection is a cover, then A is called a covering αnti-chαin. A covering
anti-chain is maximal, however the converse does not hold.

We extend the ordering < on a tree T to include its anti-chains: If A
and A' are anti-chains of T9 then A < A' if and only if A φ Ar and for
each t' GA' there exists t G A such that / < tf. If & is a collection of
anti-chains, then an anti-chain C is said to be an upper bound for & if for
each A G&,A<C.

Let T be a tree and let S be a sub-tree of T. S is a dense sub-tree if for
each t E: T there exists s G S with / < s and S is a cofinαl sub-tree if for
each branch b C T9 b Π S is cofinal in b. A cofinal sub-tree is dense but
the converse does not hold.

(When we refer to a level or branch of a sub-tree we mean with
respect to the sub-tree and not to the tree in which it is embedded.)

(If S is a subset of the branch space of a tree Γ, then US' may
contain branches which are not branches of T even if S is closed, thus
when we say that a sub-tree is cofinal in U S we mean only with respect
to those branches which are branches of T.)

LEMMA 3. If S is α cofinal sub-tree of the tree T, then the branch spaces
of S and T are homeomorphic.
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Proof. For each branch b C S, there is a branch φ(b) C T with
b C φ(b) and φ(Z?) is the only branch of T which contains b, since Z? must
be cofinal in φ(b). Clearly φ is a homeomorphism. D

Nyikos has shown that a space is non-archemedian if and only if it is
an ultra-paracompact space with an ortho-base. (A space is ultra-para-
compact if each open cover has a pair-wise disjoint open refinement.) It is
also shown [12, Lemma 1.6] that a space is non-archemedian if and only if
it has a base which is a tree under reverse set inclusion, thus we have:

A space is non-archemedian if and only if it is (densely) embeddable
in the branch space of some tree. We will use this as our definition of
non-archemedian space.

A subset S of a topological space is defined [6, p. 1] as a Gδ(α)-set if S
is the intersection of a collection of open sets having cardinality no more
than ω(a). We will call S a monotone Gδ(a)-set if a is the least ordinal
such that S is the intersection of a collection of open sets well-ordered by
reverse set inclusion and the collection has cardinality ω(a). Clearly, in
the case of a monotone Gδ(α)-set, ω(α) is a regular cardinal and each
non-open Gδ-set is a monotone Gδ(0)-set.

A set S is defined in [15] as finally ω(a)-compact if each open cover of
S contains a subcover of cardinality less than ω(α). A finally ω-compact
set is just a compact set.

The following lemmas concern monotone Gδ(α)-sets and compact
Gδ-sets in non-archemedian spaces.

LEMMA 4A. Suppose S is a nowhere dense (i.e. In Cl S — 0) subset of
the branch space of a tree. If S is a monotone G8(a)-set, then U S contains a
cofinal sub-tree whose branches have the same length and cofinality ω(α) and
conversely if S is closed.

Proof. Suppose S is a monotone Gg(α)-set and let &G(β) (β E ω(a))
be the decreasing sequence of open sets whose intersection is S. For each
β E ω(α), let A(β) be the anti-chain of US' consisting of the minimal
elements t E US such that [t] C G(β), then we have A(β) < Λ ( γ ) for
β E γ so &A(β) (β E ω(α)) is a well-ordered increasing sequence of
covering anti-chains of U S. Since S is nowhere dense, no element of U S
is an upper bound for this collection of anti-chains, hence its union is a
cofinal sub-tree of U S and its branches must have length ω(α).

If S is closed and U S contains a cofinal sub-tree R whose branches
have the same length γ and cofinality ω(a), then let / be a cofinality
function from ω(α) into γ and for each β E ω(«), let G(β) — U[ί]
(t E #(/(/?))) so that S = IΊG(j8)( j8eω(α)) . •
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The following is a well-known lemma which is found in [5, p. 91]:

KONIG'S LEMMA. // T is a tree of length ω and if each level of T is
finite, then T has a branch of length ω.

LEMMA 4B. Suppose S is a nowhere dense subset of the branch space of a
tree, then S is a compact G8set if and only if S is closed and U S contains a
cofinal sub-tree such that each branch has length ω and each level is finite.

PROOF. Suppose 5 is a compact G^-set, then S is a monotone Gδ-set
and by Lemma 4A there exists a cofinal sub-tree R of U S such that each
of its branches has the same length γ and cofinality ω. Let/be a cofinality
function from ω into γ and let R' = U R(f(β)) (β E ω), then R' is also a
cofinal sub-tree of U S, its branches have length ω and since S is compact,
its levels must be finite.

Conversely, suppose S is closed, each branch of U S has length ω and
that each level is finite, then by Lemma 4A, 5 is a Gδ~set and using
Konig's Lemma it is easily seen that each open cover of S is refined by the
cover &[t] (t E L) for some level L of U S , hence S is compact. D

LEMMA 4C. // the branch space of a properly branching tree is finally
ω(a)-compact, then each chain in the tree which is not cofinal in a branch
must have cofinality less than ω(α).

Proof. If the chain c is not cofinal in a branch then there is an
element of the tree which is the least upper bound of c. If the cofinality of
c is not less than ω(α), then there exists an anti-chain in the tree having
ω(a) elements which can be extended to a covering anti-chain since c has
an upper bound. This is clearly impossible if the branch space is finally
(o(α)-compact. D

Suppose X is a space and T is a collection of closed subsets of X
which is a tree when ordered by reverse set inclusion. A branch b of T is
said to converge to x E X if for each open set u containing JC there exists
t E b such that t <Z u. Note that if X is a Hausdorff space, then no branch
converges to two distinct points of X. If for each x E X there exists a
branch of T which converges to x and if each branch of T either converges
to a point of X or has empty intersection, then T is said to be cofinal in X.
If for each x E X and each open u containing x there exists / G Γ such
that / C M , then T is said to be dense in X.

A partition of a space X is a collection of canonical closed sets which
covers X and such that the interiors of two distinct elements do not
intersect.
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THEOREM 2. If X is a paracompact space with a perfectly monotone
ortho-base, then X admits a cofinal tree of canonical closed subsets such that
each level is locally finite-in-itself and each limit level is a pair-wise disjoint
collection of closed-open sets.

Proof. Let B be a perfectly monotone ortho-base for X and let
GH= &U(ά) (a G γ) be the proto-uniformizing family with ordering <B
constructed in Theorem 1. For each a G γ, let a' denote the limit ordinal
and n(a) the finite ordinal such that a = a' + n(a) and let U\a) =
Ul/(α' + / ) ( / ε π ( α ) + 1).

For each x G U £/'(α), let

p(x, a) = Cl[ΠuG U'(a) ( J C G M ) - C I U U G U'(a) (x & u)]

and let P(a) = &p(x, a)(p(x9 a) φ 0 and x G U t/'(α)).For each α £ γ ,
P(α) is a partition of U £/(α') and since U\ά) is locally finite-in-itself,
then so isP(α).

We may not obtain a tree directly from this sequence of partitions,
however, it follows from the construction of % that the union of limit
elements of % is a tree and it is evident from the construction above that
for each α, U P(a + i) (i G ω) is a tree.

For each limit ordinal a and each u G P(a + ω), let c(w) be a branch
of U P(a + i) (i G ω) such that Π C ( M ) C M and then for each a G γ and
p <E P(a) let

- CΠn[(/> - U P(a + ω)) U (J u G P(α + ω) (p G c(iι))].

We now construct a tree Γ of canonical closed subsets of X by
requiring that for each a G γ the α-th level T(a) — &t(p) (p G P(a) and
ί(/?)τ^0). This tree may not be properly branching but it is more
convenient to use when showing cofinality. (Use T = &t(p) (p G UP(a)
(a G γ) and /(/?) 7̂  0) for a properly branching tree.)

We must now show that T is cofinal in X. For each x G X and α G y ,
choose t(x, a) G Γ(α) such that x G ί(jc, a) C ΓU(x, /?) (j8 G α) if it
exists, otherwise let t(x, a) — t(x, 0) = X. &t(x, a) (a G γ) is a branch of
Γ (but perhaps not of length γ) and we must show that this branch
converges to x.

Let v be an open set containing x and recall the construction used in
Lemma 2 where it is shown that the limit elements of % are pair-wise
disjoint. There exists a G γ such that St(;c, U(a)) C v. Let p G P(a + 3)
such that t(p) G Γ(α + 3), x G /(/)) and suppose there exists u G
U(a + ω) such that p G c(w), hence u C t(p) and ^ Π M ^ 0. Let z G p
Π w and assume that t(p) is not a subset of St(x, ί/(α)), that is, there
exists y G u with >> £ St(x, U(a)). Thus we now have points z and 7 with
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y "Φ z and y £ b(z, a + 1). It follows from the construction in Lemma 2
that y & u, contradicting the assumption, hence t(p) C St(jt, U(a)) C v
and the branch St(x, a) (a G γ) converges to x.

Suppose the branch b of T does not converge to a point of X. Let β be
the least ordinal such that b Π T(β) = 0 and for each a G β let x(a) G b
Π Γ(α). Now using the notation of Lemma 2, let B' — &b(x(a), a)
(a G β) C B. Either Γ\B' = 0 or ΓΪ5' is an element t/ of a limit level
Γ(α + ω) of T in which case there is a branch 6' of UP(a' + i) (i G ω)
such that some final segment of b is St(p) (p G b') but c(u) Φ b'. In
either case Πb = 0. D

A continuous function or map is said to be closed if the image of each
closed set is closed. We denote the image of a set H under/by fH, that is,
fH = &f(x) (x G H) and the inverse of / is denoted by / so that

A continuous function from Y onto X is irreducible if no proper
closed subset of Y maps onto X; equivalently, each open subset of Y
contains the pre-image of some point of X.

Suppose Y is a subspace of the branch space of a tree T (a non-ar-
chemedian space) and φ is a closed map from Y onto X. We shall use the
term "generates" to describe each of the following procedures:

(1) If A is an anti-chain in Γ, then A is said to generate the open sets
U[φGA) C YandlnUφ[t](t <ΞA) C X.

(2) If u is open in X, then the anti-chain A consisting only of all
minimal t G T such that [t] C φu is said to be generated by u. u is also
said to generate U[t](t G A) C Y if u generates A.

THEOREM 3. // the regular Hausdorff space X admits a cofinal tree T of
canonical closed sets such that each level of T is locally finite-in-itself and
limit levels are pair-wise disjoint collections of closed-open sets, then X is the
irreducible closed continuous image of a (dense) subspace of the branch space
of T (a non-archemedian space) such that each point pre-image either has
only one branch or is a compact Gδ-set having branches of equal length.

Proof. Let Y be the sub-branch space of T consisting only of all
branches which converge to some point of X and let <f> be the function
from Y to X such that for each y G Y, φ(y) is the point of X to which y
converges. Since T is cofinal in X, φ is onto.

(A) For each x G X, the branches ofφ(x) have the same length.
Supposey, yf G φ(x) and assume that len(y) G len(yf). Let a be the

least ordinal such that yf Π T(a) φ 0 and y Π T(a) = 0 and let β be the
least ordinal such that T(β) Π y φ T(β) Π yf. a is a limit ordinal, since if
not, then y and y' both have an (a — l)-st element which are canonical
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closed sets with disjoint interiors and both contain x; but the (a — l)-st
element of y is {JC}, since it is the last element of y9 a contradiction.

Notice that since the collection T is a tree under ordering by reverse
set inclusion and since T is cofinal in X, each level of T must be a
partition of its union. T(β) Π y and T(β) Π y' are closed sets each
containing x as a boundary point. T(a) Π y' is a closed-open set contain-
ing x and is a subset of Γ(β) Π y', hence In(Γ(j8) Π / ) Π In(Γ(β) Π j>)
7̂  0, which is impossible as noted above and contradicts our assumption.

(B) φ is continuous.
Suppose g is an open subset of X. Since X is regular, for each branch

b E φ g — Uφ(x)(x E g), there exists t(b) E b which is the minimal
element of b that is a subset of g. G = U [t(b)] (b E φ g) is an open set in
the branch space of T. For each x E g , φ ( x ) C G Π Γ and conversely
each branch b E G Π Y must converge to some x E g, hence φ g = G Π 7
is an open set in Y. We have shown that φ preserves open sets and hence
φ is continuous.

(C) φ is irreducible.
We must show that each open set in Y contains φ(x) for some x E X.

Suppose t E Γ, then [t] is a basic open set in the branch space and / is a
canonical closed subset of X. Let x E In t, then φ (x) C [/].

(D) Each point pre-image either has only one branch or is a compact
Gδ-set.

Suppose x E X and φ(x) has more than one branch. We have already
shown that the branches of φ(x) have the same length. The ordinal
len U φ(x) cannot contain a cofinal sequence of limit ordinals, since the
limit levels of T are pair-wise disjoint collections of closed-open sets,
hence each branch of φ (x) has a final segment isomorphic to ω.

Let T(x) be the union of all final ω-segments of branches of U φ(x),
then T(x) is a tree of length ω with finite levels and is cofinal in U φ(x).

Suppose b is a branch of T and that b is not an element of φ(x), then
either b converges to a point other than x or Π b = 0, and in either case
there exists an element t G b which does not contain x, that is, [t] Π φ(x)
— 0, hence <f>(x) is closed in the branch space of T. Further, since φ is
irreducible, φ(x) is nowhere dense and now, using Lemma 4B, φ(x) is a
compact Gδ-set.

(E) φ is a closed map.
Suppose His si closed subset of Yand x E l i s not an element of φH.

φ(x) is compact and does not intersect the closure of H in the branch
space of T9 hence there exists a finite level L of U φ(x), a sub-level of T,
such that for each t E L, [/] Π Cl H = 0.

Recall that the tree Γ is a collection of canonical closed subsets of X,
thus In U /(/ E L) is an open set containing x which does not intersect
φH, hence φH is closed and φ is a closed map. D
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The following definitions are necessary for the next theorem. Suppose
φ is a closed map from a sub-branch space of the tree T onto the space X.
For each x E X, the sub-tree Uφ(jc) is denoted simply by T(x) and it is
understood that a covering anti-chain of T(x) must be a subset of T(x).
For each anti-chain A of Γ, let [A] (or [A, φ] if necessary for clarity)
denote the set consisting only of all x E X such that A is a covering
anti-chain of T(x). Note that this notation is consistent with the notation
[/] introduced earlier.

Two branches of a tree are said to split at t if [t] contains both
branches but no element following t is an element of both branches. For
each x E l , those elements of T(x) at which two branches of T{x) split
are called the splitting elements of T(x).

THEOREM 4. // X is the {irreducible) closed continuous image of a
sub-branch space of a tree {a non-archemedian space) such that for each
point of X there is an ordinal a such that the pre-image of this point is a
finally ω(a)-compact monotone Gδ(a)~set, then X is a paracompact space
with a perfectly monotone ortho-base.

Proof. That X is paracompact follows from the result of Michael [8]
that the closed continuous image of a paracompact space is paracompact.

Let T be a tree whose branch space contains the pre-image of X where
φ is the map with the specified properties including the assumption that it
is irreducible. It will be a consequence of Lemma 5 and the hereditary
nature of proto-metrizability discussed below that irreducibility is not
necessary here.

We will now construct, for each x E X, a sequence S(x) of covering
anti-chains of T(x). Note that the α-th element of S(x) will be denoted by
S(x, α) and this may not be the α-th level of the tree US^JC). The
construction is as follows.

(1) Since φ is irreducible, it follows from Lemma 4A that T(x) admits
a cofinal sub-tree S'(x) whose branches have length χ(x).

(2) Let S"(x) be the set of splitting elements of T(x).S"(x) may not
be cofinal in T(x) and may be empty. It is a consequence of Lemma 4C
that no branch of S"'(JC) has length greater than χ(x).

(3) Now construct, inductively, a cofinal sub-tree S""(x) of T(x) by
extending the (perhaps empty) levels of S"(x) to covering anti-chains of
T(x) so that for each α E χ(x): (a) S"(x, a) C S""(x, α); (b) each
element of S'"(x, a) - S"(x, a) follows S"(x, a); and (c) α E β implies
that S""(JC, a) < S'"(x, β) and S'"(x, a) Π S'"(x, β) = 0.

(4) The anti-chain sequence, S(x), is now constructed so that for each
a E χ(x) either

(a) if [S"'(JC, a)] = {*}, then S(x, a) = S'"(x, a); or
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(b) if [S"'(x, a)] contains at least two points, then choose x' E
\S"\x9 a)] - {x}. Let S(x, a) contain t if and only if / E S"(JC, a) or
there exists a branch b of T(x) such that b contains no element of
S"'(JC, α) and t is the least element of b which is not an element of T(xf).

We now construct a base for X. For each x E X and α E χ(jc), let
6(x, α) = In Uφ[ί] (t E S(x, α)) and let B = S6(x, α) ( i G I and α E
χ(jc)). Each open set containing x contains an open set generated by a
covering anti-chain A of T(x). Since φ(x) is finally χ(x)-compact, A has
less than χ(x) elements, so there exist anti-chains S'(x9 a) and (perhaps)
S"(x9 a) with A < S'(x9 a) and A < S"(x9 a)9 and it follows from (3) and
(4) in the construction of S(x) that A < S(x9 a), hence B is a base for X.

We must now show that B is a perfectly monotone ortho-base for X.
Let 5 ' be a perfectly decreasing subset of B and suppose there exists
x E Π δ ' — In Π J5'. It remains only to show that Br contains a base at
x.

Each element of Bf is of the form b(y9 β) which is generated by an
anti-chain of the form S(y, β)9 so we let Y = &y(b(y, β) E B') and let
& = £>S{y, β) (b(y, β) E B'). Since B' is perfectly decreasing and φ is
irreducible, 6£ is a sequence of anti-chains well-ordered by < and we let Y
have the corresponding well-ordering.

Since x £ In Π B\ the anti-chain sequence & must be cofinal in some
branch bf of T(x)9 that is, &b' Π A {A E $) is cofinal in //. This holds for
each boundary point of Π B' and with the construction of B implies

(A) C\B' can have at most one boundary point, which is x and x is a
limit point of each cofinal sub-sequence of Y.

Let U — &t (t is minimal with respect to the property that for each
A E &9 A <{/}). Clearly, if U is not empty, then U is an anti-chain and
Uφ[t] (/ E U) = Γ)B\ thus U ¥= 0 implies that B' does not contain a
base at x and since φ is a closed map the converse also holds. U^O also
implies that some final segment of Y must consist only of points distinct
from x.

Under the assumption that U is not empty, we prove the following
statements.

(B) For each u E U, there exists a final segment Yf of Y such that for
eachy E Y\ [u] contains a branch ofφ(y).

Let u E U. If there exists A E & with u E A, we are finished. Let S be
an anti-chain of T(x) no element of which precedes u. Assume that u does
not have the required property, then there exists a cofinal subsequence Y"
of Y such that for eachj> E Y"\ [u] contains no branch of φ(y) and such
that Y" is a subset of the open set generated by S.
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It follows from the definition of U that for each t < u there exists
A G & and associated y E Y" such that some branch of φ(y) contains /
but none contain u. Since S must cover φ(y), there exists a branch of
T(x) having this property also. Since A is a χ(x)-sequence, this implies
that u is preceded by a χ(x)-sequence of splitting elements of T(x) which
contradicts Lemma 4C.

(C) U is a maximal {but non-covering) anti-chain of T(x).
First we show that U C T(x). If there exists u E U - T(x), then φ[u]

is a closed set not containing JC and it follows from (B) that there is a final
segment of Y which is a subset of φ[u] but not having x a s a limit point,
contradicting (A).

If U is not maximal, then there exists / E T(x) such that U U {/} is
an anti-chain. Since the anti-chains in & must cover T{x), either t follows
some element of U (which is not the case here) or & is cofinal with each
branch of T(x) which contains t, thus some final segment of Y consists of
boundary points of Γ)B\ Since x is the only boundary point of Π ΰ ' , the
construction of B implies that Bf contains a base at x, contradicting the
assumption that U is not empty. U is non-covering due to the existence of
the branch V.

(D) Some final segment of & consists of anti-chains of T(x).
Assume to the contrary that there exists a cofinal subsequence 6B' of &

having the property that for each A E <$', A is not a subset of T(x), then
for each A E (£', there exists / E A such that (In Π B') Π φ[t] = 0 since
U C T(x). It follows from (C) that the cofinal subsequence T of Y
associated with &' must have a final segment of boundary points of Γ)B\
again contradicting the assumption that U is not empty.

(E) For each β E χ(x), there is a β-sequence V of splitting elements of
T(x) and a final segment Y' of Y such that for each y E Y\ V is a sequence
of splitting elements of T(y).

It follows from the construction of b' that S'\x) is cofinal in b\ so let
V(β) = S(b' Π S"(x, a)) (a E β). Note that V(0) = 0, so statement (E)
holds for β = 0, F(0) and T = Y.

If β is a limit ordinal and for each a E /?, statement (E) holds for
F(α) and final segment Y'(a) of Y where the anti-chains associated with
Y'{a) satisfy (D), then the statement holds for V(β) = U V(a) (a E β)
and final segment F(j8) = ΓΊ F(α) (α E β).

Suppose the statement holds for β, V(β) and Y'(β) where the
anti-chains associated with Y'(β) satisfy (D). Let s be the least splitting
element of T{x) in b' not contained in V(β), then V(β + 1) = V(β) U
{5}. There exists a branch b of T(x) and w E £/ such that Z> and Z/ split at
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s and u E b. Let Y"(β + 1) be a final segment of Y satisfying statement
(B) for u and such that for each j> E Y"{β + 1), s precedes an element of
the associated anti-chain. The statement now holds for V(β + 1) and
γ>(β + i) = γ>(β) π Y"(β + 1).

(F) For each u E U, there exists r < u and a final segment Yr of Y such
that for each y E Yf there is exactly one branch ofφ(y) which contains r.

Suppose « E ί / , then u E T{x). Let a be the length of the sequence of
splitting elements of T(x) which precede u and let β be an ordinal with
a E β.

Let &' be a final segment of & and Yf the associated final segment of
Y such that (B) holds for w, (D) holds for &' and (E) holds for Y' and β.

It follows from the construction of U and (3a) in the construction of
B that if y E Y\ then no branch of φ(y) which contains u can contain a
splitting element of T(y) which follows w, since T(y) contains a β-se-
quence of splitting elements preceding the anti-chain associated with y. In
fact, (3c) implies that if r is the least upper bound of the α-sequence, then
u φ r, so r < u and r has the desired properties.

We are now ready to use these statements to contradict U Φ 0. Let
« G ί / and let R be a covering anti-chain of T(x) such that u precedes
some element of R. Let &' be a final segment of 6£, Y' the associated final
segment of Y and r <u such that statements (B), (D) and (F) hold and r
precedes an element of each anti-chain in (£'.

As a consequence of statement (D), for each A E &', [A] contains
both x and the associated y E Y\ Since we may assume y φ x9 (4a) in the
construction of B cannot apply to A, hence (4b) must apply, so for each
A E &', there exists Z(A) E X such that some branch of φ(Z(A)) con-
tains r but not u. Statement (F) implies that this branch of Z(A) contains
no element of i?, hence, since φ is closed, the open set geneated by R
contains x but no point of &Z(A) (A & (£')•

But it is also true, since & is cofinal in b\ that for each covering
anti-chain R of T(x) (which generates an open set containing JC), there
exists a final segment <$," of Θ,' such that for each A E 6£" there is a
branch of φ(Z(A)) which contains R Π b'9 hence each open set contain-
ing x must contain &Z(A) (A E 6ί") since φ is closed. Under the
assumption that ί/^Owe have now obtained a contradiction, hence Br

contains a base at x and B is a perfectly monotone ortho-base. D

THEOREM 5. If X is the (irreducible) closed continuous image of a
sub-branch space of tree (a non-archemedian space) such that each point
pre-image either has only one branch or is a compact Gδ-set, then X is
proto-metrizable.
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Proof. We may assume that the map is irreducible since if not, then
consider an ultra-filter F of proper closed sub-sets of the space on which
the map is defined and whose image is X. Since point pre-images are
compact, Π F must intersect each point pre-image and the restriction of
the map to Π F is irreducible.

Using the previous theorem, X is a paracompact space with a per-
fectly monotone ortho-base, and now using Theorems 1, 2 and 3 we can
obtain a tree T and an irreducible closed map φ from a sub-branch space
of T onto X such that each point pre-image either has only one branch or
is a compact Gδ-set having branches of equal length.

Here we generate basic open sets from sub-levels of T, thus for each
x E X, let b(x, a) = In U φ[t] (t E T(x, a)) where T(x, a) = T(x) Π
Γ(α), and let B = &b(x, a) (x E X and a E len T(x)).

If B' C 5 and * E Π 5 r - In Π £', then it follows from statement
(A) in the proof of Theorem 4, the fact that φ is closed and the generation
of basic open sets from sublevels, that Br contains a base at x without
requiring that Br be totally ordered. Hence B is an ortho-base and X is
proto-metrizable. D

Using the fact that a non-archemedian space is the sub-branch space
of a tree, it is easy to see that the property of being non-archemedian is
hereditary. Using this with the characterization of proto-metrizable spaces
obtained in Theorem 5, it is easily seen, by restricting the domain of the
map, that proto-metrizability is hereditary and thus proto-metrizable
spaces are hereditarily paracompact. This is a result of Gruenhage and
Zenor [3, Lemma 2.2] and is also stated by Nyikos [12].

The hereditary nature of proto-metrizability and the following lemma
allow us to remove the condition of irreducibility from Theorem 4. It does
not, however, imply that the map used in Theorem 4 may be made
irreducible by restricting its domain, as was done in Theorem 5.

LEMMA 5. Suppose φ is a closed map from the sub-branch space Y of the
tree T onto X, then there exists an irreducible closed map φ' from the
sub-branch space Ύr of a tree Tf onto Xr and X' contains a closed nowhere
dense copy of X. Further, if the point pre-images ofφ are finally ω(a)-com-
pact monotone Gδ(a)-sets, then so are the point pre-images ofφ'.

Proof. Since an isolated branch of a tree may be extended without
changing the topology of the branch space, we shall assume that each
branch of T is isomorphic to a limit ordinal. Of course T may no longer be
a properly branching tree. We shall also assume that point pre-images
under φ are nowhere dense.
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Let < be the ordering on Γ, let T = TX {0,1} and extend the order
< to T so that: (a) (ί,0) < (ί',0) if and only if / < t'; (b) (/,0) < (ί, 1)
for each / E T; and (c) for each /, ί ' G Γ neither (ί, 1) < (t\ 1) nor
( ί ' , l ) < ( U ) .

Notice that the branch space of T contains a copy of Y consisting of
the branches of T X {0} identified with the branches of Y. Y' is the
sub-branch space of V obtained by taking the union of Y and the set of
all branches with end-point in T X {1}. Y is now a closed nowhere dense
subset of Y'.

φ' is the map defined on Y' so that its restriction to Y is φ and its
restriction to T — 7is the identity and X' = X U (Y - Y) where a set is
open in X' if and only if it is the image under φ' of an open set in Yr

whose intersection with X is either open in X or is empty. It follows that X
is a closed nowhere dense subset of X' and that φ' is a closed irreducible
map.

Further, under the assumption that point pre-images under φ are
nowhere dense, if point pre-images of φ are finally ω(α)-compact mono-
tone Gg(α)-sets, then φ' retains this property. This result remains valid
even when point pre-images are not nowhere dense since, if necessary, we
can restrict the domain of φ so that it is defined only at those points which
are not in the interior of some point pre-image or in case of an isolated
point choose a point from its pre-image. Since the images of φ and of this
restriction are homeomorphic, we can replace φ with this restriction of φ
in the above proof. D

We summarize the previous results with:

THEOREM 6. The following are equivalent for a regular Hausdorff space
X:

(a) X is proto-metrizable;
(b) X is a paracompact space with an ortho-base;
(c) X is a paracompact space with a (perfectly) monotone ortho-base;
(d) X admits a proto-uniformizing family well-ordered by refinement

(such that each element is a locally finite-in-itself collection of canonical open
sets and each limit element is a pair-wise disjoint collection of closed open
sets);

(e) X admits a cofinal tree of canonical closed subsets such that each
level is locally finite-in-itself and limit levels are pair-wise disjoint collections
of closed-open sets;

(f) X is the (irreducible) closed continuous image of a non-archemedian
space such that for each point of X there is an ordinal a such that the
pre-image of the point is a finally ω(a)-compact monotone G8(a)-set;
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(g) X is the {irreducible) closed continuous image of a non-archemedian
space such that each point pre-image is either a point or a compact G8-set
(having branches of equal length).

IV. M-normality. Denote by M(X) the set of all ordered pairs
(H, K) of disjoint closed subsets of the space X. A function S from M(X)
to the open subsets of X is called a normality operator if for each
(H, K) G M(X), H C S(H, K) C Cl S(H, K) C X - K. Clearly, X is
normal if and only if it admits a normality operator.

A normality operator S may have the following properties:
(1) S is canonical if for each (H, K) G M(X\ S(H, K) is canonical;
(2) S is monotone if for each (H, K), (H\ K') E M(X), H' C H and

tf C JΓ implies S(#', K') C S(i/, # ) ;
(3) S is strongly monotone if for each (H, K), (H\ K')

# ' C S(#, K) and # C iΓ implies that S(H'9 K') C S(H9 K);
(4) S is symmetric if for each (//, K) G M(X), S(/ί? if) Π

- 0 ;
(5) S is rfjwig/y symmetric if for each (H, K) <Ξ M(X), dS(H9K)Π

ClS(K9H) = 0.
A space which admits a normality operator which is:
(1) strongly monotone and canonical is said to be Mλ-normal\
(2) strongly monotone is said to be M2-normal; and
(3) monotone is said to be M3-normal or monotonicaϊly normal.
The normality operator associated with an M-normal space (/ =

1,2,3) is called an MΓnormality operator and an M3-normality operator is
also called a monotone normality operator.

The term monotonically normal was introduced by Zenor [16] and the
definitions of Mx and M2-normality are also due to Zenor. It is shown in
[4] that a montonically normal space admits a symmetric monotone
normality operator.

THEOREM 7. The (irreducible) closed continuous image of a non-archem-
edian space admits a strongly symmetric M2(Mx)-normality operator.

Proof. Let φ be an irreducible closed map from the non-archemedian
space Y onto the space X and let T be a tree whose branch space Z
contains Y.

Suppose H and K are disjoint closed subsets of X, then φ H and φ K
are closed disjoint subsets of Y although C\zφH and C\zφKmay not be
disjoint.

For each branchz G φH, there exists t G z such that [/] Π C\zφK —
0. The collection of such / which are minimal in T is an anti-chain which
generates a disjoint cover oίφH and is a collection of closed-open sets.
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Denote by σ(H, K) the largest open subset of the union of this cover
such that φ H C σ(i/, K) and φσ(//, K) is open in X. σ(K, H) denotes a
similar set for φK. The basis £[/] (/ E Γ) is a rank-1 basis and as a
consequence we have σ(H9 K) Π σ(K, H) — 0. Clearly, φσ is a normality
operator for JΓ and we show the following:

(A) φσ is canonical.
Since φσ(H, K) is open, it is a subset of the closure of its interior.

Assume the existence of x E InClφσ(/f, K) — φσ(H, K), then each
open set containing x in its closure must intersect φσ(H, K). φ(x) is not
covered by the collection from which we generated σ(/f, K), since if it
were, then we would have x E φσ(if, K), thus there exists / G Γ such that
[t] intersects no element of this collection and [t] Π φ(x) ^ 0. In case φ is
irreducible, φ[t] has a non-empty interior with x a boundary point, but
Inφ[r] Π φσ(/f, AT) = 0, a contradiction. Notice that this is the only use
made of irreducibility in this proof. In the absence of irreducibility, we
obtain M2 instead of Mλ -normality.

(B) φσ is strongly monotone.
Suppose ( # , K)9(H\ K') E M(X) with/Γ C φσ(#, K) zrndK C K'.

Note that φH' C σ(H, K) since if not then some point of H' must be in
the boundary of φσ(H, K).

The facts that Z has a rank-1 base and that K C Kr together imply
that the cover of φ H' from which o{H\ K') is constructed is a refinement
of the cover from which σ(H, K) was constructed, since these covers use
minimal elements of T. It follows that σ(H', K') C σ(H, K), so we have
φσ(H\ K') C φσ(#, K).

We have now shown that φσ is a symmetric M2(Mι)-normality
operator, unfortunately φσ is not necessarily strongly symmetric. We will
now construct from φσ an M2(Mλ)-normality operator which is strongly
symmetric.

Let S(H,K) = φσ(H,Cl φσ(#, H)). Clearly, S is a (canoncial and)
strongly symmetric normality operator and we must now show that it is
strongly monotone.

Suppose H' C S(H, K) and K C K'. Notice that S(H', K') is ob-
tained by using φσ to separate H' from C l φ σ ^ ' , H') and that we will
then have S(H\ K') C S(H, K), the strong monotone property, whenever
it holds that φσ(K, H) C φσ(K\ H').

We will now show that this does indeed hold. Recall that we obtained
σ(K, H) from a cover of φK and this cover was constructed from the
minimal elements / E T such that [t] Π Clz φ H — 0. Suppose / is used to
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construct the cover for φ K. Since K C Kf and φ H' C σ(i/, K), it follows
that [/] has the property that it intersects K' and that it does not intersect
Cl z φ H\ thus t or some element of T which precedes t will be used in the
construction of the cover of Kr from which we obtain σ(K\ H'). This
implies that σ(K, H) C σ(K\ Hf) and thus φσ(K, H) C φσ(K\ H'). D

COROLLARY 1. Each proto-metrizahle space admits a strongly symmetric
Mi-normality operator.

Lasnev [7] has investigated the closed continuous images of metrizable
spaces and such spaces now bear his name. Using [7, Theorem 4], each
Lasnev space is the irreducible closed continuous image of some metriz-
able non-archemedian space and we have:

COROLLARY 2. Each Lasnev space admits a strongly symmetric M Γ

normality operator.

V. Examples. We have previously characterized a proto-metrizable
space as the image of a non-archemedian space under a closed map having
the property that each point pre-image is either a point or a compact
Gδ-set. This property can be weakened to obtain the following classes of
space:

(1) The class % of spaces which are the image of a non-archemedian
space under a closed map such that point pre-images are compact. (The
perfect images of non-archemedian spaces.)

(2) The class § of spaces which are the image of a non-archemedian
space under a closed map such that each point pre-image is a monotone
Gδ( α)-set for some a.

(3) The class β of spaces which are the closed continuous image of a
non-archemedian space.

It is the purpose of this section to give examples showing that these
classes of spaces are disjoint from the class of proto-metrizable spaces and
from each other.

First we establish that the class of proto-metrizable spaces coincides
with the intersection of % and %. If X is a member of S, then each point
pre-image is a monotone Gδ(α)-set for some a. If X is also a member of
X, that is, if X can be represented as the perfect image of a non-archem-
edian space, then the inverse of this map preserves monotone <7δ(α)-sets
and thus by Theorem 6(f), X is proto-metrizable.

EXAMPLE 1. Let T be the tree having exactly two branches, b(0) of
length ω and b(\) of length ω(l) and let φ be the map which identifies
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these two branches so that X = {x} = {φ(b(0))} = {φ(b(l))}. Let T and
φr be the tree and map constructed from T and φ using the techniques of
Lemma 5.

The image Xf of the branch space of T under the map φ' clearly
belongs to the class % and we show that X' does not have an ortho-base,
hence is not proto-metrizable and thus cannot belong to §.

We choose from a basis for Xr a countable perfectly decreasing
subcollection such that x is an element of its intersection and each
element contains a branch with endpoint in b(0) X {1} which the next
element does not contain. Since no countable set is cofinal in ω(l), the
intersection of this collection must have non-empty interior, but the
intersection is not open since it contains x as a boundary point. It follows
that Xr has no ortho-base.

EXAMPLE 2. Let T be the disjoint union of K many Cantor trees (each
branch has length ω and each level is finite), where K is an infinite
cardinal. Let H = &h(a) (a E /c) be a set of branches, one from each of
the Cantor trees, so that if is a discrete set of cardinality K.

Let φ be the map such that H is the pre-image of the point x in the
image space X and is the identity elsewhere. Clearly X is a member of the
class §.

We show that X is not a member of % by showing that it does not
have an ortho-base, hence is not proto-metrizable. Assume that X has an
ortho-base B and then, since {x} is a Gg-set, we construct a countable
subcollection Br — &b(n) (n E co) of B such that for each « E ω ,
b(n + 1) C b(n) and ΠB' = {x}.

For each a E K, let t(a) be the minimal element of h(a) such that
φ[t(a)] C b(n), where a ~ a' + n, a! is a limit ordinal and n G ω. Our
assumption that B is an ortho-base implies that Br must contain a base at
x, but this is not the case, since InCl U φ[t(a)] (a E /c) is an open set
containing x but containing no element of Br as a subset.

EXAMPLE 3. Let T2 and H2 be the tree and closed set constructed in
Example 2 and let Tλ be the sub-tree of the tree in Example 1 consisting
only of all branches of length greater that ω. Let Γbe the disjoint union of
these trees, let H consist of H2 and the ω(l)-branch, and let φ be the map
defined on the branch space of T whose image X contains {x} — φH.

Denote by Xλ and X2 respectively the images under φ of the branch
spaces of Tλ and Γ2, then X = Xλ U X2 and {x} = Xx Π X2.

Evidently X is not in § and neither is X in % since if we assume that it
is, then X is the perfect image of some non-archemedian space implying
that X2 is in % which we have already shown not to be the case.
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