BASIC CALCULUS OF VARIATIONS

EDWARD SILVERMAN

For the classical one-dimensional problem in the calculus of variations, a necessary condition that the integral be lower semicontinuous is that the integrand be convex as a function of the derivative. We shall see that, if the problem is properly posed, then this condition is also necessary for the k-dimensional problem. For the one-dimensional problem this condition is also sufficient. For the k-dimensional problem this condition is shown to be sufficient subject to an additional hypothesis. For the one-dimensional problem there is an existence theorem if the integrand grows sufficiently rapidly with respect to the derivative, and this result also holds for the k-dimensional problem, subject to an additional hypothesis. Some of these additional hypotheses are automatically satisfied for the one-dimensional problem.

Let G be a bounded domain in \mathbb{R}^k , $A = G \times \mathbb{R}^N$, Z be the space of $(N \times k)$ -matrices and $F \in C(A \times Z)$. If $y: G \to \mathbb{R}^N$ is smooth, let $I_F(y) = \int_G F(x, y(x), y'(x)) dx$ where y'(x) is the matrix of partial derivatives of y.

If k = N = 2 and if $F(a, b, p) = |\det p|$ then I_F is the area integral which is lower semicontinuous though F is not convex in p for fixed (a, b). Thus the one-dimensional results do not, apparently, generalize.

There are $r = \binom{N+k}{k} - 1$ Jacobians of orders $1, \ldots, \min\{k, N\}$. Let $Y = \mathbf{R}^r$. There exists $\tau \colon Z \to Y$ such that $\tau \circ y'(x) = J(y, x)$, where J(y, x) = [J(y)](x), and J(y) is the collection of all Jacobians of y, whenever y is a smooth map. If $f \colon A \times Y \to \mathbf{R}$ and if $f(\theta, \tau(p)) = F(\theta, p)$ for all (θ, p) , then, evidently, $I(y) = I_F(y)$ where $I(y) = \int_G f(y_*(x), J(y, x)) \, dx$ and $y_*(x) = (x, y(x))$.

If $u: V \times W \to X$ and if $v \in V$ let $u_v(w) = u(v, w)$ for each $w \in W$.

We define a class AC of transformations y for which each component of y and each component of J(y), defined in a distribution sense, is in L = L(G). We consider I(y) to be the basic integral, not $I_F(y)$.

Let $T = \text{range } \tau$. If k = 1 then T = Y and T can be identified with Z so that f = F. In general, however, setting $f_{\theta} \circ \tau = F_{\theta}$ defines f_{θ} on $T \subset Y$ where $T \neq Y$. Let us say that f is T-convex if f_{θ} can be extended to a function which is convex over all of Y for each $\theta \in A$. Please notice that we do not require that f_{θ} be convex. What we do require is that there exist a convex function over all of Y which extends f_{θ} . Then a necessary condition that I be lower semicontinuous is that f be T-convex. If the extended function is also continuous over $A \times Y$, then the condition is also sufficient.

In some applications f, rather than F, may be given initially [1].

If k > 1 then the parametric problem is not covered by the existence theorem. Even worse, the dichotomy into parametric and non-parametric problems no longer seems feasible. If k = N = 2 and if $F(\theta, p) = |\det p|^2$ then I is not parametric. Since it is invariant under smooth area-preserving changes of variables, it has something of the distinguishing feature of parametric integrals. Here r = 5 and $f_{\theta}(t)$ depends upon a single component of t. Thus f_{θ} does *not* grow with ||t||.

The starting point of this paper is [5]. Morrey's sufficiency condition for quasiconvexity gave the idea of using f rather than F. That idea, together with the notion of the Cesari-Weierstrass integral [2] and the ideas used in [7] and [8] led to the sufficient condition. The compactness results are familiar [6]. The consistent use of quasilinear functions to approximate continuous functions, rather than Lipschitzian or smoother functions, is standard in area theory, especially in Cesari's papers.

2. If y is smooth then each component of J(y) is the determinant of a submatrix of order k of y'_* , except possibly for sign. One of these submatrices is the identity. Its determinant does not correspond to any component of J(y). Thus J(y) has r components. Let $Y = \mathbf{R}^r$.

If $M \ge m$ let $\Lambda(M, m)$ be the collection of all strictly increasing m-termed sequences taken from $\{1, \ldots, M\}$. Let $s = \min\{k, N\}$. If $j \le s$, if $i \in \Lambda(N, j)$ and $\alpha \in \Lambda(k, j)$, let $p_{\alpha}^i = \det[(p_{\alpha_m})^{i_n}]_{1 \le m, n \le j}$ and define $\tau \colon Z \to Y$ by $\tau(p) = \{p_{\alpha}^i \mid (i, \alpha) \in \bigcup_{j=1}^s (\Lambda(N, j) \times \Lambda(k, j))\}$. We may write $[p]_p^i$ for $\tau(p)$. Similarly, if ϕ is a $(k \times k)$ -matrix then the determinants of the $(k \times k)$ -submatrices of $[p]_p^i$ are in 1-1 correspondence with those of $[p]_p^i$. (We delete the determinant of the top matrix, of course.)

Evidently there exists a unique linear map ϕ : $Y \to Z$ such that $\Psi \circ \tau(p) = p$ for each $p \in Z$.

If $(i, \alpha) \in \bigcup_{j=1}^{s} (\Lambda(M, j) \times \Lambda(k, j))$ then there exists $\lambda, 1 \le \lambda \le r$, such that

$$\frac{\partial(y^{i_1},\ldots,y^{i_j})}{\partial(x^{\alpha_1},\ldots,x^{\alpha_j})}=\frac{dy^i}{dx^\alpha}=\pm\tau(y')^\lambda.$$

We can suppose that, if $N \ge k$ and j = s = k, then $r_0 = \binom{N+k}{k} - \binom{N}{k} \le \lambda \le r$.

The components of J(y) are, except possibly for sign, the components of $\tau(y')$. Thus there is no loss in generality in ordering the rows of the submatrices in such a way that we can identify J(y) with $\tau(y')$.

3. To obtain the necessary condition for lower semicontinuity we require some information about τ .

LEMMA 3.1. Let $\mu_n \in \mathbb{R}$, n = 1, ..., m, with $\Sigma \mu_n = 1$. If p_n , p and $q \in \mathbb{Z}$ with $\Sigma \mu_n \tau(p_n) = \tau(p)$ then $\Sigma \mu_n (p_n + q)^1 \wedge \cdots \wedge (p_n + q)^j = (p+q)^1 \wedge \cdots \wedge (p+q)^j$ for j = 1, ..., k.

Proof. We expand and get $(p+q)^1 \wedge \cdots \wedge (p+q)^j = p^1 \wedge \cdots \wedge p^j + \sum_{i=1}^{j-1} \sum_{\alpha,i} p^{\alpha_1} \wedge \cdots \wedge p^{\alpha_i} q^{\gamma_1} \wedge \cdots \wedge q^{\gamma_{j-i}} + q^1 \wedge \cdots \wedge q^j$ where \sum_i is the sum over $\alpha \in \Lambda(j,i)$ and $\gamma \in (1,\ldots,j) \sim \{\alpha\}$. Also, $\varepsilon_{\alpha,i} = \pm 1$. Then

$$\sum \mu_{n}(p_{n}+q)^{1} \wedge \cdots \wedge (p_{n}+q)^{j}$$

$$= p^{1} \wedge \cdots \wedge p^{j} + \sum_{n=1}^{m} \mu_{n} \sum_{i=1}^{j-1} \sum \varepsilon_{\alpha,i} p_{n}^{\alpha_{1}} \wedge \cdots \wedge p_{n}^{\alpha_{i}} \wedge q^{\gamma_{1}} \wedge \cdots \wedge q^{\gamma_{j-i}}$$

$$+ q^{1} \wedge \cdots \wedge q^{j} = (p+q)^{1} \wedge \cdots \wedge (p+q)^{j}.$$

Corollary 3.2. $\tau(p+q) = \sum \mu_n \tau(p_n+q)$.

LEMMA 3.3. Let $y: \mathbf{R}^k \to \mathbf{R}^N$ be quasilinear with compact support K and simplexes of linearity $\delta_1, \ldots, \delta_m$. Let $p_n = y'(x)$ for $x \in \text{Int } \delta_n$ and let $\mu_n = |\delta_n|/|K|$. Then $\mu_n > 0$, $\Sigma \mu_n = 1$ and $\Sigma \mu_n \tau(p_n) = 0$.

Except for notation, this is Lemma 4.4 [6].

It is not hard to verify that Y is the convex hull of T.

Let us say that I is lsc if $I(y) \le \liminf I(y_n)$ whenever y_n converges uniformly to y, y_n and y satisfy a uniform Lipschitz condition (which may depend upon the sequence) and $y_n - y$ is quasilinear with support contained in a cube contained in G. (See Def. 4.4.2, [6].)

If $N \ge k$ and if $f(\theta, q) = f(\theta, (0, \dots, 0, q^{r_0}, \dots, q^r))$ for each $\theta \in A$ then we say that f depends only upon Jacobians of maximum rank.

LEMMA 3.4. Let f depend only upon Jacobians of maximum rank and suppose that $f_{\theta} \in C'$ for each $\theta \in A$. If I is lsc then then f is T-convex.

Proof. If $f_{\theta}(\tau(p)) \leq \sum \lambda_{\beta} f_{\theta}(\tau(p_{\beta}))$ whenever $\theta \in A$, p, $p_{\beta} \in Z$, $\lambda_{\beta} > 0$, $\sum \lambda_{\beta} = 1$ and $\sum \lambda_{\beta} \tau(p_{\beta}) = \tau(p)$, then $t \mapsto \inf\{\sum \lambda_{\beta} \tau(p_{\beta}) \mid \sum \lambda_{\beta} \tau(p_{\beta}) = t\}$ is an extension of the required type. If

$$f_{\theta}(\tau(q)) \ge f_{\theta}(\tau(p)) + f'_{\theta}(\tau(p))\tau(q-p)$$

for all $\theta \in A$, p and $q \in Z$, then by Corollary 3.2, $\sum \lambda_{\beta} \tau(p_{\beta} - p) = \tau(0)$ so $\sum \lambda_{\beta} f_{\theta}(\tau(p_{\beta})) \ge \sum \lambda_{\beta} f_{\theta}(\tau(p)) + f'_{\theta}(\tau(p)) \sum \lambda_{\beta} \tau(p_{\beta} - p) = \sum \lambda_{\beta} f_{\theta}(\tau(p)) = f_{\theta}(\tau(p))$.

Let $Q = \mathbb{R}^k \cap \{x \mid -\frac{1}{2} \le x^1, \dots, x^k \le \frac{1}{2}\}$ and let h > 0. Let $p \in Z$. Then Q is partitioned into 3^k cells by the hyperplanes $x^\alpha = \pm h/2$, $\alpha = 1, \dots, k$. Each of these cells, except hQ, is then subdivided into k! simplexes whose vertices are contained in the set of vertices of the containing cell. Let S be the set of all these simplexes. Now we define α continuous (quasilinear) function ζ on Q into \mathbb{R}^N by putting $\zeta(x) = px$ if $x \in hQ$, $\zeta(x) = 0$ if $x \in \partial Q$ and $\zeta \mid \sigma$ is linear (affine) if $\sigma \in S$. If $x \in I$ Int σ let $\zeta'(x) = p_{\sigma}$. Thus, by Lemma 3.3, $\tau(p)h^k + \Sigma_{\sigma \in S}\tau(p_{\sigma}) \mid \sigma \mid = 0$. Also, for each $\sigma \in S$ there exists $j \in \{1, \dots, k\}$ such that j columns of p_{σ} are Q(h) and $|\sigma| = Q(h^{k-j})$. By Theorem 4.4.2 [6],

$$\begin{split} f_{\theta}(\tau(0)) &\leq \int_{Q} f_{\theta}(\tau(\zeta'(x))) \; dx = f_{\theta}(\tau(p))h^{k} + \sum_{\sigma \in s} f_{\theta}(\tau(p_{\sigma})) \, |\, \sigma \, | \\ &= f_{\theta}(\tau(p))h^{k} + \sum_{\sigma \in s} \left[f_{\theta}(\tau(0)) + f'_{\theta}(\tau(0))\tau(p_{\sigma}) + o(\tau(p_{\sigma})) \right] |\, \sigma \, | \\ &= f_{\theta}(\tau(p))h^{k} + f_{\theta}(\tau(0))(1 - h^{k}) - f'_{\theta}(\tau(0))\tau(p)h^{k} \\ &+ \sum_{\sigma \in s} O(\tau(p_{\sigma})) \, |\, \sigma \, | \end{split}$$

so that $f_{\theta}(\tau(0))h^k + f'_{\theta}(\tau(0))\tau(p)h^k \leq f_{\theta}(\tau(p))h^k + \sum_{\sigma \in S} O(\tau(p_{\sigma})) |\sigma|$. If f depends only upon Jacobians of rank k, then the last term on the right is $o(O(h^k)) = o(h^k)$ so that $f_{\theta}(\tau(p)) \geq f_{\theta}(\tau(0)) + f'_{\theta}(\tau(0))\tau(p)$.

COROLLARY 3.5. The lemma remains valid if the differentiability condition is dropped.

Proof. Let $F_{\theta} = f_{\theta} \circ \tau$ and suppose that $F_{\theta} \in C'$. Then $f_{\theta} = F_{\theta} \circ \Psi$, $f'_{\theta} = (F'_{\theta} \circ \Psi)\Psi'$ and $f_{\theta} \in C'$. If $F_{\theta} \notin C'$ we mollify. Let B be the unit sphere in Z, let $\mu \in C^{\infty}(Z)$ be nonnegative with support contained in B and $\int \mu(\xi) d\xi = 1$. If $\rho > 0$ let $\mu_{\rho}(\xi) = 1/\rho^{Nk} \mu(\xi/p)$.

If $y_n \to y$ then $y_n - \xi \to y - \xi$ where, because of the definition of lsc, we can suppose that $y_n - \xi$ and $y - \xi$ differ only on a compact subset of G. A routine argument shows that $y \mapsto \int_G F(y_*(x), y'(x) - \xi) dx$ is lsc. Thus

$$y \mapsto \int_{\mathcal{P}} F_{\rho}(y_*(x), y'(x)) dx$$

is lsc where $F_{\rho}(\theta, p) = \int_{\rho B} F((\theta, p - \xi)\mu_{\rho} | \xi) d\xi$. Let $f_{\rho}(\theta, q) = F_{\rho}(\theta, \Psi q)$. Then $(f_{\rho})_{\theta} \in C'$ since $(F_{\rho})_{\theta} \in C'$. Thus, by the lemma, f_{ρ} is *T*-convex and the corollary follows by letting $\rho \to 0$.

THEOREM 3.6. Let I be lsc. Then f is T-convex.

Proof. If $\theta \in A$ let $g(\theta, [p]) = g_{\theta}([p]) = f_{\theta}([p])$. (See §2.) Now let

$$h\left(\theta, \begin{bmatrix} I \\ \phi \\ p \end{bmatrix}\right) = g\left(\theta, \begin{bmatrix} \phi \\ p \end{bmatrix}\right).$$

Let Z_0 , Y_0 and Ψ_0 correspond to Z, Y and Ψ with \mathbb{R}^{N+k} replacing \mathbb{R}^N . Let h_{θ} be defined over all of Y_0 by $h_{\theta}(q) = h_{\theta}(r)$ if $\Psi_0 q = \Psi_0 r$. By this construction $h \in C(A \times Y_0)$, h is nonnegative and h depends only upon Jacobians of maximum rank.

If (ξ, y) : $G \to \mathbf{R}^k \times \mathbf{R}^N$ then let

$$I_h(\xi, y) = \int_G h \left(y_*(x), \begin{bmatrix} I \\ \xi'(x) \\ y'(x) \end{bmatrix} \right) dx$$
$$= \int_G g \left(y_*(x), \begin{bmatrix} \xi'(x) \\ y'(x) \end{bmatrix} \right) dx = I(y)$$

and I_h is lsc. Thus h is T-convex. In a natural way $Y = \text{dom } f_\theta \subset \text{dom } h_\theta$. Furthermore, h_θ extends $f_\theta \mid T$. Thus $g_\theta = h_\theta \mid Y$ is an extension of $f_\theta \mid T$ which is convex over all of Y.

4. In this section we define a class of transformations, which we call AC, on which I is defined. This class is probably not a vector space.

Let $\mathfrak{D} = C_o^{\infty}(G)$, $L = L_1(G)$ and $L_p = L_p(G)$ for p > 1. If B is one of these spaces let $F_0B = B$, $F_iB = 0$ if j > k and, if $1 \le j \le k$, let

$$F_j B = \left\{ \omega \mid \omega = \sum_{\lambda \in \Lambda(k,j)} \omega_{\lambda} dx^{\lambda} \text{ where each } \omega_{\lambda} \in B \right\}.$$

As usual, $dx^{\lambda} = dx^{\lambda_1} \wedge \cdots \wedge dx^{\lambda_j}$.

If $\omega \in F_i L$ and if there exists $\zeta \in F_{i+1} L$ such that

$$\int \omega \wedge d\phi = (-1)^{j+1} \int \zeta \wedge \phi$$

for each $\phi \in F_{k-j-1}$, then we say that $\omega \in \mathcal{T}_j H$ and write $d\omega$ for ζ . If $d\omega$ exists, then $d\omega$ is unique.

By putting an appropriate norm on \mathfrak{F}_oH we can identify this space with $H=H^1_1(G)$. Also, $H_o=H^1_{1,o}(G)$ is the closure, in H, of $\mathfrak{D}=\mathfrak{F}_o\mathfrak{D}$.

If $\omega_n = \sum \omega_{n\lambda} dx^{\lambda}$ and $\omega = \sum \omega_{\lambda} dx^{\lambda}$ are in F_jL then $\omega_n \to \omega$ in F_jL if $\omega_{n\lambda} \to \omega_{\lambda}$ in L for each λ , where \to denotes weak convergence on compact subsets of G.

LEMMA 4.1. If $\omega_n \rightharpoonup \omega$ in F_jL , if $\omega_n \in \mathcal{F}_jH$ and if $d\omega_n \rightharpoonup \zeta$ in $F_{j+1}L$ then $\omega \in \mathcal{F}_iH$ and $d\omega = \zeta$.

Proof. Let $\phi \in F_{k-i-1}$ \mathfrak{D} . Then

$$\int \omega \wedge d\phi = \lim \int \omega_n \wedge d\phi = (-1)^{j+1} \lim \int d\omega_n \wedge \phi = (-1)^{j+1} \int \zeta \wedge \phi.$$

LEMMA 4.2. If $\omega \in \mathcal{F}_i H$ then $x^{\alpha} \omega \in \mathcal{F}_i H$ and $d(x^{\alpha}\omega)=dx^{\alpha}\wedge\omega+x^{\alpha}d\omega.$

Proof. Let $\phi \in F_{k-i-1} \mathfrak{N}$ and $\psi = x^{\alpha} \phi$ so that $d\psi = dx^{\alpha} \wedge \phi + x^{\alpha} d\phi$ and

$$\int x^{\alpha} \omega \wedge d\phi = \int \omega \wedge [d\psi - dx^{\alpha} \wedge \phi]$$

$$= \int \omega \wedge d\psi + (-1)^{j+1} \int dx^{\alpha} \wedge \omega \wedge \phi$$

$$= (-1)^{j+1} \int (x^{\alpha} d\omega + dx^{\alpha} \wedge \omega) \wedge \phi.$$

LEMMA 4.3. If $\omega \in \mathcal{F}_i H$ then $d^2\omega = 0$.

Proof. Let $\zeta = d\omega$ and $\phi \in F_{k-j-2} \mathfrak{D}$. Then $\int \zeta \wedge d\phi = (-1)^j \int \omega \wedge d^2 \phi = 0 = (-1)^j \int 0$ so that $d^2 \omega = d\zeta = 0$.

If $z \in H$ then $dz = \sum_{\alpha \in \Lambda(k,1)} z_{\alpha} dx^{\alpha}$ where $\{z_{\alpha}\}$ is the set of distribution derivatives of z. Let M be a positive integer and $s = \min\{k, M\}$. Suppose that dz^i has been defined for $i \in \Lambda(M, j)$, $j \le s - 1$. If $h \in$ $\Lambda(M, j+1), m=h_1$ and $i=h\sim\{m\}\in\Lambda(M, j)$ then we define dz^h , if $z^m dz^i \in \mathcal{F}_i H$, by $dz^h = d(z^m dz^i)$.

If $dz^{i'}$ is defined for $i \in \Lambda(M, j)$ and $\alpha \in \Lambda(k, j)$ then we define z^{i}_{α} by

$$dz^{i} = \sum_{\alpha \in \Lambda(k, j)} z_{\alpha}^{i} dx^{\alpha}$$

so that, if z is smooth, $z_{\alpha}^{i} = (\partial(z^{i_1}, \dots, z^{i_j}) / \partial(x^{\alpha_1}, \dots, x^{\alpha_j}))$. Let $y \in L^N$ and suppose that dy^{i} is defined for each $i \in \Lambda(M, s)$, where $s = \min\{N, k\}$, and thus for each $i \in \bigcup_{j=1}^{s} \Lambda(M, j)$. Then we can suppose that $J(y) = \{y_{\alpha}^{i} | (i, \alpha) \in \bigcup_{j=1}^{s} (\Lambda(N, j) \times \Lambda(k, j))\}$ is an ele-

If J(y) is defined and if $J(y) = \tau(y')$ almost everywhere then we say that $y \in AC$. By the definition of $\mathcal{F}_i H$, the components of J(y) are functions.

The following lemmas are immediate.

LEMMA 4.4. $y_* \in AC$ if and only if $y \in AC$ and $J(y) = \{y_{*\beta}^i | i \in \Lambda(k+N,j) \text{ and } \beta = (1,\ldots,k)\}.$

LEMMA 4.5. Let $j \le s = \min\{N, k\}$ and $y \in AC$. If $(i, \alpha) \in \Lambda(N, j) \times \Lambda(k, j)$ for $1 \le j \le s$ then there exists $h \in \Lambda(k + N, k)$ such that, except possibly for sign, $y_{*\beta}^h = y_{\alpha}^i$.

Let $y_n \in AC$ and $y \in L^N$ with $y_{n*}^m \to y_*^m$ in L for each $m \in \Lambda(k+N,1)$. Suppose that if $j \le k$ and $i \in \Lambda(k+N,j)$ there exists $\zeta^i \in F_j L$ such that $dy_{n*}^i \to \zeta^i$ in $F_j L$. If, in addition, $y_{n*}^m dy_{n*}^i \to y_*^m \zeta^i$ in $F_j L$ whenever $i \in \Lambda(k+N,j)$, j < k, $m \in \Lambda(k+N,1)$, and $m \notin i$ then we say that $y_n \Rightarrow y$.

THEOREM 4.6. If $y_n \Rightarrow y$ then $y \in AC$ and $J(y_n) \rightarrow J(y)$ in L.

Proof. By Lemma 4.1, J(y) is defined. By Theorem 3.4.4 [6], $y_{n*}^m dy_{n*}^i \to y_*^m dy_*^i$ in L(K) for each compact set $K \subset G$. Hence we can suppose that $y_{n*}^m dy_{n*}^i \to y_*^m dy_*^i$ almost everywhere in G. We can also suppose that $i \neq (1, 2, ..., k)$. Hence there exists $m \in \{1, ..., k\}$, $m \notin i$, such that $x^m dy_{n*}^i \to x^m dy_*^i$ so that $dy_{n*}^i \to dy_*^i$ almost everywhere.

LEMMA 4.7. If p and q are Lebesgue conjugate, if $f_n \to f$ in L_p and $g_n \to g$ in L_q then $f_n g_n \to fg$ in L.

Proof. Let E be a measurable subset of a compact subset of G. Then

$$\int_{E} (f_n g_n - f_g) \, dx = A_n + B_n$$

where $A_n = \int_E f(g_n - g) dx$ and $B_n = \int_E (f_n - f)g_n dx$. By the weak convergence, $A_n \to 0$ and $\{\int_E |g_n(x)|^q dx\}^{1/q}$ is bounded independently of n. Thus $B_n \to 0$ by the Hölder inequality.

If $y \in AC$ and if $y_{*\beta}^i \in L_p$ for each $i \in \Lambda(k \times N, k)$, where $\beta = (1, \ldots, k)$, then we set $\|J(y)\|_p = \sum_{i \in \Lambda(k \times N, k)} \|y_{*\beta}^i\|_p$. If $y_o \in AC$ let $\mathfrak{M}(y_o) = AC \cap \{y \mid y - y_o \in (H_o)^N\}$.

THEOREM 4.8. Suppose that there exists M > 0 such that for each $y \in \mathfrak{N}(y_0)$ either

- (i) $\|y\|_{\infty} \le M$ and $\|J(y)\|_{p} \le M$ for some p > 1, or
- (ii) $\|J(y)\|_q \le M$ where q = 2k/(k+1). Then $\mathfrak{M}(y_o)$ is \Rightarrow sequentially compact.

Proof. If (i) holds then $||y||_1^1$ is uniformly bounded so that there exists a sequence $\{y_n\}$ in $\mathfrak{N}(y_o)$ and $\zeta \in (H_o)^N$ such that $y_n - y_o - \zeta$ in $(H_o)^N$.

Thus $y_n - y_o \to \zeta$ in L. Let $y = y_o + \zeta$. By passing to a subsequence we can suppose that $y_n(x) \to y(x)$ a.e. By the bounded convergence theorem, $y_{n*} \to y_*$ in $(L_s)^N$ where s = p/(p-1) is Lebesgue conjugate to p. If (ii) holds then there exists a sequence $\{y_n\}$ in $\mathfrak{N}(y_o)$ and $\zeta \in (H_{q,o})^N$ such that $y_n - y_o \to \zeta$ in $(H_{p,o})^N$. Thus, by Th. 3.5.3, [6], $y_n \to y$ in L_t where 1/t = 1/q - 1/k = (k-1)/2k so that t is conjugate to q. The theorem follows by induction, Lemma 4.1 and Lemma 4.7.

5. We make use of a type of convexity studied by Tonelli to show that T-convexity is sufficient for lower semicontinuity.

According to Tonelli, a *T*-convex function f is semi-regular positive semi-normal if for each $\theta \in A$, $p, q \in Y$ with $q \neq 0$, there exists $\lambda \in \mathbf{R}$ such that $2f(\theta, p) < f(\theta, p + \lambda q) + f(\theta, p - \lambda q)$.

For the following lemma see Turner [10].

LEMMA 5.1. A necessary and sufficient condition that f be semi-regular positive semi-normal is that for each $\varepsilon > 0$ and each $(\theta, p) \in A \times Y$, there exists $\delta > 0$, $\nu > 0$, $\zeta \in Y^*$ and $\rho \in \mathbf{R}$ such that for all $\phi \in A$ with $\|\phi - \theta\| < \delta$,

(a)
$$f(\phi, q) \ge \zeta q + \rho + \nu ||q - p||$$
 for each $q \in Y$ and

(b)
$$f(\phi, q) \le \zeta q + \rho + \varepsilon \text{ if } ||q - p|| < \delta.$$

Let f be semi-regular positive. If $\zeta \in Y^*$ let

$$\rho_{t}(\theta) = \inf\{f(\theta, q) - \zeta q \mid q \in Y\}$$

for each $\theta \in A$. Thus $f(\theta, p) = \sup\{\zeta p + \rho_{\zeta}(\theta) \mid \zeta \in Y^*\}$.

Let $\sigma_{\zeta}(\phi) = \liminf_{\theta \to \phi} \rho_{\zeta}(\theta)$ where θ and ϕ belong to A, of course. Then ρ_{ζ} is upper semicontinuous, σ_{ζ} is lower semicontinuous and $\sigma_{\zeta} \leq \rho_{\zeta}$.

THEOREM 5.2. If f is semi-regular positive semi-normal, then $f(\theta, p) = \sup\{\zeta p + \sigma_{\zeta}(\theta) \mid \zeta \in Y^*\}.$

Proof. Let $\varepsilon > 0$. By Lemma 5.1 there exist $\delta > 0$, $\nu > 0$, $\zeta \in Y^*$ and $\rho \in \mathbf{R}$ such that if $\phi \in A$ and $\|\phi - \theta\| < \delta$, then

- (a) $f(\phi, q) \ge \zeta q + \rho + ||q p||$ for each $q \in Y$, and
- (b) $f(\phi, q) \le \zeta q + \rho + \varepsilon$ if $||q p|| < \delta$.

Hence $\rho_{\zeta}(\phi) \ge \rho$ for each $\phi \in A$ with $\|\phi - \theta\| < \delta$ so that $\sigma_{\zeta}(\theta) \ge \rho$ and $f(\theta, p) \le \zeta p + \sigma_{\zeta}(\theta) + \varepsilon$.

We say that f is V-convex if $f(\theta, p) = \sup\{\zeta p + \sigma_{\zeta}(\theta) \mid \zeta \in Y^*\}$ for each $\theta \in A$. Thus f is V-convex if f is semi-regular positive semi-normal.

6. In this section we show that if $f \in C(A \times Y)$ is nonnegative and T-convex, then I is lower semicontinuous.

Let $\{e^{\lambda}\}$ be a dual basis for $Y^* = e^{\lambda}e_{\mu} = \delta_{\mu}^{\lambda}$ for $e_{\mu} \in Y$. If $\zeta \in Y^*$ there exist $\zeta_{\lambda} \in \mathbb{R}$ such that $\zeta = \sum \zeta_{\lambda} e^{\lambda}$.

Let $\mathbb S$ be the collection of all finite families σ of compact subsets contained in G such that if $K \in \sigma$ and $L \in \sigma$, $|K \cap L| = 0$ whenever $K \neq L$.

If $y \in AC$, $\zeta \in Y^*$ and K is a compact subset of G, let $A(\zeta, y, K) = \zeta(\int_K J(y, x) dx) = \int_K \zeta(J(y, x)) dx$ and

$$B(\zeta, y, K) = \left(\inf\left\{\sigma_{\zeta}(y_{*}(x))\right\} \mid x \in K\right) \mid K\mid.$$

Now we define \mathcal{G} on AC by

$$\mathfrak{G}(y) = \sup_{\sigma \in S} \sum_{K \in \sigma} \sup_{\zeta \in Y^*} [A(\zeta, y, K) + B(\zeta, y, K)].$$

LEMMA 6.1. Let y_n and y_o belong to AC with $y_n - y_o \in (H_o)^N$. If $y_n - y_o \to \zeta$ in H^N and if we set $y = y_o + \zeta$ then $y - y_o \in (H_o)^N$ and $y_n \to y$ in $(L_1(K))^N$ for each compact subset K of G.

This lemma follows from Theorems 3.2.1 and 3.4.4 [6].

LEMMA 6.2. Let X be a measurable subset of G and $\{f_n\}$ be a sequence of measurable functions with $f_n(x) \to f(x)$ a.e. in X. Let $\varepsilon > 0$. Then there exists a compact set $K \subset X$ with $|X \sim K| < \varepsilon$, $f_n | K$ continuous for each n and $f_n | K \to f | K$ uniformly.

This lemma follows from Egoroff's Theorem and Lusin's Theorem.

THEOREM 6.3. Let f be V-convex and suppose that y_n and y are in $\mathfrak{M}(y_0)$. If $(y_n, J(y_n)) \rightarrow (y, J(y))$ in $L^N \times L^r$ then $\mathfrak{G}(y) \leq \liminf \mathfrak{G}(y_n)$.

Proof. Let K be a compact subset of G. By Lemma 6.1 we can suppose that $y_n \to y$ in $L(K)^N$ so that (passing to a subsequence if necessary) $y_n(x) \to y(x)$ for almost all $x \in K$. Let M > 0, $\sigma_{\xi}^M(\theta) = \min\{\sigma_{\xi}(\theta), M\}$ and let $f^M(\theta, p) = \sup\{\xi p + \sigma_{\xi}^M(\theta) \mid \xi \in Y^*\}$. It is sufficient to show that the theorem holds with f replaced by f^M . Hence we can suppose that $\sigma_{\xi}(\theta) \leq M$ for all $(\theta, \xi) \in A \times Y^*$. Let $\varepsilon > 0$. There exists $\eta \in (0, \varepsilon/M)$ such that $\int_E \xi(J(y_*(x))) dx < \varepsilon$ if E is a measurable subset of K with $|E| < \eta$. By Lemma 6.2 there exists a compact set $C \subset K$ such that $|K \sim C| < \eta$, $y_n \mid C$ is continuous and $y_n \to y$ uniformly on C. Hence

$$B(\zeta, y, C) = \left(\inf_{x \in C} \sigma_{\zeta}(y_{*}(x))\right) |C|$$

$$\geq \left(\inf_{x \in K} \sigma_{\zeta}(y_{*}(x))\right) |C| \geq B(\zeta, y, K) - \varepsilon.$$

Also there exist $x_n \in C$ such that $\sigma_{\zeta}(y_{n*}(x_n)) = \inf_{x \in C} \sigma_{\zeta}(y_{n*}(x))$. We can suppose that $x_n \to x \in C$. Now $y_n(x_n) \to y(x)$ so that $\sigma_{\zeta}(y_*(x)) \le \lim\inf \sigma_{\zeta}(y_{n*}(x_n))$. Thus $B(\zeta, y, C) \le \liminf B(\zeta, y_n, C)$ while $A(\zeta, y, C) = \lim A(\zeta, y_n, C)$. The theorem follows.

THEOREM 6.4. Let f be V-convex. If $y \in AC$ then $\mathcal{G}(y) = I(y)$.

Proof. Let K be a compact subset of G and $\zeta \in Y^*$. Then

$$\int_K f(y_*(x), J(y, x)) dx$$

$$\geq \int_{K} \left[\zeta(J(y,x)) + \sigma_{\zeta}(y_{*}(x)) \right] dx \geq A(\zeta,y,K) + B(\zeta,y,K)$$

so that $I(y) \ge \mathcal{G}(y)$ and we can suppose that $\mathcal{G}(y) < \infty$. If L is an interval contained in G let $\mathcal{S}_L = \mathcal{S} \cap \{\sigma \mid \bigcup_{K \in \sigma} K \subset L\}$ and let

$$\Phi(L) = \sup_{\sigma \in \mathbb{S}_L} \sum_{K \in \sigma} \sup_{\zeta \in Y^*} [A(\zeta, y, K) + B(\zeta, y, K)].$$

Then Φ is nonnegative, superadditive and of bounded variation. Let $D\Phi$ be the Lebesgue derivative of Φ with respect to cubes. Then $D\Phi(x) \geq \zeta(J(y,x)) + \sigma_{\zeta}(y_*(x))$ so that $D\Phi(x) \geq f(y_*(x),J(y,x))$ almost everywhere in G. Evidently $\mathcal{G}(y) \geq \sup_{\sigma \in \mathbb{S}'} \sum_{L \in \sigma} \Phi(E)$ where $\mathbb{S}' = \mathbb{S} \cap \{\sigma \mid \sigma \text{ is a family of finitely many non-overlapping intervals}\}$. Thus $\mathcal{G}(y) \geq \sup_{\sigma \in \mathbb{S}'} \sum_{L \in \sigma} \int_L f(y_*(x),J(y,x)) dx = I(y)$.

COROLLARY 6.5. The theorem holds if $f \in C(A \times Y)$ and f_{θ} is convex for each $\theta \in A$. Thus I is lsc if f is continuous and T-convex.

Proof. Let $\varepsilon > 0$ and $g(\theta, q) = f(\theta, q) + \varepsilon ||q||$ for each $(\theta, q) \in A \times Y$. Let $I_g(y) = \int_G g(y_*(x), J(y, x)) dx$. If $J(y_n) \to J(y)$ in L^r then there exists m > 0 such that $||J(y_n)|| < m$ for each n. Hence $I(y) \le I_g(y) \le \liminf I_g(y_n) = \liminf |I(y_n)| + \varepsilon ||J(y_n)|| \le \liminf |I(y_n)| + m\varepsilon$ since g is semi-regular positive semi-normal and hence V-convex.

The construction in Theorem 3.5 can be used to show that not only is T-convexity a necessary condition that I be lower semi-continuous with respect to the convergence of that theorem, but also with respect to the convergence of Corollary 6.5.

The gap between the necessary and sufficient conditions for lower semi-continuity can now be described by the fact that f can be T-convex without being continuous (but see the paragraph preceding Corollary 7.3).

Since \Rightarrow is stronger than \rightarrow , the following corollary is immediate.

COROLLARY 6.6. If
$$y_n \Rightarrow y$$
 in $\mathfrak{M}(y_o)$ then $I(y) \leq \liminf I(y_n)$.

7. We conclude with an existence theorem and some minor generalizations.

THEOREM 7.1. Let $f \in C(A \times Y)$ be nonnegative and f_{θ} be convex for each $\theta \in A$. If $\mathfrak{N}(y_o)$ is \Rightarrow compact and if $\inf\{I(y) \mid y \in \mathfrak{N}(y_o)\} < \infty$ then I attains its minimum on $\mathfrak{N}(y_o)$.

This result follows from Corollary 6.6.

COROLLARY 7.2. Suppose that there exists m > 0 such that for each $(\theta, s) \in A \times Y$ either

- (i) There exists M > 0 and p > 1 such that $||y||_{\infty} < M$ and $f(\theta, s) \ge m ||s||^p$, or
- (ii) $f(\theta, s) \ge m \|s\|^q$ where q = 2k/(k+1). If $\inf\{I(y) | y \in \mathfrak{M}(y_o)\}$ $< \infty$ then I attains its minimum on $\mathfrak{M}(y_o)$.

The corollary follows from Theorem 4.8.

Let Y_1 be a compact convex subset of Y. If $y_o \in AC$ and if $J(y_o, x) \in Y_1$ for almost all $x \in G$, then let

$$\mathfrak{M}_{1}(y_{o}) = \mathfrak{M}(y_{o}) \cap \{y \mid J(y, x) \in Y_{1} \text{ for almost all } x \in G\}.$$

Let $f \in C(A \times Y_1)$. If I is lower semicontinuous on $\mathfrak{N}_1(y_o)$ then, as before, f must be T-convex, i.e., there exists $g_{\theta} \colon Y_1 \to \mathbf{R}$ where g_{θ} is convex and extends f_{θ} for each $\theta \in A$. Since Y_1 is compact, it follows that g is continuous so, for this case, a necessary and sufficient condition that I be lower semicontinuous is that f be T-convex. Thus the next corollary follows from the preceding one.

COROLLARY 7.3. Let Y_1 be a compact convex subset of Y and $f \in C(A \times Y_1)$ be T-convex. If, in addition, f satisfies (i) or (ii) and $\inf\{I(y) \mid y \in \mathfrak{N}_1(y_o)\} < \infty$ then I attains its minimum on $\mathfrak{N}_1(y_o)$.

Let Y_2 be a compact subset of Y and $f \in C(A \times Y_2)$. Let Y_1 be the convex hull of Y_2 and let g be defined on $A \times Y_1$ by

$$g(\theta, q) = \inf \left\{ \sum_{i=1}^{n} \lambda_{i} f(\theta, p_{i}) \mid p_{i} \in Y_{2}, \right.$$
$$\lambda_{i} > 0, \sum \lambda_{i} = 1, \text{ and } \sum \lambda_{i} p_{i} = q \right\}.$$

If $g \in C(A \times Y_1)$ is T-convex and if

$$\inf\{I_{\sigma}(y) \mid y \in \mathfrak{N}_{1}(y_{\sigma})\} < \infty,$$

where $I_g(y) = \int_G g(y_*(x), J(y, x)) dx$, then, by Corollary 7.3, there exists $z \in \mathfrak{M}_1(y_o)$ such that $g(z) = \min\{I_g(y) \mid y \in \mathfrak{M}_1(y_o)\}$. Then z is called a relaxed minimizer for f on Y_2 .

REFERENCES

- 1. J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337-403.
- 2. Lamberto Cesari, An existence theorem of calculus of variations on parametric surfaces, Amer. J. Math., 74 (1952), 265-295.
- 3.____, Surface Area, Princeton Press, 1956.
- 4. _____, A necessary and sufficient condition for lower semicontinuity, Bull. Amer. Math. Soc., 80 (1974), 467-472.
- 5. C. B. Morrey, Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53.
- 6. _____, Multiple Integrals in the Calculus of Variations, Springer Verlag Vol. 130, 1966.
- 7. Edward Silverman, A sufficient condition for the lower semicontinuity of parametric integrals, Trans. Amer. Math. Soc., 167 (1972), 465-469.
- 8. _____, Lower semicontinuity of parametric integrals, Trans. Amer. Math. Soc., 175 (1973), 499-508.
- 9. _____, Strong quasi-convexity, Pacific J. Math., 46 (1973), 549-554.
- 10. L. H. Turner, The direct method in the calculus of variations, Purdue Thesis, 1957.

Received December 12, 1980.

PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907