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BASIC CALCULUS OF VARIATIONS

EDWARD SILVERMAN

For the classical one-dimensional problem in the calculus of varia-
tions, a necessary condition that the integral be lower semicontinuous is
that the integrand be convex as a function of the derivative. We shall see
that, if the problem is properly posed, then this condition is also
necessary for the ^-dimensional problem. For the one-dimensional prob-
lem this condition is also sufficient. For the A>dimensional problem this
condition is shown to be sufficient subject to an additional hypothesis.
For the one-dimensional problem there is an existence theorem if the
integrand grows sufficiently rapidly with respect to the derivative, and
this result also holds for the ^-dimensional problem, subject to an
additional hypothesis. Some of these additional hypotheses are automati-
cally satisfied for the one-dimensional problem.

Let G be a bounded domain in R*, A — G X R ,̂ Z be the space of
(N X A:)-matrices a n d F G φ X Z). If y: G -> R* is smooth, let IF(y)
= JGF(xy y(x), y\x)) dx where y\x) is the matrix of partial derivatives
oiy.

If k = N = 2 and if F(a, b, p) = | det p | then IF is the area integral
which is lower semicontinuous though F is not convex in p for fixed
(a, b). Thus the one-dimensional results do not, apparently, generalize.

There are r — (N£k) — 1 Jacobians of orders 1,.. . ,min{A;, N). Let
Y = Rr. There exists r: Z -> Y such that τ ° y\x) = J(y, x), where
J(y, x) = [J(y)](x), and J(y) is the collection of all Jacobians of y,
whenevery is a smooth map. Iff: A X Y -> R and if/(0, τ(p)) = F(θ, p)
for all (0, /?), then, evidently, I(y) = IF(y) where I(y) =
fcf(y*(χ)> J(y> *)) dx *ndym(x) = (x, y(x)).

If u: VX W-^Xandif υ G Vlctuv(w) = u(υ, w) for each w G W.
We define a class AC of transformations j for which each component

of j ; and each component of J(y), defined in a distribution sense, is in
L = L(G). We consider /(y) to be the basic integral, not IF(y).

Let T = range r. If A: = 1 then T= Yand Γcan be identified with Z
so that f=F.ln general, however, setting fθ° r — Fθ defines fθ on T C Y
where T ΦY. Let us say that / is T-conυex if fθ can be extended to a
function which is convex over all of Y for each θ G A. Please notice that
we do not require that/^ be convex. What we do require is that there exist
a convex function over all of Y which extends fθ. Then a necessary
condition that / be lower semicontinuous is that / be Γ-convex. If the
extended function is also continuous over A X Y, then the condition is
also sufficient.

In some applications/, rather than F, may be given initially [1].
471
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If k > 1 then the parametric problem is not covered by the existence
theorem. Even worse, the dichotomy into parametric and non-parametric
problems no longer seems feasible. If k — N — 2 and if F(θ, p) —\ det p | 2

then / is not parametric. Since it is invariant under smooth area-preserv-
ing changes of variables, it has something of the distinguishing feature of
parametric integrals. Here r ~ 5 andfθ(t) depends upon a single compo-
nent of t. Thus/0 does not grow with || /1|.

The starting point of this paper is [5]. Morrey's sufficiency condition
for quasiconvexity gave the idea of using / rather than F. That idea,
together with the notion of the Cesari-Weierstrass integral [2] and the
ideas used in [7] and [8] led to the sufficient condition. The compactness
results are familiar [6]. The consistent use of quasilinear functions to
approximate continuous functions, rather than Lipschitzian or smoother
functions, is standard in area theory, especially in Cesari's papers.

2. If y is smooth then each component of /(y) is the determinant of
a submatrix of order k of y^ except possibly for sign. One of these
submatrices is the identity. Its determinant does not correspond to any
component of J(y). Thus J(y) has r components. Let Y — Rr.

If M>m let Λ(M, m) be the collection of all strictly increasing
m-termed sequences taken from {1,... ,M). Let s = min{/c, N). lίj < s,
if i G A(N, j) and a G Λ(fc, j \ let pl

a = det[(/?α )/«]1<m n^ and define
T: Z -> Y by τ(p) = {p'a | (/, a) G Us

J=ι(A(N, jfx A(fc, j))}. We may
write [T

p] for τ(p). Similarly, if φ is a (k X /c)-matrix then the determi-
nants of the (kX &)-submatrices of [̂ ] are in 1-1 correspondence with
those of [τ

p]. (We delete the determinant of the top matrix, of course.)
Evidently there exists a unique linear map φ: Y -> Z such that

Ψ o τ(p) = p for each/? G Z.
If (/, α) G U'= 1(Λ(M, y) X A(k, j)) then there exists λ, 1 < λ < r,

such that

±

d(x°*,...9x
aή dxa

We can suppose that, if N > k and7 = s = A:, then r0 = ( ^ ) - (f) <
λ < r .

The components of /(y) are, except possibly for sign, the components
of τ(y'). Thus there is no loss in generality in ordering the rows of the
submatrices in such a way that we can identify J(y) with τ(y').

3. To obtain the necessary condition for lower semicontinuity we
require some information about T.
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LEMMA 3.1. Let μn E R, n = l,...,m, with Σμn = 1. If pn9 p and
Z with Σμnτ(Pn) = <P) then Σμn{pn + q)λ A .. Λ ( Λ + q)J =

Proof. We expand and get (p + q)x A A(p + q)J' —
px A - - ApJ + ΣJi=ι2'εa9ip

a* Λ - Λpa*q* A - - Λ^-< + 41 Λ - - A#>
where Σ' is the sum over a E A(y, /) and γ E (1, . . . j ) ^ {α}. Also,

α . = ±l.Then

Σ Σ'e«,/Aβl Λ * Λ A - Λ ^ , Λ
ι=l

Λ - - AqJ = (^ + 4)1 A - -

COROLLARY 3.2. τ(/? + 0) = Σμπτ(^w + 9).

LEMMA 3.3. Let y: Rk -> RN be quasilinear with compact support K and
simplexes of linearity δ1 ?...,δm. Let pn — y\x) for x E Int δn and let
μn=\δn\/\K\. Then μn > 0, Σμn = 1 and Σμnτ(Pn) = 0.

Except for notation, this is Lemma 4.4 [6].

It is not hard to verify that Y is the convex hull of Γ.

Let us say that / is lsc if I(y) < liminf I(yn) whenever yn converges
uniformly to y, yn and y satisfy a uniform Lipschitz condition (which may
depend upon the sequence) and yn — y is quasilinear with support con-
tained in a cube contained in G. (See Def. 4.4.2, [6].)

If N>k and if f(θ, q) =/(0,(O,...,O, -q\...9q
r)) for each θ (Ξ A

then we say that / depends only upon Jacobians of maximum rank.

LEMMA 3.4. Let f depend only upon Jacobians of maximum rank and
suppose that fθ E C for each θ E A. If I is lsc then then f is T-convex.

Proof. Iff$(τ(p)) < Σλβfθ(τ(pβ)) whenever θ(ΞA,p,pβe Z, λ^ > 0,
Σλβ = 1 and Σλβτ(pβ) = τ(p)9 then th>wί{Σλβτ(pβ) | Σλβτ(pβ) = t) is
an extension of the required type. If

for all θ G A,p and q £ Z, then by Corollary 3.2, ΊXβT{pβ — p) = τ(0) so
ΣλβMr(pβ)) > Σλβfθ(r(p)) +ύ(τ(p))Σλβτ(pβ-p) = Σλβfθ(τ(p)) =
fβ(riP))
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Let Q = Rk Π { JC |-± <x\...,xk<\) and let h > 0. Let p G Z.
Then β is partitioned into 3* cells by the hyperplanes xa = ±A/2,
a — 1,...,Λ:. Each of these cells, except hQ, is then subdivided into A:!
simplexes whose vertices are contained in the set of vertices of the
containing cell. Let S be the set of all these simplexes. Now we define α
continuous (quasilinear) function ξ on Q into R^ by putting ζ(x) = px if
x G hQ, ζ(x) = 0 if x G dQ and ξ | σ is linear (affine) if σ G S. If
x G Int σ let £'(*) = Pa- τ h ^ bY Lemma 3.3, τ(p)hk + ΣσGS

τ(Pσ) I ^ I =
0. Also, for each σ G *S there existsy G {1,...,/:} such thaty columns of/?σ

areO(Λ) and | σ ̂ OίΛ*"-7'). By Theorem 4.4.2 [6],

= fo(r(p))hk+ 2 [A(τ(0))+Λ'(τ(0))τ(A)+ α(τ(Λ))] |σ |
σ G ί

+ Σ0(τ(Λ))|σ|
σGί

so that/,(τ(0))A* +Mτ(0))τ(p)hk <fθ(τ(p))hk + ΣσGSO(τ(pσ)) | σ | . If
/depends only upon Jacobians of rank k, then the last term on the right is
o(O(hk)) = o(hk) so that/,(τ(/>)) ^ Λ

COROLLARY 3.5. ΓAe lemma remains valid if the differentiability condi-
tion is dropped.

Proof, Let Fθ=fθ°τ and suppose that Fθ G C. Then fθ- Fθo ψ,
# = (F{ o Ψ)Ψr and /̂  G C. If Fe ̂  C we molUfy. Let 5 be the unit
sphere in Z, let μ G C°°(Z) be nonnegative with support contained in B
and /μ(ί) # = 1. If p > 0 let μp({) = l/pNkμ(ξ/p).

lί yn-> y then yn — ξ -> y — ξ where, because of the definition of lsc,
we can suppose that yn — £ and j — £ differ only on a compact subset of
G. A routine argument shows that yv+ fGF(y*(x), y'{x) — £) dx is lsc.
Thus

y»[Fμ(ym(x)9y'(x))dx

is lsc where Fβ(θ, p) = fpBF((θ, p - ξ)μβ \ ξ) dξ. Letfμ(θ, q) = Fp(θ, Ψq).
Then (fp)θ G C since (Fp)θ G C". Thus, by the lemma, fp is Γ-convex and
the corollary follows by letting p -> 0.

THEOREM 3.6. Lέtf / fee fee. ΓΛe« / is T-convex.
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Proof. ltθ(ΞA let g(θ, [*]) = gθ([+]) = /«,([£]). (See §2.) Now let

7
Φ

L/>J
= *

Let Zo, 70 and Ψo correspond to Z, 7 and Ψ with R*+* replacing R*. Let
hθ be defined over all of Yo by hθ(q) = hθ(r) if % # = Ψor. By this
construction h E: C(A X Yo), h is nonnegative and h depends only upon
Jacobians of maximum rank.

If (ξ, y): G->RkXRN then let

dx= fλ
JG

1

y*(χ),

\

I

i'(χ)

y(x)_ 1

= i(y)

and Ih is lsc. Thus Λ is Γ-convex. In a natural way Y = dom /̂  C dom /*#.
Furthermore, Λ̂  extends fθ \ T. Thus gθ — hθ \ Y is an extension of /# | T
which is convex over all of Y.

4. In this section we define a class of transformations, which we call
AC, on which / is defined. This class is probably not a vector space.

Let <% = Q°(G), L = L^G) and Z^ = Lp{G) for p > 1. If 5 is one of
these spaces let F0B = 5, î J? = 0 ify > A: and, if 1 <j < A:, let

= I co I ω = 2 ωx dχλ where each ωλ G 5 J.

As usual, dxλ = J;cλl Λ ΛdxλJ.
If co G JF)L and if there exists £ G FjJtXL such that

for each φ G F ^ ^ , then we say that ω
exists, then dω is unique.

By putting an appropriate norm on

Λψ

and write dω for £. If dω

we can identify this spacey p g pp O

with H = H\{G). Also, # o = #/,<,(<?) is the closure, in H9of^) =
λ and ω = Σωλ dxλ are in i^L then ωn -* ω inIf ωn = Σco

Mλ

^ J if
ωwλ -* ωλ in L for each λ, where -* denotes weak convergence on compact
subsets of G.

LEMMA 4.1. Ifωn

ω G ̂  # α«J dω = £
ω in FjL, if ωn

and if dωn-*f m JFJ + 1 L then
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Proof, Let φ G F^^fi. Then

ωAdφ = limfωn A dφ = (-l)y+1lim fdωn Aφ = (-l) y + 1 fξ Λ φ.

LEMMA 4.2. 7/ω e ΦjH then xaω G 3\# and

d(x"ω) = dxa Aω + xadω.

Proof. Let φ G ^Γ

Λ,_y_1

<5D and ψ = xαφ so that dψ = dxa A φ + xadφ
and

jxaω Λdφ = fω A[dψ - dxa A φ]

= fωAdψ + (-l)J+lfdxa AωAφ

= (-1)7 + 1 f(x*dω + dxa Λ ω) Λ φ.

LEMMA 4.3. Ifω G ̂ . # ίΛe« rf2ω = 0.

Proof. Let f = dω and φ G Fk_j_fl). Then fξ Adφ = (~\)Jfω A d2φ
= 0 = (~iyfθ so that d2ω = rff = 0.

If z G // then dz = Σα G Λ ( Λ j l )zαί/xα where {zα} is the set of distribu-
tion derivatives of z. Let M be a positive integer and s = min{fc> M}.
Suppose that Jz1 has been defined for i G Λ(M, j), j < 5 — 1. If h G
Λ(M, 7 + 1), m = hx and i = h~ {m} G Λ(M, y) then we define dzh, if
zmJzz G ̂ .ff, by dzh = d{zmdz%

If dz* is defined for / G Λ(Af, y) and α G Λ(A:, y) then we define z^
by

ct€ίA(k,j)

so that, if z is smooth, z^ = (θ(z\ . . . ,zz>)/3(λ:αi,... ,**'))•
Let y E LN and suppose that rfv' is defined for each i G Λ(M, 5),

where s = min{iV, A:}, and thus for each 1 G U*.= 1A(M, y). Then we can
suppose that J{y) = {y^ \ (/, α) G U*=1(Λ(JV, y) X Λ(fc, y))} is an ele-
ment of ZΛ

If /(y) is defined and if J(y) — τ(y') almost everywhere then we say
that y EAC. By the definition of φ.H, the components of J(y) are
functions.

The following lemmas are immediate.
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LEMMA 4.4. y* G AC if and only if y G AC and J(y) = [y^β \ i G

LEMMA 4.5. Let j < s - min{JV, k) and y G AC. If (/, a) G
A(N9 j) X A(k, j) for 1 <y < 5 ίλett there exists h G Λ(A: + N9 k) such
that, except possibly for sign, y%β = y^.

Let yn £AC and y G LN with y™* -> y% in L for each m G
Λ(A: + N91). Suppose that if y < A: and / G Λ(A: + N, j) there exists
Γ G f .L such that φ ^ - Γ in i^L. If, in addition, y^ dy^ ^y^ in FjL
whenever i G A(k + TV, 7), j < k, m S A(k + N, 1), and m ί 1 then we
say

THEOREM 4.6. //>„ =».y ίAe« y EAC and J{yn) ^ J{y) in L.

Proof. By Lemma 4.1, J(y) is defined. By Theorem 3.4.4 [6],
y£. dy^ -^yZdy'* in L(K) for each compact set K C G. Hence we can
suppose that y™* dy^ -> j * φ * almost everywhere in G. We can also
suppose that / =^(1,2,.. .,^). Hence there exists m G {1,...,&}, m ^ /,
such that xmdy^ -> xmi/v* so that φ ^ * -> c/ŷ  almost everywhere.

LEMMA 4.7. //*/? α«JqareLebesgueconjugate, iffn -»//« L^ αwrfgn-^g
in Lq then fngn-+fg in L.

Proof. Let £ be a measurable subset of a compact subset of G. Then

where An = fEf(gH - g) <& and £„ = jE(fn - f)gn dx. By the weak con-
vergence, An -> 0 and {/£ | gn(x) \q dx}x/q is bounded independently of n.
Thus Bn -> 0 by the Holder inequality.

If j G ΛC and if j ^ £ Lp for each i G A(k X N, k), where β =
(1,...,Λ), then we set \\J(y)\\p = Σ. e A ^ x ^ ^ l l ^ l l , .

UyoeAC]et<m,(yo)=ACn{y\y-yoG(Ho)
N}.

THEOREM 4.8. Suppose that there exists M > 0 such that for each
y G 9 l t ( >>o) e*YΛ<?r

(i) Halloo ^Mand \\J(y)\\p < M for some p > 1,

(ϋ) II/OOH, ^ M ^ Λ ^ 9 = 2 V ( f c + !)•
sequentially compact.

Proof. If (i) holds then II j II} is uniformly bounded so that there exists
a sequence {yn} in 9IL(^) and £ G ( i J J " such that yn - yo - f i n "
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Thus yn — yo -> ξ in L. Let y — yo + ξ. By passing to a subsequence we
can suppose that yn(x) -* j(x) a.e. By the bounded convergence theorem,
yn* "* ̂ * ^n (A*)^ where s = />/(/* — 1) is Lebesgue conjugate to p. If (ii)
holds then there exists a sequence {yn} in ®ffL(yo) and f E {Hqo)

N such
that Λ - ^ - f in (#, , , ) " . Thus, by Th. 3.5.3, [6], yn-*yin Lt where
1/ί = l/#~~ I/A: = (fc — l)/2& so that t is conjugate to #. The theorem
follows by induction, Lemma 4.1 and Lemma 4.7.

5. We make use of a type of convexity studied by Tonelli to show
that Γ-convexity is sufficient for lower semicontinuity.

According to Tonelli, a Γ-convex function / is semi-regular positive
semi-normal if for each 0 E A, p, q E Y with q φ 0, there exists λ E R
such that 2/(0, p) </(0, p + λq) + /(0, p - λq).

For the following lemma see Turner [10].

LEMMA 5.1. A necessary and sufficient condition that f be semi-regular
positive semi-normal is that for each ε > 0 and each (0, p) E A X Y, there
exists 8 > 0, v > 0, ζ E Y* and p E R swcA that for all φGA with
IIΦ-0IKS,

(a)/(Φ, 9) >ί^ + p + Hltf-^ll/^eαcA^ E /
(b)/(φ, ί) < ξq + p + ε if \\q - p\\ < 8.

Let/be semi-regular positive. If ζ E Y* let

= wi{f(θ,q)-!;q\qeY}

for each Θ<ΞA. Thus/(0, />) = sup{ft? + pξ(θ) \ ξ E 7*}.
Let σ .̂(φ) = liminfθ_+φPξ(θ) where 0 and φ belong to A, of course.

Then p^ is upper semicontinuous, σ̂  is lower semicontinuous and σ̂  < p .̂

THEOREM 5.2. If f is semi-regular positive semi-normal, then /(0, p) =

/. Let ε > 0. By Lemma 5.1 there exist 8 > 0, *> > 0, f E y* and
p E R such that if φ E Λ and ||ψ - 0II < δ, then

(a)/(Φ,tf)^& + P + llήf-pll for each ? G 7, and
(b)/(φ, ί ) < f ί + p + e if ||4 - p \ \ < δ.

Hence ρξ(φ) > p for each φ E 4̂ with ||φ - 01| < δ so that aξ(θ) > p and
/ ( 0 ) < ^ + (0) +

j p ) ^ r ( )
We say that / is F-convex if /(0, /?) = sup{&? + σf(0) | ξ E 7*} for

each θ E A. Thus/is F-convex if/is semi-regular positive semi-normal.

6. In this section we show that if / E C(A X Y) is nonnegative and
Γ-convex, then / is lower semicontinuous.
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Let {eλ} be a dual basis for 7* = eλeμ = δμ

λ for eμ G 7. If f e 7*
there exist f λ G R such that ξ = Σfλe\

Let § be the collection of all finite families σ of compact subsets
contained in G such that if K G σ and L £z σ, \K Π L | = 0 whenever

If >> G ΛC, f G 7* and AT is a compact subset of G, let 4(£, >>, AT) =
x) Λc) - /*£(/(* *)) dx and

, y, K) = (in

Now we define ί on ΛlC by

2 sup

LEMMA 6.1. Lei j n and yo belong to AC with yn— yo G (HO)N. If
yn - yo-ζ in HN and if we set y =yo + ζtheny - yo G (HO)N and yn -» y
in {L\{K))N for each compact subset K of G.

This lemma follows from Theorems 3.2.1 and 3.4.4 [6].

LEMMA 6.2. Let X be a measurable subset of G and {/„} be a sequence
of measurable functions with fn(x) -»/(x) a.e. in X. Let ε > 0. Then there
exists a compact set K C X with \ X ~ K\ < ε, fn \ K continuous for each n
and fn IK -* f\ K uniformly.

This lemma follows from Egoroff s Theorem and Lusin's Theorem.

THEOREM 6.3. Let f be V-convex and suppose that yn and y are in
) -(y, J(y)) « L" X Lr then %y) < Uminf ί(y n).

Proof. Let A' be a compact subset of G. By Lemma 6.1 we can
suppose that yn-*y in L(K)N so that (passing to a subsequence if
necessary) yn(x) -»y(x) for almost all x G K. Let Λf>0, σςM(θ) =
min{σf(0), M) and let/M(0, p) = sup{£> + σξ

M(θ) \ ξ G 7*}. It is suffi-
cient to show that the theorem holds with/replaced byfM. Hence we can
suppose that σξ(θ) < M for all (0, ζ) G ̂ 4 X 7*. Let ε > 0. There exists
η G (0, ε/M) such that fEζ(J(y*(x))) dx < ε if E is a measurable subset
of ΛΓ with I E\< η. By Lemma 6.2 there exists a compact set C C K such
that I ^ ~ CI < 7j, yn | C is continuous and yn-* y uniformly on C. Hence

- ε.
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Also there exist xn E. C such that θξ(yn*(xn)) — infxGCσ^(jμλ2ϊiί(x)). We
can suppose that xn -» x E C. Now ^(x^) -^^(x) so that ^ ( ^ ( x ) ) <
lim inf σs(yn*(xn)). Thus 5(£, 7, C) < lim inf 5(f, yn, C) while

f, .y, C) = lim Λ(f, yrt, C). The theorem follows.

THEOREM 6.4. Let f be V-conυex. Ify E AC then ί(y) = /(>>).

Proof, Let ̂  be a compact subset of G and f GY*. Then

ff(y*(x), J(y,x)) dx

/ [ , x)) + σ f (^(x ) ) ] <& > ^ ( ί , y, ΛΓ) + B(ξ, y, K)[
K

so that I(y)>$(y) and we can suppose that ί(y) < 00. If L is an interval
contained in (7 let § L = § Π {σ | UK(ΞσK C L} and let

Φ(L)=sup 2 sup [A(ξ,y9K) + B{ξ,y,K)].
σESL KGσ ΪΪΞY*

Then Φ is nonnegative, superadditive and of bounded variation. Let JDΦ
be the Lebesgue derivative of Φ with respect to cubes. Then DΦ(x) >
ξ(J(y, x)) + σs(y*(x)) so that DΦ(x) >f{y*(x), J{y, x)) almost every-
where in G. Evidently ί(y) > sup σ e S ,Σ L G σ Φ(£) where § r = § Π {σ | σ is
a family of finitely many non-overlapping intervals). Thus

, J(y, x))dx =

COROLLARY 6.5. The theorem holds iff E C(A X Y) α«J/^ w convex

for each θ E: A. Thus I is Isc if f is continuous and T-conυex.

Proof, Let ε > 0 and g(θ,q) = f(θ,q) + e\\q\\ for each (θ,q)(Ξ

AXY. Let Ig(y) = JGg(y*(x), J(y, *)) Λc. If /(Λ W O O in ̂  then
there exists ra>0 such that 11/(̂ )11 <m for each w. Hence I(y) <
/ ?(^) <l iminf/ g ( Λ ) = liminf[/(Λ) + e | | /( Λ ) | | ] < lim inf /(>>„) + mε
since g is semi-regular positive semi-normal and hence F-convex.

The construction in Theorem 3.5 can be used to show that not only is
Γ-convexity a necessary condition that / be lower semi-continuous with
respect to the convergence of that theorem, but also with respect to the
convergence of Corollary 6.5.

The gap between the necessary and sufficient conditions for lower
semi-continuity can now be described by the fact that / can be Γ-convex
without being continuous (but see the paragraph preceding Corollary 7.3).

Since => is stronger than -* , the following corollary is immediate.

COROLLARY 6.6. Ifyn ^>y in ty(L(yo) then I(y) < lim inf I(yn).
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7. We conclude with an existence theorem and some minor generali-
zations.

THEOREM 7.1. Let f E C(A X Y) be nonnegative and fθ be convex for
each θ £A. If ?ft(yo) is => compact and if inf{/(y) \y E ^\i(yo)} < oo
then I attains its minimum on 91t(yo).

This result follows from Corollary 6.6.

COROLLARY 7.2. Suppose that there exists m > 0 such that for each
(θ9s) <ΞAX Yeither

(i) There exists M > 0 andp > 1 such that \\y\\^ < M andf(θ, s) >
m\\s\\p

9or
, s) > m\\s\\« where q = 2Λ/(* + 1) ^/i

< oc then I attains its minimum on

The corollary follows from Theorem 4.8.
Let Yλ be a compact convex subset of Y. If yo E AC and if J(yOι, x) E

7, for almost all x E G, then let

% ( > U = 9 ^ ( Λ ) n {^ lA^^) e Yi for almost all x GG).

Let / G C(A X Yj). If / is lower semicontinuous on tylii(yo) then, as
before,/must be Γ-convex, i.e., there exists gθ: Yλ -» R where ĝ  is convex
and extends fθ for each θ E.A. Since Yj is compact, it follows that g is
continuous so, for this case, a necessary and sufficient condition that / be
lower semicontinuous is that / be Γ-convex. Thus the next corollary
follows from the preceding one.

COROLLARY 7.3. Let Yλ be a compact convex subset of Y and f E
C(A X Yj) be T-convex. If, in addition, f satisfies (i) or (ii) and
mi{I{y) \y E ^!iι(yo)} < oo then I attains its minimum on ^Hjί^).

Let Y2 be a compact subset of Y and / E C(A X Y2). Let ^ be the
convex hull of Y2 and let g be defined on A X Yj by

£v(0,/>,)|/>,E Y2,
= i

λ , > 0 , Σ λ , = Land

If g G C(Λ X 7,) is Γ-convex and if
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where Ig(y) = fGg(y*(x), J(y, x)) dx, then, by Corollary 7.3, there exists
z G ytx(yo) such that g(z) = min{/g(.y) \y e ^fLx(yo)}. Then z is called a
relaxed minimizer for f on Y2.
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