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APPLICATIONS OF DIFFERENTIATION
OF ^-FUNCTIONS TO SEMILATTICES

P. H. MASERICK

Let S be a commutative semigroup with identity 1 such that x2 = x
for each x E S (i.e. S is a semilattice). Let Γ denote the set of
semicharacters equipped with topology of simple convergence and μ be a
fixed probability measure on Γ. Those real-valued functions/on S which
admit disintegrations of the form f(x) = fτp(x) dμy(ρ) where either
dμ,f = f'dμ with/' E Lp(μ) (1 < p < oo) or μf is singular with respect to
μ, are characterized. This extends the previous characterization of Alo
and Korvin from the case where p is either 1 or oo to all p E [1, oo].
Applications of this theory to the classical L^-spaces on the w-cube are
also presented. The main applications occur upon specializing to the
case where S is a Boolean algebra and the functions on S that are being
disintegrated are additive. Not only is the Darst decomposition theorem
easily recovered, but also the theory of F^-spaces of set functions
introduced by Bochner and extended by Leader is reproved from the
point of view of "differentiation". As a by-product, it is shown that every
non-atomic probability measure is in the closed convex hull (topology of
simple convergence) of those zero-one-valued additive set functions
which are not countably additive; a curious result when applied to
Lebesgue measure.

1. Preliminary. For each x G S, the shift operator Ex is defined on
the class of all real-valued functions f\S-*R by (Exf)(y) = f(xy).
Observe that ExEy = Exy and Ex is the identity operator which we will
also denote by /. We will be interested in certain difference operators of
the form Δ = EJ\k

j=λ{I — Ex ) where x, xl9...,xk G S and introduce the
notation Δf(yx; {xj}) = (Δf)(y), at all times distinguishing between the
function Δ/and its evaluation (Δf)(y), a t J It follows that Δ/(l) is the
Λ th difference of/(Δ/(x; xl9... 9xk)) as defined in [6 and 8]. Recall that a
real-valued function/on S is called completely monotonic (CM) if (Δ/)(l)
> 0 for all choices of Δ. The class C M ^ ) of all completely monotonic
functions is the same as the "positive definite functions" discussed in [12]
and the difference operator Δ can be seen to be the operator " L " defined
therein. Let X— {xX9...9xk} be a finite subset and Ax (Λ, when X is
understood) denote the set of all ox (σ, when X is understood) of
zero-one-valued functions on {1,2,...,/:} and let Δσ denote the dif-
ference operator Π y = 1 ( ^ YJ{I — Ex )ι~°j, where we adopt the convention
that an operator (or member of any semigroup) to the power 0 is the
identity even if that member is 0 itself. If / is a real-valued function on S
then, following [6], we set || /1 | x = 2σ(ΞAx \ Δσ/(1) | . The triangle inequal-
ity implies 11 /11 x is an increasing function of X (ordered by inclusion) and
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we set 11/11 = lim^ll/H^. Functions in the set BV(S) = {/| ll/ll < 00}
are called functions of bounded variation (or BV-functions) and are
discussed thoroughly in [6] and [9]. Since 2σBAUjE^(I - Ex )

ι~σJ! =
Iίj(Ex + (I-Ex)) = Iwe have Σ σ Δ σ / = /. Thus CM(^) C BV(S) and
| | / | | / ( l ) i f / G y C M ( 5 )

Let g be a fixed completely monotonic function normalized by the
condition g(l) = 1. Following [12] we define a real-valued function/on S
to be continuous (with respect to g) if for each ε > 0 there exists δ > 0 such
that Σ σ € Ξ Γ c Λ J Δσ/(1) |< ε whenever Σ σ G Γ c Λ ; r Δ σ g(l) < 8. It follows from
[11, Th. A] see also [10] or [12] that every continuous function is also of
bounded variation. The set of all continuous functions with variation
norm II II = II II, will be denoted by £,(g). A BV-function / will be
called singular (with respect to g) if given ε > 0 there exists a finite subset
Xoί S and T C Ax such that both Σ σ G Γ | Δ σ / |< ε and Σσ ( 2 ΓΔσg(l) < ε.
It will follow from Th. 1.1 below that every BV-function/admits a unique
decomposition of the form /, + /2 with /, continuous and f2 singular.
Moreover||/|| = ||/il| + | ψ | .

For 1 < p < 00 and with the understanding that 0/0 = 0, we set

Wf\\(p,x) = 2,<EAx\ΔJ(WΛKg(W-1. It follows that 11/11^ in-
creases with p and X cf. [10] and we define 11/lljJ = l i m ^ H / H ^ x y For
p = 00, we define l l/ l l^ - supΔ | Δ/( l ) | / Δ g ( l ) and set tp(g) = {/| \\f\\p

< 00} for all 1 </? < 00.
A non-identically zero, real-valued function p on S is called a semi-

character if ρ(x)p(y) = ρ(xy) for all JC, y E S. The set Γ of all semichar-
acters on S will be given the topology of simple convergence. Each p G Γ
is zero-one-valued and Δρ(x; {xj}) = p(x)UJ(l ~ ρ(xj)). The space Γ is
compact and it follows [6], that the collection & of all sets RA — {p G Γ |
(Δp)(l) = 1} is a basis of open and closed subsets for Γ.

Let 91L(Γ) denote the regular Borel measures on Γ and cDί1l+(Γ) the
non-negative members of 911.

THEOREM 1.1. A real-valued function f on S admits a (necessarily
unique) disintegration of the form f(x) — fτp(x) dμf(p) where

(i) μf G 91t+ (Γ) if and only iff is CM.
(ii) μf G 91t(Γ) if and only iff is BV.

(iii) dμf = f'dμg withfELp(μg, Γ) if and only iffetp(g) (1 </> <
00)

(iv) μf is singular with respect to μg if and only iffis singular.
Moreover the spaces tp(g) and Lp(μg, Γ) are linearly isometric via

f' -» / ' as also are the spaces of BY-functions and bounded measures each
with variation norm.

Proof. Direct proofs of (i) and (ii) as well as the last mentioned
isometry statement are contained in [6] and [8]. Direct proofs of the
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remaining part of the assertion may be found in [10]. Another proof of the
theorem may be accomplished by appealing to the real algebra & gener-
ated by the shift operators on S and the set up of [9 and 11]. The set τ
which generates the positive cone P is taken to be {Eχ91 — Ex\x £Ξ S}.
The idempotent operation on S allows us to restrict our attention to
partitions of unity of the form {UJEXJ(I — Ex )λ~σj | σ E Ax}. Reduction
of the results in [11] to our setting is then accomplished upon identifica-
tion of the linear functionals on & with the functions on S via F -> /,
where F(EX) = f(x). Note that this biuniquely identifies the positive
multiplicative linear functionals on & with Γ.

The possibilities offered by Th. 1.1 of obtaining decompositions of
BV-functions from known decompositions of measures are numerous. We
define a semicharacter to be a singularity of / if there exists a > 0 such
that I/| —ap E CM(S). Then p is a singularity of a BV-function/if and
only if p is an atom of μf. The decomposition of μf into its atomic and
non-atomic part applies to give

i=\

where /, has no singularities.

COROLLARY 1.2. Every BV-function f admits three (unique) decomposi-
tions of the form f — fx + / 2 with 11/II = | |/,| | + II/2II; each respectively
satisfying

(i)/j has no singularities andf2 is of the form Σ j L ^ p,-
(ii) /, and -f2 are completely monotonic

(iii) /j is continuous and f2 is singular.

In order to establish an £ -inversion formula to recover the density
function/' of a representing measure of the foτmf'dμg we consider the
linear span of {Exg | x E S} and following [1] call each of its members
polygonal functions. Since (Eyg)(x) — JTp(x)p(y) dμg(ρ), then it follows
that the evaluation function p -> p(y) is the derivative of Eg, so that
linearity of the differentiation map / -> / ' gives

(1-2.1)

The Stone-Weierstrass theorem implies that these derivatives are uni-
formly dense in the continuous functions C(Γ) on Γ and hence in Lp(μg)
for 1 </? < oo. In particular the derivatives of polygonal functions of the
form

(1.2.2) fx= 2 [Δσ/(l)/Δσg(l)]Δσg
σ<EAx
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are computed to be

(1.2.3) fx= Σ [Δσ/(l)/Δσg(l)]ΔoP(l).
σ<ΞAx

The following proposition is of interest and will be referred to again in §3.

PROPOSITION 1.3. /// is polygonal there exists a finite set X such that
f — fΎ whenever Y D X.

Proof. Suppose / = ΊijajEx g. Set X — {XJ}J then / =
Έ a (ΣσBA ΔσEx g) = 2 fl (Σσ = 1Aσg) — Σ σ G Λ bσAσg, where the last
equality is obtained by reversing the order of summation and setting
bσ = Σσ = 1^y. Thus if X is a finite subset of S which contains X, we get
/ = 2σχ

J(ΣσγbσχΔσχΔσγg) or

(1-3.1) /=Σ»Λ«»
°Y

where bπ — ba whenever Δff Δα = Δσ . If we apply Δσ to both sides of
Oγ Oy Oχ Oγ Oγ XX J Oγ

(1.3.1) for a fixed σY and evaluate at 1, then we obtain Δσy/(1) =
bσ Δσ g(l) and the assertion follows.

THEOREM 1.4. (Lp-inυersion). If fE.tp(g) for 1 < / ? < O O then
\imx\\f'-f'x\\p = Q.

Proof. Again we can appeal to the general algebraic setting of [9 and
11] as in the proof of Th. 1.1. However, Prop. 1.3 which is not available in
that generality, provides a simpler and more illuminating approach and
we refer the reader to [10] for the details.

COROLLARY 1.5. / / 1 <p < oo, 1 < q < oo and (\/p) + (\/q) = 1

then £*(g) = tq{g) via the pairing

</,*>= lim 2 Δσ/(l)ΔσΛ(l)/Δσg(l).

Proof. The Riesz representation theorem and Th. 1.1 imply £*(g) =
tq{g) via the pairing </',Λ'>= fτf'(p)h'(p) dμg(p). But, <(Δg)',*'> =
ΔΛ(1), and since ( , Λ') is continuous, we can apply the inversion
theorem to obtain:

2 [Δσ/(l)/Δσg(l)](Δσg)',A'

(Δo/(l)ΔσΛ(l)/Δσg(l)) = </,Λ>.
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2. Applications to differentiation and the classical Lebesgue spaces.
Let S be the closed interval [0,1] under the semilattice operation xy =
min[x, y], and set g(x) = x. Then Δ/(x; {xj}) = f(x) - f(xmaxj{xj})
and it follows that the completely monotonic functions are just the
non-negative, non-decreasing functions on [0,1]. Moreover the definitions
of bounded variation and continuity (with respect to g) given in §1 agree
with the classical notions with the added restriction to the classical
definition of absolute continuity that /(0) = 0. The semicharacters are the
characteristic functions of the forml(JC n and l[Xyi](x £ S) and the map
Π I Γ -> S defined by Π(1(Λ. γ]) = Π(l [ j c Λ ] ) = x is seen to be continuous.
Let the representing measure be μg and its transformed measure, ( Π μ g ) ,
be defined on [0,1] in the usual way by (Hμg)(A) = μg[H~ι(A)] for each
Borel set A. Since μg has no atoms, an examination of (Tίμg) on the
subintervals of [0,1], shows the transformed measure to be Lebesgue
measure. Let Df denote the ordinary derivative of / G &p(g). Since the
evaluation function p -> ρ(x) is seen to agree (μg-almost everywhere) with
the composition l [ 0 x] © Π, standard integration theory shows f(x) =
Jo

x(Df) dt = Jτp(x)[(Df) o Π](p) dμg(p\ from which we get

(2.0.1) (Df) on =f (μg-almost everywhere).

Therefore

(2.0.2) Jr\f'{p)fdμg(p)=f\(Df)(x)fdx (\<p<oo).

We summarize the foregoing as follows

PROPOSITION 2.1. // 1 <p < oo, then in the above notation, tλ(g) is
the set of all functions f on [0,1] which are absolutely continuous in the
classical sense and for which /(0) = 0. The space tp(g) is isometric to the
classical Lebesgue space Lp(dx) via differentiation.

Let X - {Xj}j be a finite subset of [0,1] such that Xj <Xj+λ9fE tp(g).
Then the approximating polygonal function fx used in the inversion (Th.
1.4) are of the form

(2-1.1) /A*) = Σ f(XjχΊf°~l)\χ ~ χj-ιK^Xί](χ)

That is, fx is the linear approximation that inteφolates / at each node
point Xj, Note that Dfx is the expected step function approximation to Df.
If 1 < p < oo then we have

(2.1.2) 11/11, = ]imP12\f(xj) -/ί*y-i)|7(xj ~ *,-,
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(2.1.3) ll/lli = Km 2 |/(xy) -
x J

and

(2.1.4) ]

Condition (2.1.4) shows that tj^g) is in fact the space of function
satisfying the usual Lipschitz condition with the additional property,
/(0) = 0.

Observe that Cor. 1.2 (ii) is just the usual decomposition of a
BV-function/into its two non-negative, non-decreasing parts. Part (iii) of
the Corollary along with (2.0.2) imply f — fλ + f2 with fx absolutely
continuous and Df2 — 0 a.e. It is easily verified that a function h E CM(S)
is continuous at x if and only if both h — α l ^ j and h — oΛ[x^ are not
CM for any a > 0. Using the familiar fact that a BV-function is continu-
ous if and only if its variation is continuous, one can characterize the
BV-functions with no singularities as the continuous BV-functions. Thus
Cor. 1.2(i) provides the familiar decomposition of a BV-function as

7 = 1 7 = 1

where/j is continuous and BV.
Finally we remark that the above extends to the ^-dimensional cube

with coordinate-wise operations, and leave the details to the reader.

3. Applications to Boolean algebras and finitely additive set func-
tions. We assume that S admits a second operation V under which S is
a distributive lattice. Recall [2] that a valuation is a real-valued function /
on S which satisfies /(JC) +f(y)= f(xy) + f(x V y) (Δ/(JC V y; χ9 y) =
0) for all x9 y E S. It is easily verified in [6] that every valuation satisfies

(3.0.1) Δ/(*;{*;}) = Δ/(x;V,χ,).

Thus a valuation / is completely monotonic if and only if f(x) > 0 and
Δ/(x; y) ^ 0 for all x, y E S. Moreover the formula for the variation of a
valuation reduces to

(3.0.2) 11/11-lim 2 |Δ/(Π*?; V*J-*)|
σeΛ

with analogous forms for 11/11̂ . While formally different, this definition
of variation is seen in [6] to be equivalent to that given in Birkhoff [2, p.
74].

Let Γv denote the set of all p E Γ such that p is a valuation.
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PROPOSITION 3.1. Tv is a closed subset of Γ. Moreover a BV-function f
is a valuation if and only if its representing measure μ, is supported by Tv.

Proof. Let ρ0 E Γ \ Tv. Then there exist x j G S such that
Δρo(x V >>; x, y) = 1 so that RA = (p E Γ | Δρ(x V >>; x, y) — 1} is an
open (and closed) set which contains p0 but does not intersect Tv. Thus Γv

is closed. If/is a BV-valuation then μf(RA) = Δ/(x V J ; X, J>) = 0. Thus
μ7 is supported by Γκ. Conversely if μf is supported by Γκ, then
Δ/(x V j ; x, j;) = /ΓΔp(x V j ; x, y) dμf(ρ) = 0 so that/is a valuation.

We further specialize to the case where S( , V/) is a Boolean algebra
of subsets of a set Ω. Now it must be remembered that each x, y E S is a
set. Further ^ = x Π j , 0 = 0 , 1 = Ω and x' = Ω \x. The valuations /
such that /(0) = 0 are exactly the functions with the property that
f(χ v y) — f(χ) + /(y) whenever xy = 0, i.e. the additive functions. Since

(3.1.1) Δf(χ;y)=f(χy')>

we see that an additive / is completely monotonic if and only if it is
non-negative. If we introduce the notation

(3.1.2) * , = Π * ; ( * ; ) ' Λ ( σ e λ j r ) ,

then {xσ I σ E Λ^} is a typical partition of Ω into disjoint subsets by
member of S. Applying (3.1.1) and (3.1.2) gives

= Σ |/ί*J|,

so that

(3.1.3) 11/11 = lim 2

It follows that the definition of variation given here agrees with conven-
tional usage for a finitely additive set function, cf. [5], Moreover it is clear
that the definitions of singularity and continuity introduced in §1 reduce
to those given by Darst [4] for this special case where Cor. 1.2 (iii) has
already been observed. However, even in this case the methods used under
the present set up provide a simplified proof because of our access to the
Lebesgue decomposition via the map / -* μf cf. [10]. The additive members
of Tv are the characteristic functions of ultrafilters. In fact, the identically
1 function is the only member of Tv which is not additive and it is seen to
be an isolated point. It follows by the same reasoning used in Prop. 3.1
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that μf is supported by Tv \ {1}. In summary we assert

PROPOSITION 3.2. Let g be additive and non-negative and let f be
continuous with respect to g, then

(3.2.1) / is additive and B V

(3.2.2) \\f\\p — lim 2 |/(*σ)l /[s(xσ)]P~l for\<p<oo

(3.2.3)

The polygonal functions fx are of the form:

(3.2.4) fx= 2 [fMM*,)]EXag
σ<ΞΛχ

(3.2.5) Ifl<p< oo, (l/p) + (l/q) = 1 then the dual £*(g) o,
the pairing (/, Λ)= lim^Σσ e Λ f(xσ)hι

REMARK 3.3 If g is additive, the spaces £^(g) are exactly the Vp

spaces. Consequently each F^-space is isometric to the Lebesgue space
Lp(μg) on Γ,.

Let Lp(g) denote the Lebesgue space {F\ fQ \ F\p(ω) dg(ω) < oo}
defined for a not necessarily countable additive g (1 < p < oo), cf. [5, III.3].
Recall that Lp(g) need not be complete and observe the distinction
between!^ g) as a possibly incomplete Banach space of functions F on Ω,
Lp(μg) as a complete space of functions on Γ̂  and t (g) as a F^-space of
additive set functions on the Boolean algebra S. Following usual conven-
tions we will call a function F E Lλ{g) the Radon-Nikodym derivative of
an additive/| S -> R if f(x) = /JF(ω) rfg(ω). Then/is called the antide-
rivative of F. The derivative is unique when it exists and in such cases will
be denoted by df/dg. The following theorem is essentially contained in [3].
We offer this alternate proof here in part as an application of §1 and in
part as motivation of our point of view concerning differentiation. In
particular, it indicates the necessity of seeking the derivative of an
£p(g)-{unction on the structure space Γ̂  rather than Ω when Lp(g) is
incomplete.

THEOREM 3.4. // 1 </? < OO then Lp(g) is densely embedded in £p(g)
via antidifferentiation. Thus &p(g) (hence Lp(μg)) represents the completion
of Lp(g). The latter space is complete if and only if the Radon-Nikodym
derivative df/dg exists for each f E t (g).
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Proof. Let F E Lp(g) and T\Lp(g) -» tp(g) be the antidifferentiation
map. We apply Holder's inequality to get

> 1.

It follows that 11^(^)11^ < HFI^ for all/? > 1, with equality holding when
F is a simple function and Jf is sufficiently large. In the latter event one
finds T(F) to be a polygonal function of the form

T(F)(x)= 2

Thus Γis a continuous linear map of Lp(g) into tp(g) which preserves the
norm of each simple function. Since the simple functions are known to be
dense in Lp(g) [5,p. 125], T is a norm preserving linear injection. But
since the polygonal functions are dense in tp(g)9 we can complete the
proof of the first assertion by showing that df/dg is a simple function
whenever / is polygonal. Clearly, dExg/dg — \x and it follows that
dEx/dg= ΣσψAχ[f(xσ)/g(xσ)]lXa, g-almost everywhere. The first asser-
tion follows since Prop. 1.3 implies every polygonal function / i s of the
form fx. The remaining assertions are clear.

From the above proof we can assert

COROLLARY 3.5. / / / G tp{g) for 1 </? < oo and the Radon-Nikodym
derivative df/dg exists then the Radon-Nikodym net Σ σ e Λ [/(;cσ)/g(JOJI*
converges in the Lp(g)-metric to df/dg.

The structure space ΓK\{1} which is just the set of characteristic
functions of 5-ultrafliters on Ω will be denoted by TA. The characteristic
function of an ultrafilter which contains a smallest member of S will be
called a principal semicharacter. A principal semicharacter is then one of
the form:

0 if xy — 0

1 ϋxy=y

Since the neighborhood {p GTA\ρ(y) = 1} only contains ρy we have

REMARK 3.6. The set Γ of principal semicharacters is discrete in ΓA.
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If c G S with I/I (x) φ 0 and | / | (y) is either 0 or | / | (x) for each
y E S such that y C x, then x will be called an atom for /. If / has no
atoms it will be called non-atomic. At the other extreme, if every x E S for
which | / | ( * ) 7*0, contains an atom then / will be called completely
atomic. It is easily verified that every additive BV-function/on S admits a
unique decomposition of the form f — fλ + / 2 ? where fx is completely
atomic and f2 is non-atomic.

THEOREM 3.7. Let f be additive and BV. / / / is non-atomic then μf is
supported by TA\Tp. If μ^ is concentrated on Γ then f is completely atomic
and countably additive.

Proof. Suppose / is non-atomic and let ρy E Γ̂  in the above notation.
Then μf({py}) = μf{p E ΓA | p(y) = 1} = f(y) = 0, since y is not an
atom of/. Thus {py} is a neighborhood of py with measure zero. Therefore
ρy is not in the support of μf. The second assertion follows because if μf is
concentrated on Γ̂  then/is of the form Σi=ιdiρyι, with ^ minimal.

In sharp contrast to the usual weak* approximation of probability
measures by point masses we offer

COROLLARY 3.8. Every non-negative, non-atomic, additive function f
withf(Ώ,) = 1 is in the closed convex hull ofTA \ Tp; principal semicharacters
are not.

Proof. Recall that we have imposed the topology of simple conver-
gence on the finitely additive BV-functions and the w*-topology on
91t(Γ). The set (ΰVx{TA\Tp) of probability measures on Γ^xΓ^ is the
closed convex hull of {μp\ p EίTA\Tp}. The first assertion follows since
the theorem implies the map / -> μf is an affine homeomorphism of the set
of all / satisfying its first hypothesis into Γ̂  \ Γ .̂ Finally suppose ρy E Γ̂
is in the closed convex hull. Then we can find αy > 0, py E Γ̂  \ Γ̂  for
j = 1,2,... ,n with Σ y α y = 1 such that 1 = ΊtjaJpj{yf) < py(y') + ε = ε
for any ε > 0; an obvious contradiction.

The characteristic function pω of an ultrafilter, each of whose mem-
bers contain a given singleton ω E Ω will be called point mass pω. Then pω

is principal when and only when {ω} G S . Since every neighborhood of a
semicharacter pf E Γ̂  contains a set of the form {p E Γ̂  | p(x) = 1} and
this set contains pω for each ω E JC, then it follows that the set TPM of
point masses is dense in Γ .̂ If {ω} 6 S for each ω E Ω, then Remark 3.6
shows that TPM is in fact almost all of TA in the topological sense of
category. One can identify Ω with TPM via the map ω -» pω. It is therefore
somewhat surprising that Th. 3.7 implies that the representing measure μf

is supported by the complement Γ̂  \ TPM whenever / is non-atomic.
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REMARK 3.9. If Ω is compact and metrizable and S is the set of Borel
subsets of Ω, then p ETA\ TPM if and only if p is not countable additive.
Thus Cor. 3.8 asserts that Lebesgue measure, for example, is in the closed
convex hull of those zero-one-valued set functions which are not counta-
ble additive.

Added in Proof. In a recent preprint, D. Plachky forwarded a com-
plete characterization of the closed convex hull of non-principal ultra-
filters using entirely different techniques than those contained herein.
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