APPLICATIONS OF DIFFERENTIATION OF ℓ_{p}-FUNCTIONS TO SEMILATTICES

P. H. Maserick

Abstract

Let S be a commutative semigroup with identity 1 such that $x^{2}=x$ for each $x \in S$ (i.e. S is a semilattice). Let Γ denote the set of semicharacters equipped with topology of simple convergence and μ be a fixed probability measure on Γ. Those real-valued functions f on S which admit disintegrations of the form $f(x)=\int_{\Gamma} \rho(x) d \mu_{f}(\rho)$ where either $d \mu_{f}=f^{\prime} d \mu$ with $f^{\prime} \in L_{p}(\mu)(1 \leq p \leq \infty)$ or μ_{f} is singular with respect to μ, are characterized. This extends the previous characterization of Alo and Korvin from the case where p is either 1 or ∞ to all $p \in[1, \infty]$. Applications of this theory to the classical L_{p}-spaces on the n-cube are also presented. The main applications occur upon specializing to the case where S is a Boolean algebra and the functions on S that are being disintegrated are additive. Not only is the Darst decomposition theorem easily recovered, but also the theory of V^{P}-spaces of set functions introduced by Bochner and extended by Leader is reproved from the point of view of "differentiation". As a by-product, it is shown that every non-atomic probability measure is in the closed convex hull (topology of simple convergence) of those zero-one-valued additive set functions which are not countably additive; a curious result when applied to Lebesgue measure.

1. Preliminary. For each $x \in S$, the shift operator E_{x} is defined on the class of all real-valued functions $f \mid S \rightarrow \mathbf{R}$ by $\left(E_{x} f\right)(y)=f(x y)$. Observe that $E_{x} E_{y}=E_{x y}$ and E_{1} is the identity operator which we will also denote by I. We will be interested in certain difference operators of the form $\Delta=E_{x} \Pi_{j=1}^{k}\left(I-E_{x}\right)$ where $x, x_{1}, \ldots, x_{k} \in S$ and introduce the notation $\Delta f\left(y x ;\left\{x_{j}\right\}\right)=(\Delta f)(y)$, at all times distinguishing between the function Δf and its evaluation $(\Delta f)(y)$, at y. It follows that $\Delta f(1)$ is the k th difference of $f\left(\Delta f\left(x ; x_{1}, \ldots, x_{k}\right)\right)$ as defined in [6 and 8]. Recall that a real-valued function f on S is called completely monotonic (CM) if (Δf)(1) ≥ 0 for all choices of Δ. The class $\mathrm{CM}(S)$ of all completely monotonic functions is the same as the "positive definite functions" discussed in [12] and the difference operator Δ can be seen to be the operator " L " defined therein. Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be a finite subset and Λ_{X} (Λ, when X is understood) denote the set of all σ_{X} (σ, when X is understood) of zero-one-valued functions on $\{1,2, \ldots, k\}$ and let Δ_{σ} denote the difference operator $\prod_{j=1}^{k}\left(E_{x}\right)^{\sigma}{ }^{\sigma}\left(I-E_{x}\right)^{1-\sigma}{ }^{1}$, where we adopt the convention that an operator (or member of any semigroup) to the power 0 is the identity even if that member is 0 itself. If f is a real-valued function on S then, following [6], we set $\|f\|_{X}=\Sigma_{\sigma \in \Lambda_{X}}\left|\Delta_{\sigma} f(1)\right|$. The triangle inequality implies $\|f\|_{X}$ is an increasing function of X (ordered by inclusion) and
we set $\|f\|=\lim _{X}\|f\|_{X}$. Functions in the set $\operatorname{BV}(S)=\{f \mid\|f\|<\infty\}$ are called functions of bounded variation (or BV-functions) and are discussed thoroughly in [6] and [9]. Since $\Sigma_{\sigma \in \Lambda} \Pi_{j} E_{x_{j}}^{\sigma_{j}}\left(I-E_{x_{j}}\right)^{1-\sigma_{j}}=$ $\Pi_{j}\left(E_{x_{1}}+\left(I-E_{x_{1}}\right)\right)=I$ we have $\Sigma_{\sigma} \Delta_{\sigma} f=f$. Thus $\operatorname{CM}(S) \subset \operatorname{BV}^{\prime}(S)$ and $\|f\| \stackrel{=}{=} f(1)$ if $f \in \mathrm{CM}(S)$.

Let g be a fixed completely monotonic function normalized by the condition $g(1)=1$. Following [12] we define a real-valued function f on S to be continuous (with respect to g) if for each $\varepsilon>0$ there exists $\delta>0$ such that $\Sigma_{\sigma \in T \subset \Lambda_{x}}\left|\Delta_{\sigma} f(1)\right|<\varepsilon$ whenever $\Sigma_{\sigma \in T \subset \Lambda_{x}} \Delta_{\sigma} g(1)<\delta$. It follows from [11, Th. A] see also [10] or [12] that every continuous function is also of bounded variation. The set of all continuous functions with variation norm $\|\cdot\|=\|\cdot\|_{1}$ will be denoted by $\mathfrak{L}_{1}(g)$. A BV-function f will be called singular (with respect to g) if given $\varepsilon>0$ there exists a finite subset X of S and $T \subset \Lambda_{X}$ such that both $\Sigma_{\sigma \in T}\left|\Delta_{\sigma} f\right|<\varepsilon$ and $\Sigma_{\sigma \oplus T} \Delta_{\sigma} g(1)<\varepsilon$. It will follow from Th. 1.1 below that every BV -function f admits a unique decomposition of the form $f_{1}+f_{2}$ with f_{1} continuous and f_{2} singular. Moreover $\|f\|=\left\|f_{1}\right\|+\left\|f_{2}\right\|$.

For $1<p<\infty$ and with the understanding that $0 / 0=0$, we set $\|f\|_{(p, X)}^{p}=\Sigma_{\sigma \in \Lambda_{X}}\left|\Delta_{\sigma} f(1)\right|^{p} /\left[\Delta_{\sigma} g(1)\right]^{p-1}$. It follows that $\|f\|_{(p, X)}$ increases with p and X cf. [10] and we define $\|f\|_{p}^{p}=\lim _{X}\|f\|_{(p, X)}^{p}$. For $p=\infty$, we define $\|f\|_{\infty}=\sup _{\Delta}|\Delta f(1)| / \Delta g(1)$ and set $\mathcal{L}_{p}(g)=\left\{f \mid\|f\|_{p}\right.$ $<\infty$ \} for all $1 \leq p \leq \infty$.

A non-identically zero, real-valued function ρ on S is called a semicharacter if $\rho(x) \rho(y)=\rho(x y)$ for all $x, y \in S$. The set Γ of all semicharacters on S will be given the topology of simple convergence. Each $\rho \in \Gamma$ is zero-one-valued and $\Delta \rho\left(x ;\left\{x_{j}\right\}\right)=\rho(x) \Pi_{j}\left(1-\rho\left(x_{j}\right)\right)$. The space Γ is compact and it follows [6], that the collection \Re of all sets $R_{\Delta}=\{\rho \in \Gamma \mid$ $(\Delta \rho)(1)=1\}$ is a basis of open and closed subsets for Γ.

Let $\mathfrak{N}(\Gamma)$ denote the regular Borel measures on Γ and $\mathscr{N}^{+}(\Gamma)$ the non-negative members of \mathfrak{N}.

Theorem 1.1. A real-valued function f on S admits a (necessarily unique) disintegration of the form $f(x)=\int_{\Gamma} \rho(x) d \mu_{f}(\rho)$ where
(i) $\mu_{f} \in \mathscr{\Re}^{+}(\Gamma)$ if and only iff is CM .
(ii) $\mu_{f} \in \mathscr{H}(\Gamma)$ if and only iff is BV.
(iii) $d \mu_{f}=f^{\prime} d \mu_{g}$ with $f \in L_{p}\left(\mu_{g}, \Gamma\right)$ if and only if $f \in \mathfrak{Z}_{p}(g)(1 \leq p \leq$ $\infty)$
(iv) μ_{f} is singular with respect to μ_{g} if and only if f is singular.

Moreover the spaces $\mathcal{L}_{p}(g)$ and $L_{p}\left(\mu_{g}, \Gamma\right)$ are linearly isometric via $f \rightarrow f^{\prime}$ as also are the spaces of BV -functions and bounded measures each with variation norm.

Proof. Direct proofs of (i) and (ii) as well as the last mentioned isometry statement are contained in [6] and [8]. Direct proofs of the
remaining part of the assertion may be found in [10]. Another proof of the theorem may be accomplished by appealing to the real algebra \mathcal{Q} generated by the shift operators on S and the set up of [9 and 11]. The set τ which generates the positive cone P is taken to be $\left\{E_{x}, I-E_{x} \mid x \in S\right\}$. The idempotent operation on S allows us to restrict our attention to partitions of unity of the form $\left\{\Pi_{J} E_{x_{j}}^{\sigma_{j}}\left(I-E_{x_{j}}\right)^{1-\sigma_{j}} \mid \sigma \in \Lambda_{X}\right\}$. Reduction of the results in [11] to our setting is then accomplished upon identification of the linear functionals on \mathbb{Q} with the functions on S via $F \rightarrow f$, where $F\left(E_{x}\right)=f(x)$. Note that this biuniquely identifies the positive multiplicative linear functionals on \mathscr{Q} with Γ.

The possibilities offered by Th. 1.1 of obtaining decompositions of BV-functions from known decompositions of measures are numerous. We define a semicharacter to be a singularity of f if there exists $\alpha>0$ such that $|f|-\alpha \rho \in \operatorname{CM}(S)$. Then ρ is a singularity of a BV-function f if and only if ρ is an atom of μ_{f}. The decomposition of μ_{f} into its atomic and non-atomic part applies to give

$$
f=f_{1}+\sum_{i=1}^{\infty} \alpha_{\imath} \rho_{\imath}
$$

where f_{1} has no singularities.
Corollary 1.2. Every BV-function f admits three (unique) decompositions of the form $f=f_{1}+f_{2}$ with $\|f\|=\left\|f_{1}\right\|+\left\|f_{2}\right\|$; each respectively satisfying
(i) f_{1} has no singularities and f_{2} is of the form $\sum_{i=1}^{\infty} \alpha_{i} \rho_{i}$
(ii) f_{1} and $-f_{2}$ are completely monotonic
(iii) f_{1} is continuous and f_{2} is singular.

In order to establish an \mathscr{L}_{p}-inversion formula to recover the density function f^{\prime} of a representing measure of the form $f^{\prime} d \mu_{g}$ we consider the linear span of $\left\{E_{x} g \mid x \in S\right\}$ and following [1] call each of its members polygonal functions. Since $\left(E_{y} g\right)(x)=\int_{\Gamma} \rho(x) \rho(y) d \mu_{g}(\rho)$, then it follows that the evaluation function $\rho \rightarrow \rho(y)$ is the derivative of $E_{y} g$, so that linearity of the differentiation map $f \rightarrow f^{\prime}$ gives

$$
\begin{equation*}
\left(\sum_{j} a_{j} E_{x} g\right)^{\prime}(\rho)=\sum_{j} a_{j} \rho\left(x_{j}\right) \tag{1.2.1}
\end{equation*}
$$

The Stone-Weierstrass theorem implies that these derivatives are uniformly dense in the continuous functions $C(\Gamma)$ on Γ and hence in $L_{p}\left(\mu_{g}\right)$ for $1 \leq p<\infty$. In particular the derivatives of polygonal functions of the form

$$
\begin{equation*}
f_{X}=\sum_{\sigma \in \Lambda_{X}}\left[\Delta_{\sigma} f(1) / \Delta_{\sigma} g(1)\right] \Delta_{\sigma} g \tag{1.2.2}
\end{equation*}
$$

are computed to be

$$
\begin{equation*}
f_{X}^{\prime}=\sum_{\sigma \in \Lambda_{X}}\left[\Delta_{\sigma} f(1) / \Delta_{\sigma} g(1)\right] \Delta_{\sigma} \rho(1) \tag{1.2.3}
\end{equation*}
$$

The following proposition is of interest and will be referred to again in $\S 3$.
Proposition 1.3. If f is polygonal there exists a finite set X such that $f=f_{Y}$ whenever $Y \supset X$.

Proof. Suppose $f=\sum_{j} a_{j} E_{x_{j}} g$. Set $X=\left\{x_{j}\right\}_{j}$ then $f=$ $\sum_{j} a_{j}\left(\sum_{\sigma \in \Lambda_{X}} \Delta_{\sigma} E_{x_{j}} g\right)=\sum_{j} a_{j}\left(\sum_{\sigma_{j}=1} \Delta_{\sigma} g\right)=\sum_{\sigma \in \Lambda_{X}} b_{\sigma} \Delta_{\sigma} g$, where the last equality is obtained by reversing the order of summation and setting $b_{\sigma}=\sum_{\sigma_{j}=1} a_{j}$. Thus if X is a finite subset of S which contains X, we get $f=\sum_{\sigma_{X}}\left(\Sigma_{\sigma_{Y}} b_{\sigma_{X}} \Delta_{\sigma_{X}} \Delta_{\sigma_{Y}} g\right)$ or

$$
\begin{equation*}
f=\sum_{\sigma_{Y}} b_{\sigma_{Y}} \Delta_{\sigma_{Y}} g \tag{1.3.1}
\end{equation*}
$$

where $b_{\sigma_{Y}}=b_{\sigma_{X}}$ whenever $\Delta_{\sigma_{X}} \cdot \Delta_{\sigma_{Y}}=\Delta_{\sigma_{Y}}$. If we apply $\Delta_{\sigma_{Y}}$ to both sides of (1.3.1) for a fixed σ_{Y} and evaluate at 1 , then we obtain $\Delta_{\sigma_{Y}} f(1)=$ $b_{\sigma_{Y}} \Delta_{\sigma_{Y}} g(1)$ and the assertion follows.

Theorem 1.4. (L_{p}-inversion). If $f \in \mathscr{L}_{p}(g)$ for $1 \leq p<\infty$ then $\lim _{X}\left\|f^{\prime}-f_{X}^{\prime}\right\|_{p}=0$.

Proof. Again we can appeal to the general algebraic setting of [9 and 11] as in the proof of Th. 1.1. However, Prop. 1.3 which is not available in that generality, provides a simpler and more illuminating approach and we refer the reader to [10] for the details.

Corollary 1.5. If $1 \leq p<\infty, 1<q \leq \infty$ and $(1 / p)+(1 / q)=1$ then $\mathfrak{L}_{p}^{*}(g)=\mathcal{L}_{q}(g)$ via the pairing

$$
\langle f, h\rangle=\lim _{X} \sum_{\sigma \in \Lambda_{X}} \Delta_{\sigma} f(1) \Delta_{\sigma} h(1) / \Delta_{\sigma} g(1) .
$$

Proof. The Riesz representation theorem and Th. 1.1 imply $\mathcal{L}_{p}^{*}(g)=$ $\mathcal{L}_{q}(g)$ via the pairing $\left\langle f^{\prime}, h^{\prime}\right\rangle=\int_{\Gamma} f^{\prime}(\rho) h^{\prime}(\rho) d \mu_{g}(\rho)$. But, $\left\langle(\Delta g)^{\prime}, h^{\prime}\right\rangle=$ $\Delta h(1)$, and since $\left\langle\cdot, h^{\prime}\right\rangle$ is continuous, we can apply the inversion theorem to obtain:

$$
\begin{aligned}
\left\langle f^{\prime}, h^{\prime}\right\rangle & =\lim _{X}\left\langle f_{X}^{\prime}, h^{\prime}\right\rangle=\lim _{X}\left\langle\sum_{\sigma \in \Lambda_{X}}\left[\Delta_{\sigma} f(1) / \Delta_{\sigma} g(1)\right]\left(\Delta_{\sigma} g\right)^{\prime}, h^{\prime}\right\rangle \\
& =\lim _{X} \sum_{\sigma \in \Lambda_{X}}\left(\Delta_{\sigma} f(1) \Delta_{\sigma} h(1) / \Delta_{\sigma} g(1)\right)=\langle f, h\rangle
\end{aligned}
$$

2. Applications to differentiation and the classical Lebesgue spaces. Let S be the closed interval $[0,1]$ under the semilattice operation $x y=$ $\min [x, y]$, and set $g(x)=x$. Then $\Delta f\left(x ;\left\{x_{j}\right\}\right)=f(x)-f\left(x \max _{j}\left\{x_{j}\right\}\right)$ and it follows that the completely monotonic functions are just the non-negative, non-decreasing functions on $[0,1]$. Moreover the definitions of bounded variation and continuity (with respect to g) given in $\S 1$ agree with the classical notions with the added restriction to the classical definition of absolute continuity that $f(0)=0$. The semicharacters are the characteristic functions of the form $1_{(x, 1]}$ and $1_{[x, 1]}(x \in S)$ and the map $\Pi \mid \Gamma \rightarrow S$ defined by $\Pi\left(1_{(x, 1]}\right)=\Pi\left(1_{[x, 1]}\right)=x$ is seen to be continuous. Let the representing measure be μ_{g} and its transformed measure, ($\Pi \mu_{g}$), be defined on $[0,1]$ in the usual way by $\left(\Pi \mu_{g}\right)(A)=\mu_{g}\left[\Pi^{-1}(A)\right]$ for each Borel set A. Since μ_{g} has no atoms, an examination of ($\Pi \mu_{g}$) on the subintervals of $[0,1]$, shows the transformed measure to be Lebesgue measure. Let $D f$ denote the ordinary derivative of $f \in \mathcal{L}_{p}(g)$. Since the evaluation function $\rho \rightarrow \rho(x)$ is seen to agree (μ_{g}-almost everywhere) with the composition $1_{[0, x]} \circ \Pi$, standard integration theory shows $f(x)=$ $\int_{0}^{x}(D f) d t=\int_{\Gamma} \rho(x)[(D f) \circ \Pi](\rho) d \mu_{g}(\rho)$, from which we get

$$
\begin{equation*}
(D f) \circ \Pi=f^{\prime} \quad\left(\mu_{g} \text {-almost everywhere }\right) \tag{2.0.1}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{\Gamma}\left|f^{\prime}(\rho)\right|^{p} d \mu_{g}(\rho)=\int_{0}^{1}|(D f)(x)|^{p} d x \quad(1 \leq p<\infty) \tag{2.0.2}
\end{equation*}
$$

We summarize the foregoing as follows
Proposition 2.1. If $1 \leq p<\infty$, then in the above notation, $\mathfrak{l}_{1}(g)$ is the set of all functions f on $[0,1]$ which are absolutely continuous in the classical sense and for which $f(0)=0$. The space $\mathscr{L}_{p}(g)$ is isometric to the classical Lebesgue space $L_{p}(d x)$ via differentiation.

Let $X=\left\{x_{j}\right\}_{j}$ be a finite subset of $[0,1]$ such that $x_{j}<x_{j+1}, f \in \mathcal{L}_{p}(g)$. Then the approximating polygonal function f_{X} used in the inversion (Th . 1.4) are of the form

$$
\begin{equation*}
f_{X}(x)=\sum_{j} \frac{f\left(x_{j}\right)-f\left(x_{j-1}\right)}{x_{j}-x_{j-1}}\left(x-x_{j-1}\right) 1_{\left(x_{j-1}, x_{j}\right]}(x) \tag{2.1.1}
\end{equation*}
$$

That is, f_{X} is the linear approximation that interpolates f at each node point x_{j}. Note that $D f_{X}$ is the expected step function approximation to $D f$. If $1<p<\infty$ then we have

$$
\begin{equation*}
\|f\|_{p}=\lim _{X} \sqrt[p]{\left.\sum_{j}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|^{p} /\left(x_{j}-x_{j-1}\right)^{P-1}\right)} \tag{2.1.2}
\end{equation*}
$$

$$
\begin{equation*}
\|f\|_{1}=\lim _{x} \sum_{j}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \tag{2.1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{\infty}=\sup [|f(x)-f(y)| /|x-y|] \tag{2.1.4}
\end{equation*}
$$

Condition (2.1.4) shows that $\mathcal{L}_{\infty}(g)$ is in fact the space of function satisfying the usual Lipschitz condition with the additional property, $f(0)=0$.

Observe that Cor. 1.2 (ii) is just the usual decomposition of a BV-function f into its two non-negative, non-decreasing parts. Part (iii) of the Corollary along with (2.0.2) imply $f=f_{1}+f_{2}$ with f_{1} absolutely continuous and $D f_{2}=0$ a.e. It is easily verified that a function $h \in \mathrm{CM}(S)$ is continuous at x if and only if both $h-\alpha 1_{(x, 1]}$ and $h-\alpha 1_{[x, 1]}$ are not CM for any $\alpha>0$. Using the familiar fact that a BV-function is continuous if and only if its variation is continuous, one can characterize the BV-functions with no singularities as the continuous BV-functions. Thus Cor. 1.2(i) provides the familiar decomposition of a BV-function as

$$
f=f_{1}+\sum_{j=1}^{\infty} \alpha_{j} 1_{(x, 1]}+\sum_{j=1}^{\infty} \alpha_{j} 1_{\left[x_{j}, 1\right]}
$$

where f_{1} is continuous and BV .
Finally we remark that the above extends to the n-dimensional cube with coordinate-wise operations, and leave the details to the reader.
3. Applications to Boolean algebras and finitely additive set functions. We assume that S admits a second operation \vee under which S is a distributive lattice. Recall [2] that a valuation is a real-valued function f on S which satisfies $f(x)+f(y)=f(x y)+f(x \vee y)(\Delta f(x \vee y ; x, y)=$ 0) for all $x, y \in S$. It is easily verified in [6] that every valuation satisfies

$$
\begin{equation*}
\Delta f\left(x ;\left\{x_{j}\right\}\right)=\Delta f\left(x ; \vee_{j} x_{j}\right) \tag{3.0.1}
\end{equation*}
$$

Thus a valuation f is completely monotonic if and only if $f(x) \geq 0$ and $\Delta f(x ; y) \geq 0$ for all $x, y \in S$. Moreover the formula for the variation of a valuation reduces to

$$
\begin{equation*}
\|f\|=\lim _{X} \sum_{\sigma \in \Lambda_{X}}\left|\Delta f\left(\Pi x_{j}^{\sigma_{j}} ; \vee x_{j}^{1-\sigma_{j}}\right)\right| \quad\left(x_{j} \in X\right) \tag{3.0.2}
\end{equation*}
$$

with analogous forms for $\|f\|_{p}$. While formally different, this definition of variation is seen in [6] to be equivalent to that given in Birkhoff [2, p. 74].

Let Γ_{V} denote the set of all $\rho \in \Gamma$ such that ρ is a valuation.

Proposition 3.1. Γ_{V} is a closed subset of Γ. Moreover a BV-function f is a valuation if and only if its representing measure μ_{f} is supported by Γ_{V}.

Proof. Let $\rho_{0} \in \Gamma \backslash \Gamma_{V}$. Then there exist $x, y \in S$ such that $\Delta \rho_{0}(x \vee y ; x, y)=1$ so that $R_{\Delta}=\{\rho \in \Gamma \mid \Delta \rho(x \vee y ; x, y)=1\}$ is an open (and closed) set which contains ρ_{0} but does not intersect Γ_{V}. Thus Γ_{V} is closed. If f is a BV-valuation then $\mu_{f}\left(R_{\Delta}\right)=\Delta f(x \vee y ; x, y)=0$. Thus μ_{f} is supported by Γ_{V}. Conversely if μ_{f} is supported by Γ_{V}, then $\Delta f(x \vee y ; x, y)=\int_{\Gamma} \Delta \rho(x \vee y ; x, y) d \mu_{f}(\rho)=0$ so that f is a valuation.

We further specialize to the case where $S\left(\cdot, \vee,^{\prime}\right)$ is a Boolean algebra of subsets of a set Ω. Now it must be remembered that each $x, y \in S$ is a set. Further $x y=x \cap y, 0=\varnothing, 1=\Omega$ and $x^{\prime}=\Omega \backslash x$. The valuations f such that $f(0)=0$ are exactly the functions with the property that $f(x \vee y)=f(x)+f(y)$ whenever $x y=0$, i.e. the additive functions. Since

$$
\begin{equation*}
\Delta f(x ; y)=f\left(x y^{\prime}\right) \tag{3.1.1}
\end{equation*}
$$

we see that an additive f is completely monotonic if and only if it is non-negative. If we introduce the notation

$$
\begin{equation*}
x_{\sigma}=\prod_{j} x_{j}^{\sigma}\left(x_{j}^{\prime}\right)^{1-\sigma}, \quad\left(\sigma \in \Lambda_{X}\right) \tag{3.1.2}
\end{equation*}
$$

then $\left\{x_{\sigma} \mid \sigma \in \Lambda_{X}\right\}$ is a typical partition of Ω into disjoint subsets by member of S. Applying (3.1.1) and (3.1.2) gives

$$
\|f\|_{X \cup X^{\prime}}=\sum_{\sigma \in \Lambda_{X}}\left|f\left(x_{\sigma}\right)\right|
$$

so that

$$
\begin{equation*}
\|f\|=\lim _{X} \sum_{\sigma \in \Lambda_{X}}\left|f\left(x_{\sigma}\right)\right| \tag{3.1.3}
\end{equation*}
$$

It follows that the definition of variation given here agrees with conventional usage for a finitely additive set function, cf. [5]. Moreover it is clear that the definitions of singularity and continuity introduced in $\S 1$ reduce to those given by Darst [4] for this special case where Cor. 1.2 (iii) has already been observed. However, even in this case the methods used under the present set up provide a simplified proof because of our access to the Lebesgue decomposition via the map $f \rightarrow \mu_{f}$ cf. [10]. The additive members of Γ_{V} are the characteristic functions of ultrafilters. In fact, the identically 1 function is the only member of Γ_{V} which is not additive and it is seen to be an isolated point. It follows by the same reasoning used in Prop. 3.1
that μ_{f} is supported by $\Gamma_{V} \backslash\{1\}$. In summary we assert

Proposition 3.2. Let g be additive and non-negative and let f be continuous with respect to g, then
(3.2.1) f is additive and BV

$$
\begin{align*}
& \|f\|_{p}^{p}=\lim _{X} \sum_{\sigma \in \Lambda_{X}}\left|f\left(x_{\sigma}\right)\right|^{p} /\left[g\left(x_{\sigma}\right)\right]^{p-1} \quad \text { for } 1<p<\infty \tag{3.2.2}\\
& \|f\|_{\infty}=\sup _{x}[|f(x)| / g(x)] \tag{3.2.3}
\end{align*}
$$

The polygonal functions f_{X} are of the form:

$$
\begin{equation*}
f_{X}=\sum_{\sigma \in \Lambda_{X}}\left[f\left(x_{\sigma}\right) / g\left(x_{\sigma}\right)\right] E_{x_{\sigma}} g \tag{3.2.4}
\end{equation*}
$$

(3.2.5) If $1<p<\infty,(1 / p)+(1 / q)=1$ then the dual $\mathfrak{L}_{p}^{*}(g)$ of $\mathfrak{L}_{p}(g)$ is $\mathfrak{L}_{q}(g)$ under the pairing $\langle f, h\rangle=\lim _{X} \Sigma_{\sigma \in \Lambda_{X}} f\left(x_{\sigma}\right) h\left(x_{\sigma}\right) / g\left(x_{\sigma}\right)$.

Remark 3.3 If g is additive, the spaces $\mathcal{L}_{p}(g)$ are exactly the V^{p} spaces. Consequently each V^{p}-space is isometric to the Lebesgue space $L_{p}\left(\mu_{g}\right)$ on Γ_{A}.

Let $L_{p}(g)$ denote the Lebesgue space $\left\{\left.F\left|\int_{\Omega}\right| F\right|^{p}(\omega) d g(\omega)<\infty\right\}$ defined for a not necessarily countable additive $g(1 \leq p<\infty)$, cf. [5, III.3]. Recall that $L_{p}(g)$ need not be complete and observe the distinction between $L_{p}(g)$ as a possibly incomplete Banach space of functions F on Ω, $L_{p}\left(\mu_{g}\right)$ as a complete space of functions on Γ_{A} and $\sum_{p}(g)$ as a V^{p}-space of additive set functions on the Boolean algebra S. Following usual conventions we will call a function $F \in L_{1}(g)$ the Radon-Nikodym derivative of an additive $f \mid S \rightarrow \mathbf{R}$ if $f(x)=\int_{x} F(\omega) d g(\omega)$. Then f is called the antiderivative of F. The derivative is unique when it exists and in such cases will be denoted by $d f / d g$. The following theorem is essentially contained in [3]. We offer this alternate proof here in part as an application of $\S 1$ and in part as motivation of our point of view concerning differentiation. In particular, it indicates the necessity of seeking the derivative of an $\mathcal{L}_{p}(g)$-function on the structure space Γ_{A} rather than Ω when $L_{p}(g)$ is incomplete.

Theorem 3.4. If $1 \leq p<\infty$ then $L_{p}(g)$ is densely embedded in $\mathcal{L}_{p}(g)$ via antidifferentiation. Thus $\mathcal{L}_{p}(g)$ (hence $L_{p}\left(\mu_{g}\right)$) represents the completion of $L_{p}(g)$. The latter space is complete if and only if the Radon-Nikodým derivative $d f / d g$ exists for each $f \in \mathcal{L}_{p}(g)$.

Proof. Let $F \in L_{p}(g)$ and $T \mid L_{p}(g) \rightarrow \mathcal{L}_{p}(g)$ be the antidifferentiation map. We apply Hölder's inequality to get

$$
\begin{aligned}
\sum_{\sigma \in \Lambda_{X}} \frac{\left|T(F)\left(x_{\sigma}\right)\right|^{p}}{\left[g\left(x_{\sigma}\right)\right]^{p-1}} & =\sum_{\sigma \in \Lambda_{X}} \frac{\left|\int_{x_{\sigma}} F(\omega) d g(\omega)\right|^{p}}{\left[g\left(x_{\sigma}\right)\right]^{p-1}} \\
& \leq \sum_{\sigma \in \Lambda_{X}} \int_{x_{\sigma}}|F|^{p}(\omega) d g(\omega)=\|F\|_{p}^{p} \quad \text { for } p>1
\end{aligned}
$$

It follows that $\|T(F)\|_{p} \leq\|F\|_{p}$ for all $p \geq 1$, with equality holding when F is a simple function and X is sufficiently large. In the latter event one finds $T(F)$ to be a polygonal function of the form

$$
T(F)(x)=\sum_{\sigma \in \Lambda_{X}} \frac{T(F)\left(x_{\sigma}\right)}{g\left(x_{\sigma}\right)} g\left(x x_{\sigma}\right)
$$

Thus T is a continuous linear map of $L_{p}(g)$ into $\mathcal{L}_{p}(g)$ which preserves the norm of each simple function. Since the simple functions are known to be dense in $L_{p}(g)$ [5, p. 125], T is a norm preserving linear injection. But since the polygonal functions are dense in $\varrho_{p}(g)$, we can complete the proof of the first assertion by showing that $d f / d g$ is a simple function whenever f is polygonal. Clearly, $d E_{x} g / d g=1_{x}$ and it follows that $d E_{X} / d g=\Sigma_{\sigma \in \Lambda_{X}}\left[f\left(x_{\sigma}\right) / g\left(x_{\sigma}\right)\right] 1_{x_{\sigma}}, g$-almost everywhere. The first assertion follows since Prop. 1.3 implies every polygonal function f is of the form f_{X}. The remaining assertions are clear.

From the above proof we can assert
Corollary 3.5. If $f \in \mathcal{L}_{p}(g)$ for $1 \leq p<\infty$ and the Radon-Nikodým derivative df/dg exists then the Radon-Nikodým net $\Sigma_{\sigma \in \Lambda_{X}}\left[f\left(x_{\sigma}\right) / g\left(x_{\sigma}\right)\right] 1_{x_{\sigma}}$ converges in the $L_{p}(g)$-metric to $d f / d g$.

The structure space $\Gamma_{V} \backslash\{1\}$ which is just the set of characteristic functions of S-ultrafilters on Ω will be denoted by Γ_{A}. The characteristic function of an ultrafilter which contains a smallest member of S will be called a principal semicharacter. A principal semicharacter is then one of the form:

$$
\rho_{y}(x)= \begin{cases}0 & \text { if } x y=0 \\ 1 & \text { if } x y=y\end{cases}
$$

Since the neighborhood $\left\{\rho \in \Gamma_{A} \mid \rho(y)=1\right\}$ only contains ρ_{y} we have
Remark 3.6. The set Γ_{p} of principal semicharacters is discrete in Γ_{A}.

If $x \in S$ with $|f|(x) \neq 0$ and $|f|(y)$ is either 0 or $|f|(x)$ for each $y \in S$ such that $y \subset x$, then x will be called an atom for f. If f has no atoms it will be called non-atomic. At the other extreme, if every $x \in S$ for which $|f|(x) \neq 0$, contains an atom then f will be called completely atomic. It is easily verified that every additive BV-function f on S admits a unique decomposition of the form $f=f_{1}+f_{2}$, where f_{1} is completely atomic and f_{2} is non-atomic.

Theorem 3.7. Let f be additive and BV . If f is non-atomic then μ_{f} is supported by $\Gamma_{A} \backslash \Gamma_{p}$. If μ_{f} is concentrated on Γ_{p} then f is completely atomic and countably additive.

Proof. Suppose f is non-atomic and let $\rho_{y} \in \Gamma_{p}$ in the above notation. Then $\mu_{f}\left(\left\{\rho_{y}\right\}\right)=\mu_{f}\left\{\rho \in \Gamma_{A} \mid \rho(y)=1\right\}=f(y)=0$, since y is not an atom of f. Thus $\left\{\rho_{y}\right\}$ is a neighborhood of ρ_{y} with measure zero. Therefore ρ_{y} is not in the support of μ_{f}. The second assertion follows because if μ_{f} is concentrated on Γ_{p} then f is of the form $\sum_{i=1} \alpha_{i} \rho_{y_{i}}$, with y_{i} minimal.

In sharp contrast to the usual weak* approximation of probability measures by point masses we offer

Corollary 3.8. Every non-negative, non-atomic, additive function f with $f(\Omega)=1$ is in the closed convex hull of $\Gamma_{A} \backslash \Gamma_{p} ;$ principal semicharacters are not.

Proof. Recall that we have imposed the topology of simple convergence on the finitely additive BV -functions and the w^{*}-topology on $\mathfrak{N}(\Gamma)$. The set $\mathscr{R}_{1}^{+}\left(\Gamma_{A} \backslash \Gamma_{p}\right)$ of probability measures on $\Gamma_{A} \backslash \Gamma_{p}$ is the closed convex hull of $\left\{\mu_{\rho} \mid \rho \in \Gamma_{A} \backslash \Gamma_{p}\right\}$. The first assertion follows since the theorem implies the map $f \rightarrow \mu_{f}$ is an affine homeomorphism of the set of all f satisfying its first hypothesis into $\Gamma_{A} \backslash \Gamma_{p}$. Finally suppose $\rho_{y} \in \Gamma_{p}$ is in the closed convex hull. Then we can find $\alpha_{j}>0, \rho_{j} \in \Gamma_{A} \backslash \Gamma_{p}$ for $j=1,2, \ldots, n$ with $\Sigma_{j} \alpha_{j}=1$ such that $1=\sum_{j} \alpha_{j} \rho_{j}\left(y^{\prime}\right)<\rho_{y}\left(y^{\prime}\right)+\varepsilon=\varepsilon$ for any $\varepsilon>0$; an obvious contradiction.

The characteristic function ρ_{ω} of an ultrafilter, each of whose members contain a given singleton $\omega \in \Omega$ will be called point mass ρ_{ω}. Then ρ_{ω} is principal when and only when $\{\omega\} \in S$. Since every neighborhood of a semicharacter $\rho^{\prime} \in \Gamma_{A}$ contains a set of the form $\left\{\rho \in \Gamma_{A} \mid \rho(x)=1\right\}$ and this set contains ρ_{ω} for each $\omega \in x$, then it follows that the set $\Gamma_{P M}$ of point masses is dense in Γ_{A}. If $\{\omega\} \in S$ for each $\omega \in \Omega$, then Remark 3.6 shows that $\Gamma_{P M}$ is in fact almost all of Γ_{A} in the topological sense of category. One can identify Ω with $\Gamma_{P M}$ via the map $\omega \rightarrow \rho_{\omega}$. It is therefore somewhat surprising that Th. 3.7 implies that the representing measure μ_{f} is supported by the complement $\Gamma_{A} \backslash \Gamma_{P M}$ whenever f is non-atomic.

Remark 3.9. If Ω is compact and metrizable and S is the set of Borel subsets of Ω, then $\rho \in \Gamma_{A} \backslash \Gamma_{P M}$ if and only if ρ is not countable additive. Thus Cor. 3.8 asserts that Lebesgue measure, for example, is in the closed convex hull of those zero-one-valued set functions which are not countable additive.

Added in Proof. In a recent preprint, D. Plachky forwarded a complete characterization of the closed convex hull of non-principal ultrafilters using entirely different techniques than those contained herein.

References

1. R. A. Alo, A. de Korvin, Functions of bounded variation on idempotent semigroups, Math. Ann., 194 (1971), 1-11.
2. G. Birkoff, Lattice theory, Amer. Math. Soc. Colloquim Publication, 25, Providence (1948).
3. S. Bochner, Finitely additive integrals, Ann. of Math., 40 (1939), 769-799.
4. R. B. Darst, A decomposition of finitely additive set functions, J. für Reine und Angerwandte Mathematik, 210 (1962), 31-67.
5. N. Dunford, J. Schwartz, Linear Operators (I), New York, Interscience Publishers (1957).
6. J. Kist, P. H. Maserick, BV-functions on semilattices, Pacific J. Math., (1971), 711-723.
 (1953), 528-543.
7. P. H. Maserick, Moment and BV-functions on commutative semigroups, Trans. Amer. Math. Soc., 181 (1973), 61-75.
8. __, Moments of measures on convex bodies, Pacific J. Math., 68 (1977), 135-152.
9. \qquad , Differentiation of \mathfrak{L}_{p}-functions on semilattices, Kobenhavn Universitet Matematisk Institut. Preprint Series 1979 No. 12.
10. \qquad , Disintegration with respect to L_{p}-density functions and singular measures, Z . Wahrscheinlichkeitstheorie verw. Gebiete, 57 (1981), 311-326.
11. S. E. Newman, Measure algebras and functions of bounded variation on idempotent semigroups, Trans. Amer. Math. Soc., 163 (1972), 189-205.

Received January 9, 1980 and in revised form September 24, 1980. Research for this paper was sponsored in part by the Danish Natural Science Research Council (Grant No. 511-10302) and in part by the National Science Foundation (Grant No. MCS78-03397).

The Pennsylvania State University
University Park, PA 16802

