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LINEAR TRANSFORMATIONS THAT PRESERVE
THE NILPOTENT MATRICES

PETER BOTTA, STEPHEN PIERCE AND WILLIAM WATKINS

Let si „ be the algebra of nX n matrices with zero trace and entries
in a field with at least n elements. Let 91 be the set of nilpotent matrices.
The main result in this paper is that the group of nonsingular linear
transformations L on slM such that L(9l ) = 91 is generated by the inner
automorphisms: X-*S~ιXS; the maps: X -> aX, for a ¥= 0; and the
map: X -> X* that sends a matrix X to its transpose.

Introduction. Let Mn be the algebra ofnXn matrices over a field K
and let S be an algebraic set in Mn. There are a number of theorems
characterizing the linear maps L on Mn that preserve S, i.e. L(S) C S. For
example there are results for {X: d e t X = 0 } by Dieudonne [4], {X:
rank X< 1} by Jacob [8] and Marcus and Moyls [10], the orthogonal
group by Pierce and Botta [2] and other linear groups by Dixon [5]. In
every instance the transformations L that preserve these various algebraic
sets have one of these two forms:

(1) L{X)=PXQ, for all X

or

(2) L(X) = PX'Q9 for all X

where P and Q are in Mn. There are conditions on P and Q which depend
on the algebraic set S. For example if S — {X: det X — 0} and L is
nonsingular then P and Q are nonsingular; if S is the orthogonal group
then PQ = / and P must be a scalar multiple of a matrix in the
orthogonal group over the algebraic closure of K. For a good survey of
further results of this type see Marcus [9].

In this paper we characterize the nonsingular linear transformations L
that preserve the set 91 of nilpotent matrices. Since the linear span of 91 is
the space slw of matrices with trace zero, we may as well assume that L is a
transformation on slrt. (In order to see that % spans slrt, let Etj be the
matrix whose only nonzero entry is a 1 in position (i, j). The nilpotent
matrices EtJ and Eu + Etj — Ejt — EJJ for / φj span ύn.)

Actually we characterize all nonsingular semilinear mappings that
preserve nilpotence. The main theorem can be extended to matrices with
entries from an integral domain. The extension follows from a modifica-
tion of a result of Chevalley [3, p. 104, Theoreme 3].
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THEOREM. Let n > 3, K be a field with at least n elements and suppose
that L is a nonsingular linear transformation on ύn such that L(9l) C 91.
Then L either has form (1) or (2), where PQ is a non-zero scalar matrix.

Without the assumption that L is nonsingular the theorem is false.
Any map whose image is contained in the algebra % of the strictly upper
triangular matrices preserves nilpotence. The proof of the theorem de-
pends on a result of Gerstenhaber about maximal spaces of nilpotent
matrices. We also use some elementary algebraic geometry and the funda-
mental theorem of projective geometry [l,p. 88, Theorem 2.26].

LEMMA 1 (Gerstenhaber [6]). Suppose K has at least n elements and 911
is a space of nilpotent matrices. Then dim 91L < n{n — l)/2. // dim 9IL =
n(n — l)/2, then there exists a non-singular matrix S such that 911 =
S~λGlLS, where % is the algebra of strictly upper triangular matrices.
Moreover, any matrix of nilindex n is contained in exactly one maximal
nilpotent algebra.

Tangent Spaces. Let K[X] = K[Xιl9...9Xnn] be the ring of poly-
nomials in n2 variables with coefficients in K. For r= 1,2,...,«, let
Er(X) E K[X] be the rth elementary symmetric function of the matrix
X — (Xij), i.e. Er(X) is the sum of all principal r X r subdeterminants of
X. We let / be the ideal in K[X] generated by EX(X),.. .,En(X) and
rad J — {F E K[X\. Fk E / for some positive integer k). Clearly we
have 91 = [A E Mn: F(A) = 0 for all F E /}. If A E 91 then

= 0 f o r a l l ^ E /

= 0 for all F E rad /

GMn: ^{A + tB)

and

= S{BGMn:^(A + tB)

Both of these are vector spaces and the second is the usual tangent space
at the point A of the algebraic set 91. Further, the second is a subspace of
the first.

If A and B belong to 91 and are similar then their tangent spaces
defined above are related by the appropriate similarity. Further note that
C E tan(7, A) if and only if (d/dt)Er(A + tC) | f = 0 = 0 for all r =
1,2,... ,w. If A E 91 is of nilindex w, then, by taking A into upper Jordan
canonical form, one sees that the equations for X E tan(/, A) are, up to a
similarity,

n-j

0 = V j , # = 1 2 n

i = 0
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Therefore dim tan(/, A) = n2 — n. Since / is generated by n polynomials,
if N is of nilindex n we have [7, p. 28, 37]

n2 - n< dim 91 < dim tan(rad /, N) < dimtan(/, N) = n2 - n.

So if N is of nilindex n then tan(rad /, N) — tan(/, N).

LEMMA 2. If A, B E 91 are both of nilindex n then AB = BA if and only
if tan(rad /, A) = tan(rad /, B).

Proof. A is of nilindex n so its minimal and characteristic polynomials
are equal. Therefore, if AB — BA, then B is a polynomial in A. By the
above remarks, we may assume that

0 1 0
0 0 1
0 0 0

A —

0 0 0
0 0 0

so

0 ax a2

0 0 ax

0 0 0

0 0 0

0 0 0

ιn-\

an-2

ιn-3

0

where ai E K. Since B is of nilindex w, aλ Φ 0. A direct computation
shows that

tX)
r = 0

Y

Hence the equation for B arising from En is Xnλ — 0, which is the same as
for A. One has that

-Er(B + tX) — „#•—l

r=o

r—\ n—j

ΔΛ AJ Zί
j=\ i=0
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for suitable constants Aj depending on α,,...,αΛ_ 1. By induction, the
equation for B arising from Er is

7=0

and since ax φ 0 this is the same as foryί. Since tan(/, A) — tan(rad /, A)
the results follows.

On the other hand, suppose tan(rad /, A) = tan(rad /, B). We may
assume A is as above. Let Eέj be the matrix with 1 in the (/, j) position
and zeros elsewhere. Then

EΊ E tan(rad /, A), i >j\

and

Eβ - EJ+U+X E tan(rad / , A),

Writing B — (6/ y ), we have

=biJ, if i>j,
dt t=o

-E2{B + t{Eji -
dt t=0

= ± (bu - if i < /.

Therefore btj — 0 if i >j and b^ = bi+ι y + 1 if i <j\ and B is a polynomial
in A.

LEMMA 3. If L: sln -> sln is a nonsingular linear transformation with the
property that L(%) = 91, and A E 91, then L(tan(rad /, 4̂)) =
tan(rad/,

Proof. The map L: K[X] -> K[X] defined by L(f)(A) = f(L(A)) is
a ΛΓ-algebra homomorphism. Since L is nonsingular and L(9L) = 91 and
rad / = {/ E ϋΓ[X]: /(TV) = 0, for all N E 91}, we have L(rad /) =
rad /. Thus

tan(rad /, L(A)) =

= \L(C) e

tB)
t=o

for all /E rad/

+ tL(C)) for all/ E rad/}
ί=o J

= 0 for all/E rad/
t=0

= L(tan(rad/,
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Proof of theorem. First we observe that L(9l) = 91. This follows
from Lemma 1 of Dixon [5] and the fact that L is nonsingular.

We now show that L preserves nilindex n. If A E 91 and rank A < n
— 2, then A kills two linearly independent vectors v, w. Let 91119 91t2 be
maximal nilpotent algebras containing A and killing t), w respectively.
Every maximal nilpotent algebra kills exactly one line, so C31t1 φ (3H2. By
Lemma 1, L maps maximal nilpotent algebras to maximal nilpotent
algebras and again by lemma 1, L preserves the matrices of nilindex n.

Now we show that if A E 91 has rank one, then so does L(A). Let U
be the unit auxiliary matrix El2 + * +En_ x n.

First note that the only members of % which commute with U and
El2 are multiples of Eλn. Thus the centre of any maximal nilpotent algebra
is one-dimensional and is generated by a rank one matrix.

Let A E 91 have rank one. Then for some nonsingular 5, S~ιAS — E]n.
Let 9H = S%S~ι. Then A generates the centre of 9H. Let V E 9H have
nilindex n. Then V and A + V have nilindex « and commute. It follows
from Lemmas 2 and 3 that L(A + V) commutes with L(V). Hence L(A)
commutes with L(V). Since the nilindex n matrices in 911 generate 9H,
L(A) is in the centre of the maximal nilpotent algebra L(9IL). Hence
L{A) has rank one.

We next define two bijections on the lines (through the origin) of Kn

and use the fundamental theorem of projective geometry. For each line
(v) E Kn, define two n — 1 dimensional subspaces of 91 by

M(Ό) = { X E 9 l | I m X = <t)>},

M\O) = {X' I XEM(v)}.

We will show that L(M(v)) = M(w) or M\w) and L(M\υ)) = Af(w')
or Af^w') for some w, wr E Kn. The bijections will be φ(v) = w and
β(ϋ) = w'.

We note a few facts about M(t;). Any nonzero member of M(v) has
rank one. If v, w E Kn, and are nonzero, then M(υ) and M(w) are
conjugate, and if w — Aυ, A nonsingular, then M(w) = AM(υ)A~]. In
tensor notation, M(υ) — υ ® υ1- and M\υ) — v1- ®υ. (Here, ± means
orthogonal complement with respect to the dot product.) It is easily
verified that M(u) Π M(υ) — M(u) — M(υ) if u and υ are linearly de-
pendent and 0 otherwise, and that M(u) Π M^v) — (u ® v) if u v = 0
and is 0 otherwise. Finally, observe that any n — 1 dimensional subspace
of 91 with all of its nonzero matrices having rank one must be anM(ϋ) or
an M\υ). It follows that for v GKn, there is a w E Kn such that
L(M(v)) = M(w) or M\w).

Suppose we have v9 w E Kn with L(M(v)) = M(υf) and L(M(w)) —
M\w'). Since n > 3, pick w orthogonal to υ and w. Then M(ϋ) Π M\u)
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and M(w) Π M\ύ) are one dimensional. If L{M\u)) = M{u') then
M(u') Π M(v') = L{M\u) Π M(υ)) has dimension 1; which is impossi-
ble, as M(u') Π M(v') has dimension 0 or n - 1 > 2. If L(M'(w)) =
M'(w')> we reach a similar contradiction. A similar argument holds when
we examine the images of M\υ) and M\w). Thus, by replacing L with
the map X -* L(XY if necessary, we may assume that for any nonzero
v E ϋΓ", L(M(v)) - M(w) and L(M'O)) = M\u) for appropriate M, W
(ΞKn.

Thus we define two maps φ, θ induced by L on the lines of Kn. We
haveL(M(t;)) = M(φ(v)) andL{M\υ)) = M'(0(t;)) fort; E if".

Since L(9l) = 91, L"1 also preserves nilpotence and hence φ and θ
are bijections on the lines of Kn.

Now we show that φ and θ preserve coplanarity of lines in Kn and
thus satisfy the hypothesis of the fundamental theorem of projective
geometry. Let {uλ), (u2), (u3) be three distinct coplanar lines in Kn.
Then

) + M(u2) + M(u3))

= dim L(M(ux) + M(u2) + M(u3))

= dim(M(φ(Wl)) + M(φ(u2))

If ψ(ux), ψ(u2), φ(u3) are linearly independent then

dim(M(φ(ux)) + M(φ(u2)) + M(φ(u3))) = 3n - 3

and this is impossible since n > 3. Thus φ(t/!), φ(w2)? φ(w3) are coplanar
and ψ satisfies the hypothesis of the fundamental theorem of projective
geometry. So does θ. Thus there exist semilinear maps S and T on Kn such
that φ(u) = (Su) and 0(w) = (Tu), for all nonzero w in Kn.

There are hnear maps P and β on Kn and automoφhisms σ and T on
ίΓ such that Sυ — P(σv) and 7t> = Q(τv). (The automoφhisms act com-
ponentwise.) Then

L(M(υ)) = M(Pσi)) = PM{OO)P~X

and

L(M r(t;)) - M'(βτt ) = β^M' ί rϋJβ ' .

Suppose u - v = 0. Then dim(M(w) Π Af'(υ)) = 1 and so

dim(M(Pσu) Π M'iQτv)) = 1
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and thus (Pσu) (Qτv) = 0, i.e.,

u - σ-^P'Qτv) = 0.

Let R be the semilinear map defined by

Rv = σ-χ(P'Qτv).

Then u υ = 0 implies u Rυ — 0. Thus R — dl is a scalar map, σ = T
and P ' β = <tf.

Replace the map L with the map X -> P l L ( J5Γ)P. Then L(Af(t;)) =
M(σt;) and L{M\v)) = M'(σϋ), for all nonzero v in AΛ Thus if u t> = 0
then L(w ® t>) = c(w ® t>)σ(w ® t>), where c is a scalar valued function. If
v G (iij, W2)"1"» ^ e n by comparing L((u{ + u2) ® υ) with £(1^ ® t>) +
L(u2 ® t;) we get c ^ ® ϋ) = c(w2 ® t;). Similarly if u G (t? l5 ϋ 2 ) , then
c(w ® ϋj) = c(u ® t>2).

Now we show that c is a constant function. Suppose that ux υλ — 0
and w2 υ2 — 0. Pick v3 G («„ t/2)-1. Then c(ux ® «1) = 0(1 !̂ ® ϋ3) =
c(w2 ® v3) — c{u2® v2). Thus c is a constant function say c(u ® v) = k.
Then L(u ® D) = fcσ(w ® ϋ), for all w, ϋ with u t; = 0.

Since L is linear, σ is the identity automorphism. The rank one
nilpotent matrices span slw and so the theorem is proved.

REMARK. When n — 2, the same result is obtained by a simple
computation.
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