THE PERTURBATION THEORY FOR LINEAR OPERATORS OF DISCRETE TYPE

Li Bingren

Using the theory of unconditional bases, we discuss the perturbation theory of linear operators of discrete type.

The principal abstract perturbation theorem about discrete spectral operators was introduced by J. T. Schwartz, and extended by H. P. Kramer to the general case ([1], XIX. 2 Theorem 7). In this paper, we shall give a simple proof for Schwartz-Kramer's Theorem by using the theory of unconditional bases, and omit the condition of weak completeness in their theorem. In the proof of [1], XIX. 2 Theorem 7, because of using [1], XVIII. 2 Corollary 33, so that it needs the condition of weak completeness. On the other hand, all perturbant generalized eigenvectors consist of an unconditional basis, so we can prove the theorem without using the above corollary and omit the condition of weak completeness.

Definition 1. A linear operator T in Banach space B is called discrete type ((D) type), if $\rho(T) \neq \varnothing$, and there exist an unconditional basis $\left\{x_{n}\right\}$ of B, a sequence of complex numbers $\left\{\lambda_{n}\right\}$ and a positive integer N, such that $\lim _{n}\left|\lambda_{n}\right|=+\infty, \lambda_{n} \neq \lambda_{m}, \forall n, m \in \mathbf{N}, m>N$ and $n \neq m, \quad T x_{n}=\lambda_{n} x_{n}, \quad \forall n>N, \quad T\left[x_{1}, \ldots, x_{N}\right] \subset\left[x_{1}, \ldots, x_{N}\right] \quad$ and $\sigma\left(T \mid\left[x_{1}, \ldots, x_{N}\right]\right)=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$.

Proposition 2. Let T be a linear operator of (D) type in Banach space $B,\left\{x_{n}\right\},\left\{\lambda_{n}\right\}$ and N as in Definition 1. Then $\sigma(T)=\left\{\lambda_{n}\right\}$,

$$
\begin{aligned}
\mathscr{D}(T) & =\left\{x \in B \mid \text { if } x=\sum_{n} \alpha_{n} x_{n}, \text { then } \sum_{n>N} \lambda_{n} \alpha_{n} x_{n} \in B\right\} \\
T x & =\sum_{n=1}^{N} \alpha_{n} T x_{n}+\sum_{n>N} \lambda_{n} \alpha_{n} x_{n}, \quad \forall x=\sum_{n} \alpha_{n} x_{n} \in \mathscr{D}(T) .
\end{aligned}
$$

However, for each $\lambda \notin \sigma(T), R(\lambda, T)=(T-\lambda I)^{-1}$ is compact and

$$
\begin{aligned}
R(\lambda, T) x & =\sum_{n=1}^{N} \alpha_{n}(T-\lambda I)^{-1} x_{n}+\sum_{n>N} \frac{\alpha_{n}}{\lambda_{n}-\lambda} x_{n} \\
\forall x & =\sum_{n} \alpha_{n} x_{n} \in B .
\end{aligned}
$$

Proof. Define a linear operator T_{0} in B as follows

$$
\begin{aligned}
\mathscr{D}\left(T_{0}\right) & =\left\{x \in B \mid \text { if } x=\sum_{n} \alpha_{n} x_{n}, \text { then } \sum_{n>N} \lambda_{n} \alpha_{n} x_{n} \in B\right\}, \\
T_{0} x & =\sum_{n=1}^{N} \alpha_{n} T x_{n}+\sum_{n>N} \lambda_{n} \alpha_{n} x_{n}, \quad \forall x=\sum_{n} \alpha_{n} x_{n} \in \mathscr{D}\left(T_{0}\right) .
\end{aligned}
$$

Because T is closed, so $T \supset T_{0}$. Without loss of generality, we can assume $0 \in \rho(T)$. Then by $\left|\lambda_{n}\right| \rightarrow \infty$ and [3], Ch. II Lemma 16.1, let

$$
y=\sum_{n=1}^{N} \alpha_{n} T^{-1} x_{n}+\sum_{n>N} \frac{\alpha_{n}}{\lambda_{n}} x_{n} \in \mathscr{D}\left(T_{0}\right)
$$

for $x=\Sigma_{n} \alpha_{n} x_{n} \in B$, and $T_{0} y=x$, so that $T_{0} \mathscr{D}\left(T_{0}\right)=B$. Therefore $T=$ T_{0}.

If $\lambda \neq \lambda_{n}, \forall n$, because of $\left|\lambda-\lambda_{n}\right| \rightarrow \infty$ and above Lemma 16.1, it is easy to see $(T-\lambda I) \mathscr{D}(T)=B$. So that $\sigma(T)=\left\{\lambda_{n}\right\}$, and we have the formula about $R(\lambda, T)$.

We can assume $\left\|x_{n}\right\|=1, \forall n$. Let $f_{m} \in B^{*}$, such that $f_{m}\left(x_{n}\right)=\delta_{n, m}$, $\forall n, m$. Then there exists a positive constant M_{1}, such that $\left\|f_{m}\right\| \leq M_{1}$, $\forall m$.

For each n, let P_{n}, Q_{n} be the projections, such that $P_{n}+Q_{n}=I$, and $P_{n} B=\left[x_{1}, \ldots, x_{n}\right], Q_{n} B=\left[x_{n+1}, \ldots, x_{m}, \ldots\right]$. By [3], Ch. II Th. 17.1, there exists a positive constant M_{2}, such that $\left\|Q_{n}\right\| \leq M_{2}, \forall n$.

Again by above Th. 17.1, there exists a positive constant M_{3}, such that

$$
\left\|\sum_{n} \beta_{n} \alpha_{n} x_{n}\right\| \leq M_{3}\|x\|, \quad \forall x=\sum_{n} \alpha_{n} x_{n} \in B \text { and }\left|\beta_{n}\right| \leq 1(\forall n)
$$

Let $\lambda \in \rho(T)$ and $\left\{y_{n}\right\}$ be a bounded sequence of B, i.e. $\left\|y_{n}\right\| \leq M_{4}$, $\forall n$. Because $\left|f_{m}\left(y_{n}\right)\right| \leq M_{1} M_{4}$, we can assume that

$$
f_{m}\left(y_{n}\right)=: \alpha_{m}^{(n)} \rightarrow \alpha_{m}, \quad \forall m
$$

(replacing a subsequence of $\left\{y_{n}\right\}$, if necessary). For $\varepsilon>0$, there exists $N_{1}(>N)$ such that $\left|1 /\left(\lambda_{n}-\lambda\right)\right|<\varepsilon, \forall n \geq N_{1}$. Then for sufficiently large n, m

$$
\begin{array}{r}
\left\|R(\lambda, T) Q_{N}\left(y_{n}-y_{m}\right)\right\| \leq \sum_{k=N+1}^{N_{1}}\left|\frac{\alpha_{k}^{(n)}-\alpha_{k}^{(m)}}{\lambda_{k}-\lambda}\right|+\left\|\sum_{k>N_{1}} \frac{\alpha_{k}^{(n)}-\alpha_{k}^{(m)}}{\lambda_{k}-\lambda} x_{k}\right\| \\
\leq \varepsilon+\varepsilon M_{3}\left\|Q_{N_{1}} y_{n}-Q_{N_{1}} y_{m}\right\| \leq\left(1+2 M_{2} M_{3} M_{4}\right) \varepsilon
\end{array}
$$

Therefore $R(\lambda, T) Q_{N}$ and $R(\lambda, T)$ are compact.

Lemma 3. Let $\left\{x_{n}\right\}$ be an unconditional basis of Banach space B, J be a subset of \mathbf{N}. Then $\left\{x_{n} \mid n \in J\right\}$ is an unconditional basis of $\left[x_{n} \mid n \in J\right]$, where $\left[x_{n} \mid n \in J\right]$ is the closed subspace generated by $\left\{x_{n} \mid n \in J\right\}$, and

$$
B=\left[x_{n} \mid n \in J\right]+\left[x_{n} \mid n \notin J\right] .
$$

However, let $P(J)$ be the projection from B onto $\left[x_{n} \mid n \in J\right]$ such that $(I-P(J)) B=\left[x_{n} \mid n \notin J\right]$, then $J \rightarrow P(J)$ is countably additive in the strong operator topology from the σ-field of all subsets of \mathbf{N} into the projections in B, and $P(\mathbf{N})=I, P(\varnothing)=0$.

Proof. Let P_{n} be the projection from B to $\left[x_{n}\right]$ such that $\left(I-P_{n}\right) B=$ $\left[x_{m} \mid m \neq n\right], \forall n$. If $x=\sum_{n} \alpha_{n} x_{n} \in\left[x_{n} \mid n \in J\right]$, by $P_{m} x=0, \forall m \notin J$, so that $\alpha_{m}=0, \forall m \notin J$ and $x=\sum_{n \in J} \alpha_{n} x_{n}$. This series is also unconditionally convergent, therefore $\left\{x_{n} \mid n \in J\right\}$ is an unconditional basis of $\left[x_{n} \mid n \in J\right]$. Similarly, $\left\{x_{n} \mid n \notin J\right\}$ is an unconditional basis of $\left[x_{n} \mid n \notin J\right]$, so that

$$
B=\left[x_{n} \mid n \in J\right]+\left[x_{n} \mid n \notin J\right] .
$$

We notice the following fact: if $x=\sum_{n} \alpha_{n} x_{n} \in B$ and $\varepsilon>0$, then there exists a positive integer N, such that

$$
\left\|\sum_{n \in \Lambda} \alpha_{n} x_{n}\right\|<\varepsilon
$$

where Λ is an arbitrary subset of \mathbf{N} and $\Lambda \cap\{1, \ldots, N\}=\varnothing$. In fact, we have N such that

$$
\left\|\sum_{n>N} \alpha_{n} x_{n}\right\|<\frac{\varepsilon}{M}
$$

where M is the constant such that $\left\|\Sigma_{n} \varepsilon_{n} \beta_{n} x_{n}\right\| \leq M\|y\|, \forall y=\Sigma_{n} \beta_{n} x_{n} \in$ B and $\left|\varepsilon_{n}\right| \leq 1, \forall n \in \mathbf{N}$ ([3], Ch. II, Th. 17.1). Let

$$
\varepsilon_{n}= \begin{cases}1 & n \in \Lambda \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\left\|\sum_{n \in \Lambda} \alpha_{n} x_{n}\right\|=\left\|\sum_{n>N} \varepsilon_{n} \alpha_{n} x_{n}\right\| \leq M\left\|\sum_{n>N} \alpha_{n} x_{n}\right\|<\varepsilon
$$

Now let $J_{l} \subset \mathbf{N}, J_{l} \cap J_{j}=\varnothing, \forall i \neq j, J=\cup_{i=1}^{\infty} J_{i}$, and $x=\Sigma_{n} \alpha_{n} x_{n} \in$ $B, \varepsilon>0$. Take above N and a positive integer K such that

$$
\bigcup_{i=1}^{K} J_{i} \supset J \cap\{1, \ldots, N\}
$$

then

$$
\left\|\left(\sum_{i=1}^{K} P\left(J_{t}\right)-P(J)\right) x\right\|=\left\|\sum_{n \in \Lambda} \alpha_{n} x_{n}\right\|<\varepsilon
$$

where $\Lambda=J \backslash \cup_{t=1}^{K} J_{t}$ and $\Lambda \cap\{1, \ldots, N\}=\varnothing$. So that

$$
P(J)=\mathrm{s}-\lim _{K} \sum_{i=1}^{K} P\left(J_{l}\right)
$$

and $J \rightarrow P(J)$ is countably additive in the strong operator topology.
Now we recall that a linear operator T in Banach space B is spectral as in [1], XVIII. 2, Definition 1, and T is discrete as in [1], XIX. 2, Definition 1, i.e. every resolvent $R(\lambda, T)$ of T is compact. We also say that a discrete spectral operator T satisfies condition (F), if for all but a finite number of spectral points λ, the space of generalized eigenvectors of T corresponding to λ is one-dimensional.

Proposition 4. Let T be a linear operator in Banach space B. Then T is (D) type, if and only if, T is a discrete spectral operator which satisfies condition (F).

Proof. Let T be (D) type, $\left\{x_{n}\right\},\left\{\lambda_{n}\right\}$ and N as in Definition 1. We assume that $\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, where $k \leq N$ and $\lambda_{i} \neq \lambda_{j}, \forall 1 \leq$ $i \neq j \leq k$. If B_{i} is the space of generalized eigenvectors of T corresponding to $\lambda_{i}, 1 \leq i \leq k$, then $N=\sum_{t=1}^{k} \operatorname{dim} B_{i}$. We can also assume that there is a partition $\{1, \ldots, N\}=\cup_{i=1}^{k} \Lambda_{i}$, such that $B_{i}=\left[x_{n} \mid n \in \Lambda_{i}\right], 1 \leq i \leq k$. Let $B_{n}=\left[x_{n}\right], \forall n>N$ and \mathscr{B} be all Borel subsets of complex plane \mathbf{C}, and

$$
P(\Delta)=\dot{+}\left\{B_{n} \mid \lambda_{n} \in \Delta\right\} \quad \forall \Delta \in \mathscr{B}
$$

then by Lemma $3, \Delta \rightarrow P(\Delta)$ is countably additive in the strong operator topology.

Let $\Delta \in \mathscr{B}$ and $x \in \mathscr{D}(T) \cap P(\Delta) B$, we can write

$$
x=\sum_{\substack{n \in \Lambda_{l} \\ \text { and } \lambda_{t} \in \Delta}} \alpha_{n} x_{n}+\sum_{\substack{n>\lambda_{n} \\ \text { and } \lambda_{t} \in \Delta}} \alpha_{n} x_{n}
$$

by Proposition 2,

$$
T x=\sum_{\substack{n \in \Lambda_{1} \\ \text { and } \lambda_{1} \in \Delta}} \alpha_{n} T x_{n}+\sum_{\substack{n>N_{n} \\ \text { and } \lambda_{n} \in \Delta}} \lambda_{n} \alpha_{n} x_{n} \in P(\Delta) B
$$

However, $T \mid P(\Delta) B$ also satisfies the assumptions of Proposition 2, so that $\sigma(T \mid P(\Delta) B)=\left\{\lambda_{l} \mid \lambda_{i} \in \Delta\right\} \subset \bar{\Delta}$. Therefore T is a discrete spectral operator which satisfies condition (F).

Conversely, let T be a discrete spectral operator which satisfies condition (F). Let $P(\cdot)$ be the resolution of the identity for T and assume that the different eigenvalues of T are $\lambda_{1}, \ldots, \lambda_{k}, \lambda_{N+1}, \ldots, \lambda_{n}, \ldots$ such that

$$
N=\operatorname{dim} \bigoplus_{i=1}^{k} P\left(\left\{\lambda_{l}\right\}\right) B, \quad \operatorname{dim} P\left(\left\{\lambda_{n}\right\}\right) B=1, \forall n>N
$$

Let

$$
\left[x_{1}, \ldots, x_{N}\right]=\bigoplus_{i=1}^{k} P\left(\left\{\lambda_{l}\right\}\right) B, \quad\left[x_{n}\right]=P\left(\left\{\lambda_{n}\right\}\right) B, \forall n>N
$$

because

$$
P(\sigma(T))=I, \quad P\left(\left\{\lambda_{n} \mid n>N\right\}\right)=\mathrm{s}-\lim _{n} \bigoplus_{i=N+1}^{n} P\left(\left\{\lambda_{\sigma(i)}\right\}\right) B
$$

for every permutation σ of $\{N+1, \ldots, n, \ldots\}$, so that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an unconditional basis of B. Therefore T is (D) type.

Lemma 5. Let $\left\{x_{n}\right\}$ be an unconditional basis of Banach space B, $\left\|x_{n}\right\|=1, \forall n,\left\{y_{n}\right\}$ be a ω-linearly independent sequence of B, i.e., if $\sum_{n} \alpha_{n} y_{n}=0$, then $\alpha_{n}=0, \forall n$.
(1) If $\Sigma_{n}\left\|x_{n}-y_{n}\right\|<+\infty$, then $\left\{y_{n}\right\}$ is also an unconditional basis of B;
(2) If B is a Hilbert space, and $\Sigma_{n}\left\|x_{n}-y_{n}\right\|^{2}<+\infty$, then $\left\{y_{n}\right\}$ is also an unconditional basis of B.

Proof. (1) It follows by [3], Ch. I, Th. 10.2, (a) 2^{0}. $\Leftrightarrow 4^{0}$., and [3], Ch. II, Th. 17.1, $1^{0} . \Leftrightarrow 2^{0}$.;
(2) By [3], Ch. II, Th. 18.1, we can assume that $\left\{x_{n}\right\}$ is an orthogonal normalized basis of B. Let N such that

$$
\sum_{n>N}\left\|x_{n}-y_{n}\right\|^{2}=\lambda^{2}<1, \quad 0 \leq \lambda<1
$$

and

$$
z_{n}=\left\{\begin{array}{rr}
x_{n} & 1 \leq n \leq N \\
y_{n} & n>N
\end{array}\right.
$$

then

$$
\sum_{n}\left\|x_{n}-z_{n}\right\|^{2}=\lambda^{2}<1
$$

Because of

$$
\left\|\sum_{n=1}^{m} \alpha_{n}\left(x_{n}-z_{n}\right)\right\|^{2} \leq \sum_{n=1}^{m}\left|\alpha_{n}\right|^{2} \sum_{n=1}^{m}\left\|x_{n}-z_{n}\right\|^{2} \leq \lambda^{2}\left\|\sum_{n=1}^{m} \alpha_{n} x_{n}\right\|^{2}
$$

for all finite sequences of numbers $\alpha_{1}, \ldots, \alpha_{m}$, so by [3], Ch. I, Th. 9.1, (b) δ) and [3], Ch. II, Th. 17.1, $1^{0} . \Leftrightarrow 2^{0} .,\left\{z_{n}\right\}$ is also an unconditional basis of B.

Now by $\Sigma_{n}\left\|z_{n}-y_{n}\right\|<+\infty$, and 1) of this Lemma, $\left\{y_{n}\right\}$ is also an unconditional basis of B.

Theorem 6. Let T be a linear operator of (D) type in Banach space $B,\left\{x_{n}\right\},\left\{\lambda_{n}\right\}$ and N as in Definition $1,0 \in \rho(T)$. Let V be a linear operator in B, such that $A=V T^{-\alpha}$ bounded, where $0 \leq \alpha<1$. Let $\nu_{n}=$ $\min _{m \neq n}\left|\lambda_{m}-\lambda_{n}\right|$ and we have one of the following conditions:
(1) $\Sigma_{n>N}\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}<+\infty$;
(2) If B is a Hilbert space, and $\Sigma_{n>N}\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{2 \alpha} / \nu_{n}^{2}<+\infty$;
(3) $\lim _{n}\left(\left|\lambda_{n}\right|+v_{n}\right)^{\alpha} / \nu_{n}=0$, and $\Sigma_{i, j}\left|a_{i j}\right|<\infty$, where $a_{i j}=f_{j}\left(A x_{i}\right)$, and $f_{j} \in B^{*}, f_{j}\left(x_{i}\right)=\delta_{\imath, j}$;
(4) $\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n} \leq G, \forall n$, and $\Sigma_{i, j}\left|a_{i j}\right| \leq \beta$, where $a_{i j}$ as in (3), and β is sufficiently small;
(5) If B is a Hilbert space, $\left\langle x_{n}, x_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m$, $\lim _{n}\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}=0$ and A is a Hilbert-Schmidt operator;
(6) If B is a Hilbert space, $\left\langle x_{n}, x_{m}\right\rangle=\delta_{n, m}, \forall n, m,\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n} \leq$ $G, \forall n,\|A\|_{2} \leq \beta$, where $\left\|\|_{2}\right.$ is Hilbert-Schmidt norm, and β is sufficiently small, then $(T+V)$ is also (D) type in B.

Proof. We can write $T=T_{s}+F$ such that $T_{s} x_{n}=\lambda_{n} x_{n}, n=1,2, \ldots$, and $F\left[x_{1}, \ldots, x_{N}\right] \subset\left[x_{1}, \ldots, x_{N}\right], F x_{n}=0, \forall n>N$. Using $(F+V)$ instead of V, we can assume that $T x_{n}=\lambda_{n} x_{n}, n=1,2, \ldots$. However, we can also assume $\left\|x_{n}\right\|=1, \forall n$. By [3], Ch. II, Th. 17.1, there exists a constant $M(\geq 1)$, such that

$$
\left\|\sum_{n} \beta_{n} \alpha_{n} x_{n}\right\| \leq M\|x\|, \quad \forall x=\sum_{n} \alpha_{n} x_{n} \in B \text { and }\left|\beta_{n}\right| \leq 1, \forall n .
$$

(1) Let N_{1} sufficiently large ($>N$) such that

$$
0<M \frac{a_{n}}{1-a_{n}}<1, \quad \forall n>N_{1}
$$

where $a_{n}=2 M\|A\|\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}$.

For $n>N_{1}$, let Γ_{n} be a circle whose center is at λ_{n} and radius is $\nu_{n} / 2$. When $\lambda \in \Gamma_{n}$, because

$$
\left|\frac{\lambda_{m}^{\alpha}}{\lambda_{m}-\lambda}\right| \leq 2 \frac{\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha}}{\nu_{n}} \quad \forall m
$$

so that $\|R(\lambda, T)\| \leq 2 M / \nu_{n},\|V R(\lambda, T)\| \leq a_{n}$. By [2], $(T+V)$ has one and only one single eigenvalue $\lambda_{n}(V)$ in Γ_{n}. Since $0<M a_{n} /\left(1-a_{n}\right)<1$, we can take

$$
x_{n}(V)=\sum_{l=0}^{\infty} \frac{-1}{2 \pi i} \int_{\Gamma_{n}}(-1)^{l} R(\lambda, T)[V R(\lambda, T)]^{l} d \lambda x_{n}
$$

as corresponding eigenvector. By

$$
\begin{aligned}
\left\|x_{n}(V)-x_{n}\right\| & \leq \sum_{l=1}^{\infty} \frac{1}{2 \pi} \int_{\Gamma_{n}}\|R(\lambda, T)\|\|V R(\lambda, T)\|^{l} d|\lambda| \leq M \sum_{l=1}^{\infty} a_{n}^{l} \\
& <4 M^{2}\|A\|\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}
\end{aligned}
$$

and condition 1 , so that

$$
\sum_{n>N_{1}}\left\|x_{n}(V)-x_{n}\right\|<+\infty
$$

However, since

$$
\begin{aligned}
\left|\lambda_{n}(V)\right| & \geq\left|\lambda_{n}\right|-\frac{\nu_{n}}{2} \geq\left|\lambda_{n}\right|-\frac{\left|\lambda_{n}-\lambda_{1}\right|}{2} \\
& \geq\left|\lambda_{n}\right|-\frac{1}{2}\left(\left|\lambda_{n}\right|+\left|\lambda_{1}\right|\right)=\frac{\left|\lambda_{n}\right|}{2}-\frac{\left|\lambda_{1}\right|}{2}
\end{aligned}
$$

so that $\lim _{n}\left|\lambda_{n}(V)\right|=+\infty$.
Let Γ be a closed road, containing the points $\lambda_{1}, \ldots, \lambda_{N_{1}}$, and such that $\operatorname{dist}\left(\Gamma,\left\{\lambda_{1}, \ldots, \lambda_{N_{1}}\right\}\right)=\nu / 2$, where $\nu=\min _{n>N_{1}} \nu_{n}$. With the aid of [2], page 34 Lemma 4.10 and page 178 Theorem 6.17 we are able to show that $(T+V)$ has different eigenvalues $\lambda_{1}(V), \ldots, \lambda_{k}(V)\left(k \leq N_{1}\right)$ in Γ, and there exist linearly independent elements $x_{1}(V), \ldots, x_{N_{1}}(V)$ of B such that

$$
(T+V)\left[x_{1}(V), \ldots, x_{N_{1}}(V)\right] \subset\left[x_{1}(V), \ldots, x_{N_{1}}(V)\right]
$$

and

$$
\sigma\left((T+V) \mid\left[x_{1}(V), \ldots, x_{N_{1}}(V)\right]\right)=\left\{\lambda_{1}(V), \ldots, \lambda_{k}(V)\right\}
$$

Now it is sufficient to prove that $\left\{x_{n}(V) \mid n=1,2, \ldots\right\}$ is an unconditional basis of B. Because of Lemma 5 , we only need to prove that $\left\{x_{n}(V) \mid n=1,2, \ldots\right\}$ is ω-linearly independent.

Let

$$
\hat{P}_{n}=\frac{-1}{2 \pi i} \int_{\Gamma_{n}} R(\lambda, T+V) d \lambda \quad \forall n>N_{1}
$$

then

$$
\hat{P}_{n} x_{m}(V)=\delta_{n, m} x_{m}(V) \quad \forall m \in \mathbf{N} \text { and } n>N_{1}
$$

If $\Sigma_{m} \beta_{m} x_{m}(V)=0$, then $0=\hat{P}_{n} \Sigma_{m} \beta_{m} x_{m}(V)=\beta_{n} x_{n}(V)$ and $\beta_{n}=0$, $\forall n>N_{1}$, and $\sum_{m=1}^{N_{1}} \beta_{m} x_{m}(V)=0$. But $\left\{x_{m}(V) \mid 1 \leq m \leq N_{1}\right\}$ is linearly independent, so that $\beta_{n}=0, \forall n$. This shows $\left\{x_{n}(V) \mid n=1,2, \ldots\right\}$ is ω-linearly independent.
(2) Similarly to (1), let N_{1} sufficiently large ($>N$) such that

$$
0<M \frac{a_{n}}{1-a_{n}}<1 \quad \forall n>N_{1}
$$

where $a_{n}=2 M\|A\|\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}$.
For $n>N_{1}$, let Γ_{n} as (1). When $\lambda \in \Gamma_{n}$, we also have $\|\mathrm{R}(\lambda, T)\| \leq$ $2 M / \nu_{n}$ and $\|V R(\lambda, T)\| \leq a_{n}$. Hence $(T+V)$ has one and only one single eigenvalue $\lambda_{n}(V)$ in Γ_{n}, and corresponding eigenvector is

$$
x_{n}(V)=\sum_{l=0}^{\infty} \frac{-1}{2 \pi i} \int_{\Gamma_{n}}(-1)^{l} R(\lambda, T)[V R(\lambda, T)]^{l} d \lambda x_{n}
$$

It is obvious that $\lim _{n}\left|\lambda_{n}(V)\right|=+\infty$. We also take Γ and $x_{1}(V), \ldots, x_{N_{1}}(V)$ as in (1). For $n>N_{1}$, as (1)

$$
\left\|x_{n}(V)-x_{n}\right\| \leq 4 M^{2}\|A\|\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}
$$

By condition (2)

$$
\sum_{n}\left\|x_{n}(V)-x_{n}\right\|^{2}<+\infty
$$

Similarly as (1), $\left\{x_{n}(V) \mid n=1,2, \ldots\right\}$ is ω-linearly independent. By Lemma $5,\left\{x_{n}(V) \mid n \in \mathbf{N}\right\}$ is an unconditional basis of B, so that $(T+V)$ is still (D) type.
(3) Let

$$
\sup _{n}\left\|f_{n}\right\|=K, \quad b_{n}=\frac{1}{\nu_{n}} 2 M K \sum_{i j}\left|a_{i j}\right|\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} .
$$

Because of $\|A\|<K \Sigma_{i j}\left|a_{i j}\right|$, so $b_{n}>a_{n}$ (the definition of a_{n}, see (1)). By assumption, for large n,

$$
0<M \frac{b_{n}}{1-b_{n}}<1
$$

Let Γ_{n} as (1), then there exists only one single eigenvalue $\lambda_{n}(V)$ of $(T+V)$ in Γ_{n}, and the corresponding eigenvector $x_{n}(V)$ has also the formula as (1). For $\lambda \in \Gamma_{n}$

$$
\begin{aligned}
& \left\|R(\lambda, T)[V R(\lambda, T)]^{l} x_{n}\right\| \\
& =\| \sum_{k_{1}} \cdots \sum_{k_{l}} \frac{\lambda_{n}^{\alpha}}{\lambda_{n}-\lambda} \frac{\lambda_{k_{1}}^{\alpha}}{\lambda_{k_{1}}-\lambda} \\
& \cdots \frac{\lambda_{k_{l-1}}^{\alpha}}{\lambda_{k_{l-1}}-\lambda} \frac{\left\langle A x_{n}, f_{k_{1}}\right\rangle \cdots\left\langle A x_{k_{l-1}}, f_{k_{l}}\right\rangle}{\lambda_{k_{l}}-\lambda} x_{k_{1}} \| \\
& \leq\left[\frac{2\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha}}{\nu_{n}}\right]^{l} \frac{2}{\nu_{n}} \sum_{k_{1}, \ldots, k_{l}}\left|a_{n k_{1}} \cdots a_{k_{l-1}} k_{l}\right| \\
& \leq\left[\frac{2\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha}}{\nu_{n}}\right]^{l} \frac{2}{\nu_{n}}\left(\sum_{i j}\left|a_{i j}\right|\right)^{l-1} \sum_{k}\left|a_{n k}\right|
\end{aligned}
$$

so that

$$
\left\|x_{n}(V)-x_{n}\right\| \leq \sum_{l=1}^{\infty} b_{n}^{l} \sum_{k}\left|a_{n k}\right| / \sum_{i j}\left|a_{i j}\right|
$$

and $\Sigma_{n}\left\|x_{n}(V)-x_{n}\right\|<+\infty$. The rest part of proof is similar as (1).
(4) Take

$$
\beta<(2 M(M+1) K G)^{-1}
$$

the proof is similar as (3).
(5) Let

$$
c_{n}=2 M\|A\|_{2}\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha} / \nu_{n}
$$

because $\|A\| \leq\|A\|_{2}$, so that $c_{n}>a_{n}$. If n sufficiently large,

$$
0<M \frac{c_{n}}{1-c_{n}}<1
$$

Let Γ_{n} as 1), then $\lambda_{n}(V), x_{n}(V)$ as (1). For $\lambda \in \Gamma_{n}$,

$$
\begin{aligned}
& \left\|R(\lambda, T)[V R(\lambda, T)]^{l} x_{n}\right\|^{2} \\
& \qquad \leq\left[\frac{2\left(\left|\lambda_{n}\right|+\nu_{n}\right)^{\alpha}}{\nu_{n}}\right]^{2 l}\left(\frac{2}{\nu_{n}}\right)^{2}\|A\|_{2}^{2(l-1)} \sum_{k}\left|a_{n k}\right|^{2}
\end{aligned}
$$

and

$$
\left\|x_{n}(V)-x_{n}\right\|<\sum_{l=1}^{\infty} c_{n}^{l} \frac{1}{\|A\|_{2}}\left(\sum_{k}\left|a_{n k}\right|^{2}\right)^{1 / 2}
$$

so that

$$
\sum_{n}\left\|x_{n}(V)-x_{n}\right\|^{2}<+\infty
$$

The rest part of proof is similar as (2).
(6) Take

$$
\beta<(2 M(M+1) G)^{-1}
$$

the proof is similar as (5).
This completes the proof of Theorem 6.

References

1. N. Dunford and J. T. Schwartz, Linear Operators, Part III, New York, Wiley-Interscience, 1971.
2. T. Kato, Perturbation Theory for Linear Operators, Berlin, Springer, 1966.
3. I. Singer, Bases in Banach Spaces I, Springer-Verlag, 1970.

Received August 19, 1980 and in revised form May 11, 1981. Institute of Mathematics, Academia Sinica, Peking, China.

University of Pennsylvania
Philadelphia, PA 19104

