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SEPARABLE ALGEBRAS OVER A
COMMUTATIVE BANACH ALGEBRA

IAN CRAW AND SUSAN ROSS

We show that the projective separable algebras over a commutative
Banach algebra R with maximal ideal space X are the same as those over
C(X). Two consequences of this are the identification of the Brauer
group of R with that of C(X)9 and the identification of the set of
covering algebras of R with the finitely fibred covering spaces of X.

This result is part of an old programme relating the algebraic struc-
ture of R with the topological structure of X and we start by showing how
it fits into this context. An early result of this type is the Arens-Royden
theorem; that the Gelfand transform induces an isomorphism R~ι/expR
-^C(X)~ι/expC(X) from the group of invertibles in i?, modulo the
subgroup of elements which have a logarithm. In C(X), this quotient
group simply describes Hι(X,Z), the first Cech cohomology group of X
with integer coefficients and so in particular the obstruction to an element
in it"1 having a logarithm is purely topological and well understood.

Similarly, the Silov idempotent theorem can be interpreted as describ-
ing H°( X, Z). More generally, topological information about X can be
reflected in the structure of certain modules over R. Let 9(R) denote the
semigroup (under Θ) of isomorphism classes of finitely generated projec-
tive jR-modules. Regarding C{ X) as an iϊ-module via the Gelfand trans-
form gives a semigroup homomorphism P ~* P ®Λ C(X) from ^?(R) to
^9{C{X)). In [13] Novodvorskii shows that this is an isomorphism and
hence induces an isomorphism K0(R) ^ K0(C(X)) between the corre-
sponding Grothendieck groups; in particular this gives a description
K0(R) ^ K°(X) of the topological ^-theory of Xin terms of R. Restrict-
ing to the invertible modules gives a result of Forster [8] describing the
Picard group of R

PicR =* VicC(X) =* H2(X,Z).

These results, and others along the same lines can be obtained in a
unified way using the fact that the corresponding topological functors
have classifying spaces which are 'nice' and in particular finitely gener-
ated. A description of this method, the Noυodυorskii-Taylor theorem and
further background is given by Taylor in [18]; we go into detail about this
in §2.

It seems significantly harder to get analogues of these results for the
higher cohomology groups, and in particular for # 3(X,Z), where it is
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known that a classifying space cannot be finitely generated. A result of
Serre (cf. [10,1.6]) identifies the torsion subgroup of H3(X,Z) with
BrC(X), the Brauer group of C(X), and this suggests that some sort of
'infinite dimensional' Brauer group may give the whole of H3(X,Z). In
[19] Taylor develops a different technique which gives results in this
situation. However the theorem is not entirely satisfactory in that the
algebraic objects involved are hard to recognise. A subsequent approach is
described in [20].

Restricting to the torsion subgroup of H3( X, Z) should bypass a lot of
these difficulties. Taylor notes this, and in [19, Theorem 6] he gives the
isomorphism

Bτ(R) =* BτC(X) ^ ToτH3(X,Z).

In this paper we give what we hope is a complete proof of this result. (In
[19] some proofs are outlined, but otherwise details are omitted.) Our
method follows Taylor's original paper [18], and we obtain rather more
information by getting the isomorphism at the semigroup level.

This additional information enables us to give a solution to a slightly
different problem first raised by Magid [12] and recently solved by Zame
[21]. It is possible to define the notion of a covering jR-algebra in such a
way that C(Y) is a covering C(X)-algebra precisely when Y is a finitely
fibred covering space of the compact Hausdorff space X [2]. Such spaces
are of interest topologically in that, at least when X is locally well
behaved, they are determined precisely by those subgroups of the funda-
mental group of X which have finite index. In [12] Magid considered this
idea in the context of commutative unital Banach algebras. He showed
that if A is a covering R algebra, then the maximal ideal space of A is
indeed a finitely fibred covering space of X, and asked whether the
converse was true; i.e. whether given i? and a finitely fibred covering space
Y of X, it is possible to find a covering Λ-algebra A with maximal ideal
space Y. As evidence for this conjecture Magid showed it was true when R
was semisimple and regular [12, Theorem 11], while in [4] a solution was
given for any R whose maximal ideal space was path connected and had
abelian fundamental group. Finally Zame [21] showed it was always
possible to find a suitable A by developing what seems to be the correct
notion of Galois theory in the context of commutative Banach algebras.
Our solution is rather different from that given by Zame, and is obtained
by specialising our main result to the commutative case.

The idea common to the two results described above is that of a
separable algebra. In order to describe our main theorem precisely we first
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review the algebraic theory of these algebras. More details can be found in
the books by DeMeyer and Ingraham [6] and Orzech and Small [14].

Let R be a commutative ring and A a unital i?-algebra. Write A0 for
the i?-module A with the opposite multiplication to that on A and let
Ae — A ®Λ A0. Each of Ae and A is a left ^-module in a natural way; we
say that A is a separable i?-algebra if the multiplication map m: Ae -> A
has a right inverse as an v4e-module homomorphism. Equivalently, there is
an element e = Σ"=1x, ®yi'mA®RA with Σ x ^ = 1 and Σaxt ® ^ = Σ.*;
®j>,# (α G^4). Such an e, necessarily idempotent in Ae, is called a
separability idempotent ioτA. If A is both separable and projective, a result
of Villamayor and Zelinsky [6,11-2-1] ensures that A is finitely generated
as an i?-module. We write Sep(i?) for the set of isomorphism classes of
projective separable i?-algebras. If A and B are both separable so is
A <8>R B, whence Sep(iϊ) becomes a semigroup under ®R. If φ: R -» S is a
homomorphism of rings and S becomes an i?-module via φ, then A ®R S
is a separable 5-algebra whenever A is a separable jR-algebra. Thus φ
induces a semigroup homomorphism Sep(i?) -> Sep(S).

In particular if m is any maximal ideal in i?, the natural projection
R -* R/m induces a map Sep(i?) -» Sep( R/m). A rather deep result that
we shall need enables us conversely to recognise separability locally. Note
that there is a natural isomorphism A/mA ^ A ®R R/m; the following
result is then given in [6, II-7.1].

PROPOSITION 1.1. Let A be a finitely generated protective R-algebra.
Then A E Sep(i?) iff A ΘΛ R/m E Sep(jR/m) for every maximal ideal m
ofR.

The theory of separable algebras naturally divides into two branches,
since if A is separable over R it is separable over its centre Z(A) which in
turn is separable and commutative over R. The study of commutative
separable i?-algebras (which are faithful and projective as i?-modules) is a
generalisation of the Galois theory of fields — whence the name; it is this
aspect which is studied in the context of Banach algebras by Zame [21]
and these are the covering jR-algebras noted above. The set of such
i?-algebras, Cov(R) is a semigroup of Seρ(jR).

The other branch of the theory is the study of central separable or
Azumaya ϋ-algebras, and such algebras form a subsemigroup Az(R) of
Sep(i?). The prototype Azumaya Λ-algebra is Mn(R), the algebra ofnXn
matrices with entries from JR, while the Azumaya C( JSQ-algebras may be
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described either as the matrix-algebra bundles on X, or equivalently, as
the Aί-homogeneous C*-algebras.

One way to produce Azumaya algebras generalises Mn(R) =
EndR(Rn); one simply takes EndR(P) for any finitely generated faithful
projective Λ-module P. Indeed these occur frequently since if A G Az(R)
A <8>RA° ^ EndR(A). Now define an equivalence relation on Az(i?) by
A ~ B iff there are faithfully projective modules P and Q such that

A ®REndR(P) - B ®REndR(Q).

The set of such equivalence classes is the Brauer group Br(i?), a group
since by the relation noted above, [^l]'1 = [A0]. More conceptually, the
relation [A] = [B] in Br(i?) is the statement that the categories of left
A -modules and left 2?-modules are equivalent.

The main result of this paper, Theorem 6.5, is that for a commutative
unital Banach algebra R with maximal ideal space X, the map A ~*
A ®Rc(X) is a semigroup isomorphism Sep(Λ) -* SepC(X). It is then
routine to show that this specialises to isomorphisms Az(i?) -* Az C(X)
and Cov(i?) -» CovC(X), whence we obtain the result described above.
Our method of proof relies heavily on the Novodvorskϋ-Taylor theorem.
This is outlined in the next section, at the end of which we describe the
organisation of the rest of the paper.

This work originated in an M. Sc. thesis written by the second author
at the University of Aberdeen in 1977-78. She gratefully acknowledges the
financial support of the Fullerton, Moir and Gray Scholarship Fund
during this period.

2. The Novodvorskii-Taylor theorem. We first briefly describe the
holomorphic functional calculus theorem in the form we use. Let R be a
commutative unital Banach algebra with maximal ideal space X, let
i: R -> 2?** be the injection of R into its bidual, and write i(r) = f
(r G R). This gives a map R -> Θ(X), the algebra of germs of functions
each holomorphic in some neighbourhood of X C R*. For us, the func-
tional calculus map is the unique continuous algebra homomoφhism v\
β( X) -> R which is a left inverse for /. This viewpoint is described in [4] or
[18]; it is related to the usual statement of the theorem by the equation

/ ( r 1 ? . . . , r j = v(fo&)

where α = (rl9... ,rn) and/is holomorphic on a neighbourhood of sp α =
{α(jc): x e X} C C".
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More generally, it is convenient to deal with vector-valued functions.
Let E be a finite dimensional vector space. Then v has a natural extension
to a map S: 6(X,E)-»R®E defined by S = (p ® 1) o ψ where
ψ: Θ(X, £ ) -» β(-Y) ® £ is the obvious isomorphism. If a G R ® £ and
we write ά = ψ"^/ ® l)α then S(ά) = a and S is an epimoφhism.

Let U9 V be open subsets of finite dimensional spaces E, F respec-
tively and let /: £/-* V. As in [19, §1] write Ra= {άGR® E: άG
β(X9 U)}9 and define Rf: Rv -> Rvby Rf(ά) = 5(/o ά). Alternatively we
may use / to induce a map Θ(X)f: 0( X, £/) -> 0( X, V) by g ~> / o g.

PROPOSITION 2.1. 7%e diagram

β(X),

β(X,U) -

Ru

Proof. This is just a restatement of the usual composition law [1,
1.4.7], An explicit proof in the only case we use is available in [5].

We are now in a position to describe the ingredients of the
Novodvorskii-Taylor theorem. Let X and M be complex manifolds and let
[X, M]a and [X, M] denote the holomoφhic homotopy classes of holo-
moφhic maps, and the homotopy classes of continuous maps respectively.
The basis of the theorem is a striking version of the Oka principle; for
suitable X, M there is a bijection

[X,M]a-*[X,M].

If X is a Stein manifold and M a. Lie group this is the statement of a deep
theorem of Grauert [9]. By considering complex homogeneous bundles,
Ramspott [17] was able in particular to show that the theorem held when
M was a discrete union of complex homogeneous spaces. A further
improvement was given by Taylor [18,2.6]; using the Arens-Calderon
Lemma he showed that with the notion of holomoφhicity described
above, the theorem remained true when X was the maximal ideal space of
a Banach algebra.

With this formulation, the next step in the theorem is fairly obvious.
Using the holomoφhic functional calculus one passes from holomoφhic
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functions to objects associated with the underlying Banach algebra R to
obtain

THEOREM 2.2. [18,2.7] Let M be a submanifold of a domain in Cn

and a discrete union of complex homogeneous spaces. Define RM =
{δ G Rn: cc = S(g) for some g G Θ(X, M)}. Then RM is locally path
connected and the map

induced by the Gelfand transform on the components of RM is bijective.

To obtain concrete results from this theorem, one chooses an ap-
propriate M and interprets the resulting [RM]. The arguments here are
usually special to the particular M; however Taylor gave an alternative
description of RM which will assist us. Let Θz denote the ring of germs of
functions each holomorphic in some neighborhood of z, and let I(M)Z be
the ideal in Θz consisting of germs of functions which vanish on M.

PROPOSITION 2.3. Let M be a closed submanifold of an open subset
U C C\ and let F be a subset of θ(U) which generates I(M)Z for each
z G U. Then

RM= (α E i T : sp(α) C Uandg(ά) = Oforallg <Ξ F].

We now outline the organisation of the remainder of the paper.
Working over an arbitrary ground ring R, we define in §3 a set Sk(R)
which describes certain projective separable i?-algebras, and do the neces-
sary algebraic bookkeeping. In §4 we specialise to the case when R is
Banach and draw topological consequences, the main one being that in
some sense Sk(R) is stable under small perturbations. The set Sk(C) — Sk

is the manifold M to which we apply the Novodvorskii-Taylor theorem. In
§5 we do the differential geometry needed to show that these results are
applicable, while in §6 we show that Sk(R) is a concrete realisation of RSk

and hence interpret the conclusion of the theorem.

3. Some algebraic results. Let R be a commutative ring. We shall
describe unital ϋ-algebras which are finitely generated and projective as
i?-modules in terms of a projection p: Rk -» Rk, a multiplication m on
ρ(Rk) and an identity / Ep(Rk).

For positive integers n, k let Ln{Rk) be the jR-module of maps
Rk X XRk -» Rk which are Λ-linear in each variable, and convention-
ally write L°(Rk) for Rk. Let Ek(R) = L\Rk) θ L\Rk) ® L°(Rk) and
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define mapsfl9 f5, f6: Ek(R) -> L\Rk\ f2: Ek(R) -> L\Rk\ f3: Ek(R)
L\Rk) and/4: Ek(R) -» L°(Rk) as follows:

m,i) = x ~»p(p(x)) -p(x)

fi(P> ™> 0 = (*> y) ~* pm(px, py) - m(x, y)

f3(p, m, /) = (x, y, z) ~* m(x, m(y, z)) - rn(m(x, y), z)

f4(p,m9i) = i-pi

f5(p,mj) = x ~» m(xj) -px

f6(p,m,i) = x ~» m(iyx) - px,

where (p, m,i) E Ek(R) and x, y, z E Rk are arbitrary. Thus, writing
/=(/ i» ,/6)wehave

/: Ek(R) -> Fk(R) = V(Rk) Φ L2(Rk) Θ L\Rk)

®L°(Rk) θ Lι(Rk) θ Lι(Rk).

We write f = fR when it is necessary to specify the underlying ring.

Let Nk(R) = {α<Ξ Ek(R): f(α) = 0 in Fk(R)}9 and fix α = (p9 m, i)
E Nk(R). Since /τ(α) = 0, p is an i?-linear projection on Rk, and hence
p(Rk) is a finitely generated projective i?-module. Since/3(α) = 0, m is an
associative multiplication under which Rk is an iϊ-algebra; this restricts to
an iί-algebra structure on p(Rk) since /2(α) = 0. We also have /4(α) =
/5(α) =fβ(α) = 0 so i G p(Rk) and acts as a 2-sided identity for the
multiplication on/?(lϊ*). We write α(Rk) for the modulep(Rk) equipped
with this structure as a unital i?-algebra. It thus makes sense to define

Sk(R) = {α E Nk(R): α(Rk) is a separablei?-algebra}.

Conversely suppose A is a projective separable unital i?-algebra. Since
A is necessarily finitely generated there is a positive integer k and an
Λ-linear projection/? such that A ^ p(Rk) an JR-module. By extending the
multiplication to be zero off p(Rk), we thus obtain α E SΛ(iϊ) with
A ^ α(Rk). However, note that neither α, nor indeed k is determined
uniquely by A. Given α E Sk(R) we denote by α θ O the element of
Sk+j(R) obtained in the obvious way from the embedding of Rk in
Rk θ i?7. Clearly (α θ 0)(i?/c+/) ^ α(Λ*).

To keep track of the ambiguity involved in the choice of α, define an
action of GLk(R), the group of invertible elements of Lι(Rk), on Ln(Rk)
by

U • T = ( * „ . . . ,Xn) -> M^M-'X,,. . . ,U~XXn)
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where u G GLk(R), T G Ln(R% xl9... ,xn G Rk, and n > 0, and on
L°(Rk) by U'X = W(JC). By acting coordinatewise, this defines actions of
GLk(R) on each of Ek(R) and

LEMMA 3.1. The set Nk(R) is invariant under the action of GLk(R). If
a G Nk(R) and β = u a then β(Rk) - a(Rk), whence Sk(R) is also in-
variant under the action of GLk(R).

Proof,

u fx(a)(x) = up2u~ιx — upu~xx

— upu~ι(upu~ιx — x)

— fx{u α)(jc), where a — (/?, m, /) andx G Rk.

Five similar computations show that u -/(a) = f{u a), and in particular if
f(a) — 0 then/(w a) — 0. The remainder of the lemma now follows, since
if β = U'Ct, u: a(Rk) -> β(Rk) is an isomoφhism of JR-algebras.

We next investigate the way these sets behave under a change of rings.
If φ: R -» S is a ring homomorphism it induces maps from Ln(Rk) to
L^S*) and hence also from Ek(R) to Ek(S) and from /^(i?) to Fk(S).
We use φ^ for each of these maps. For example if m G L2(Rk) is given
using the canonical basis in Rk by m(en ey) = Σrijιeh then φ*(ra) is the
^-bilinear map

It is of course perfectly possible to describe the above situation func-
torially, but it seems appropriate to resist the temptation. Note however
that the assignment φ /SΛ> φ* is clearly covariant.

LEMMA 3.2. Let φ: R -> S be a ring homomorphism and induce maps φ*
as above. Then the diagram

Ek(R) t Fk(R)

Ek(S) t Fk(S)

commutes. In particular, φ* maps Nk(R) into Nk(S).
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Proof. Write/? = Σr l 7e l 7 where {eu} is the usual basis in L\Rk). Then

<P*f\(p) =

Five similar computations establish the commutativity of the diagram. If
fR(a) = 0, then/s(φ,(α)) - 0 and so Φίiί(α) E

It seems necessary to prove the above result in order to keep track of
a particular embedding of A E Sep(i?) in Rk. Recall from §1 that if φ:
R -* S and we regard S as an iϊ-algebra via φ, then A <8>RS E; Sep(S'). The
following result shows there is no confusion between these two ways of
changing rings.

LEMMA 3.3. Let a E Nk(R) and let A = a(Rk). The isomorphism
Rk ®RS — Sk induces an isomorphism

of S algebras. In particular φ* maps Sk(R) into Sk(S).

Proof. Let a — (p, m, i). Tensoring the decomposition p{Rk) ®
(1 — p)(Rk) with S preserves the direct sum, and under the isomorphism
Rk ®RS ^ Sk it is easy to check that the induced projection is just φ*(/?).
This gives a commutative diagram

Rk®RS -> Sk

p(Rk)®S -

in which the horizontal arrows are isomorphism. It is now elementary to
check that the lower arrow is an S-algebra isomorphism when ρ(Rk) is
given the unital algebra structure induced by a. Using this and the fact
that A E Sep(Λ) =>A ®R S E SepΐS) gives the last part of the lemma.

4. The perturbation theorem. We now specialise to the case in
which R is a commutative unital Banach algebra. Topologise Rk with the
/°°-norm. Then if T: Rk X XRk -> Rk is iMinear in each variable, it is
necessarily continuous, and Ln(Rk) becomes a Banach space when given
the usual operator norm. Again using the /°°-norm we thus norm each of
Ek(R) and Fk{R)\ in particular Nk(R) and Sk(R) inherit topologies as
subspaces of Ek(R). We shall make essential use of the following version
of the Johnson-Raeburn-Taylor perturbation theorem [11], [16].
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THEOREM 4Λ. Let a E Sk(R). There are constants δ > 0 and C > 0
such that given β E Nk(R) with \\a — β\\ <8 < \ there is some u £
GLk(R) with llu - 1|| < C\\a - j8|| such that β = wa.

Proof. We first obtain two multiplications on the same underlying
space. Let a = (p, m, i), β = (9, «, 7) and define v: p(Rk) -> q(Rk) by

Then t? — 1 = (# — p)(2p — 1) and so provided 8 < \\2p — 11|-1 we have
v E GLk{R) and q = v-p. There is then a constant J5Γj depending only on
α, such that

m a x ( | | f > - l l U l t Γ 1 - 111) < Kx\\a - β\\.

Let γ = υ - a so by Lemma 3.1 γ E Sk(R)9 and

| |γ - α|| < max(||/> - ill, llm - t> m| | , ||1 - v\\ \\i\\)

< | | α - i8 | |max( l , IIα 11(3^, + 2Kf), \\a\\Kx)

<K2\\a - β\\ wherGK2 = K2(a).

Thus II β — γ II < ( 1 + K2)\\ a — β ||, and for small 8 we have in particular
two close multiplications on q{Rk).

Let A = y(Rk). Since A is separable, with splitting idempotent Σxt ® ^
say, it follows that if 8: A -» M is any Λ-hnear derivation into an
i?-module M, then δ is inner being implemented by Σx/δί^ ). [14,4.11;
this is a standard characterisation of separability]. Thus for the purely
algebraic Hochschild cohomology over R we have Hχ(A, A) — Hl(A, A)
= 0.

Further since A = q(Rk) and q is continuous, A is a closed submod-
ule of Rk

9 and hence itself a Banach space. Further the multiplication
π = v - m is continuous and hence A can be renormed with an equivalent
norm under which it is a Banach algebra. In this norm we have \\n — π\\
< K3II a — β ||. We are thus almost in a position to apply the perturbation
theorem [11, Theorem 2.1], [16, Theorem 3] to obtain an invertible map w
from A to A with \\w — id|| < KA \\ n — π \\ such that

n(x, y) — wπ(w~ιx, w~ιy) (x, y G A).

Indeed all of our Λ-linear maps are continuous, and an examination of the
proof of the perturbation theorem shows that in our case the derivatives of
the appropriate maps will be /{-linear and hence maps for which we can
apply the vanishing of Hχ(A, A). The only point then in doubt is that w:
A -> A is ϋ-linear, and this can easily be checked from the construction
given in [11, Theorem 2.1].
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Since w: q(Rk) -> q(Rk) we may define w E GLk(R) by

w{x) = wq(x) + (1 - q)(χ) (x E Λ*).

Then #w = w>#, and

| | w - 111 < | | w - i d | | ll̂ ll < i Γ 5 | | α - i 8 | |

where we now work again with the original norm on A. We have
β = (w o t>) αand

where again since 8 < 1, C depends only on α.

This result puts us in a position to describe the ambiguity involved in
associating a G Sk(R) with a separable algebra A. Note first that an
application of Theorem 4.1 together with the fact that the connected
component of the identity in GLk(R) consists of (finite products of)
exponentials shows that as a topological space, Sk(R) is locally path
connected. We write a ~ β iff a and β are in the same component of
Sk(R), and the set of path components as [

PROPOSITION 4.2. Let R be a commutative unital Banach algebra. Let
aQ9 ax E Sk(R) and assume a0 ~ ax. Then ao(Rk) <=* ax(Rk). Conversely if
a,βe Sk(R) and a(Rk) ^ β(Rk) then a θ 0 - β θ 0 in S4k(R).

Proof. Let at (0 < t < 1) be the path in Sk(R) connecting α0 and ax.
Let

Then ατ E Sk(R), and by Theorem 4.1 and Lemma 3.1 there is a
neighbourhood UoiaτvnNk(R) such that if β E t/thenβ(i?*) ^ aτ(Rk).
Thus T = 1 and ax(Rk) ** ao(Rk).

The converse is almost the same as the corresponding result for
finitely generated projective modules [17,6.7]. Let u: a(Rk) -» β(Rk) be
the given isomoφhism, and define an isomoφhism on R2k, say

v:pRk®(l- p)Rk θ q(Rk) θ (1 - q)Rk -> ̂  θ (1 -
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by v(a, b, c, d) = (u(a), d, u~\c), b), where a — (p,m,i) and β =

(q, n, j). Then β Θ 0 = v(a θ 0). Let w = t> θ tΓ1: i?4* -> i?4/c, so w E
GL4k(R) and β θ 0 = w (a θ 0) in S4Λ(1Ϊ) Furthermore

1 / (1 + v) + (1 — t»)cos / (1 — ϋ)sin t
f /V* yy — I

' 2 \ (ϋ-i - i)sin ί (1 + I T 1 ) + (1 - iΓ

is a path in GL4k(R) with w0 = 1, ww = w. Thus α θ 0 - /? θ 0.

5. Differential geometry. We now specialise to the case R = C and
abbreviate Ek(R) etc. as 2?Λ. Our aim in this section is to obtain detailed
information about the way Sk sits inside Ek which will allow us to apply
the Novodvorskii-Taylor theorem.

The first problem is to show that each of the orbits of GLk acting on
Sk is a submanifold of Ek. Given this, a standard Lie group argument
would show that each orbit was a complex homogeneous space. In fact it
seems necessary to work the other way round; our tool is the following
elementary result given by Raeburn for Banach Lie groups in [15,1.5]. The
proof for Lie groups is exactly the same, we simply obtain the comple-
mentation requirements automatically at each stage of the argument.

PROPOSITION 5.1. Let E be a finite dimensional linear space on which
the Lie group G acts holomorphically. For a E E let πa{u) = u a be the
map G -> E induced by the action, and let M = πa(G). Assume that πa:
G -> M is an open map. Then M is a complex homogeneous space and a
submanifold of E.

PROPOSITION 5.2. The set Sk is a discrete union of homogeneous spaces.
Further, there is an open neighbourhood UofSk in Ek such that U Π Nk = Sk.

Proof. Pick a E Sk and note first that if the group action GLk X Ek -»
Ek is that described in §3, then πa(GLk) C Sk by Lemma 3.1. We can
apply the perturbation theorem (Theorem 4.1) to obtain constants C, δ > 0
such that

πa{u<ΞGLk:\\u- 111 < Cδ} C {β E Sk: \\a- β\\ < δ } .

A translation argument then shows that πa: GLk -> Sk is an open map and
so we can apply Proposition 5.1.

Let {Ski: i E /} be the distinct orbits we obtain in this way so that

Sk=U{Ski:i(Ξl}
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and each Ski is a complex homogeneous space. Note that for each a G Ski,
the perturbation theorem shows there is an open ball Ba in Ek centred at a
such that Ba Π Nk C Ski. By passing to balls of half this radius we thus
obtain neighbourhoods L̂  of Ski with Ui Π Uj= 0 (i Φj). Thus Sk is
indeed a discrete union of complex homogeneous spaces, while putting
U = U[Ut: i G /} we have UΠNk = Sk.

COROLLARY 5.3. The set Sk is a closed submanifold of an open subset of
some C".

Proof. Clearly Nk is closed in Ek and so the result follows from the
above on choosing a basis for E.

REMARK 5.4. We have been unable to prove that Sk is itself closed in
Nk (for example, by showing that each of the orbits of GLk in Nk is
relatively open). Indeed the action of i 1 on the data for the matrix
algebra MΛ(Q, whose multiplication converges to the zero multiplication,
suggests the result is false. We are thus unable to apply the Docquier-
Grauert theorem to obtain a holomorphic retract onto Sk. Were such a
retract available, the simplest course at this point would be to apply
Theorem 2.2 directly, using the image of the retract under the functional
calculus to appropriately identify RM. One can in fact manufacture a
retract onto a larger version of M, and this is the route Taylor follows in
[19, Proposition 1]. However in our case this would be close to reproving
the characterisation given in Proposition 2.3; we choose instead to apply
this directly.

To do this, we again identify Ek with Cn = Ck*k2+k3 and similarly for
Fk. Restricting /: Ek -> Fk to U clearly gives a holomorphic map, and
composing with the various coordinate projections on Fk gives a finite set
FcΘ(U) such that

Sk= {z(Ξ U: g(z) = 0 for all g G F)

on using Proposition 5.2.

Consider the composition Sk -> U -» Fk where i is the identity map. If

a G Sk then since /<> / = 0 we have image(<A'α) C ker dfa. This image is
simply Ta{Sk), the tangent space to Sk at α, regarded as embedded in Ek.
Thus
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In fact we have equality, although since we do not yet know that the rank
of / is locally constant at a we cannot use the usual implicit function
theorem argument. Instead we compute to obtain the result directly.

PROPOSITION 5.5. Ta(Sk) = ker(d/J.

Proof. We first compute Ta(Sk). Let a = (p, ra, /). Since ira is an
open map, and a neighbourhood of the identity in GLk consists of
exponentials, we have

= {(<?> n, j) e Ek) say, where

ft(ep)\ί=0; n = ft= ft(e'"-p)\ί=0; n = ft(e'" m)\t=0;

Thus

(1) q = up-pu

(2) n(x, y) = um(x, y) - m(x, uy) - m(ux, y)

(3) j = ui

where x, y E Ck are arbitrary. Now pick β — (q, n, j) E ker<^. Then
since (dftjίβ) = 0 (1 < / < 6) we obtain

(4) pq + qp- q = 0

(5) n(x,y) -pn(px,py) - qm(x, y) ~ m(qx, y) -rn(x,qy) = 0

(6) n(x9 m(y, z)) + m(x, n(y, z)) ~ n(m(x9 y), z)

-m(n(x9y), z) = 0

(7) n(x,i) + m(x,j) ~ qx = 0

(8) n(i,x) + m(j9x)-qx = 0

(9) J-PJ-Φ = O

We thus have to show how these equations give u E Mk(C) such that (1)
(2) and (3) hold.

Let T: p(Ck) X p(Ck) ^ p(Ck) be the bilinear map (px, py) ~»
pn(px, py). Temporarily denoting the multiplication on P(Ck) by
juxtaposition, since xy — px -py we have xT(y9 z) — T(xy9 z) + T(x9 yz)
- T(x9 y)z = 0 (JC, y, z) Ep(Ck)) on using (6). Thus Tis a 2-cocyle for
the separable algebra A = a(Ck) and hence, as in the proof of Theorem
4.1 there is some w E L\A)9 which can be trivially extended to give
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w E U{Ck) such that for x9 y9 z E Ck, pn(px, py) = m(x, wpy) —
pwpm(x, y) + m(wpjc, j>). Put u — q — 2pq — /»vp. Then

up ~pu = qp + pq- 2pqp

and by (4), since pq = pq + pqp we have pqp = 0. Using (4) again shows
that q = up — pu, and we have established (1).

From (5) and the definition of w we have

*(x> y) = ( ί - pwp)m(x9 y) + m((q + pwp)x, y)

and so

, y) + m{x, (2q - u - 2pq)y).

Since m = pm(p X p), this gives (2). Finally, using (7) together with (1)
and (2) shows that m(x, j) = m(x, w/) so that/y = pui. Thus from (9) we
see thaty = ui as claimed.

This calculation is a generalisation of the corresponding one for
idempotents carried out in [18, Theorem 3.8] and it is used in the same
way. Thus let Θz denote the ring of germs of functions each holomorphic
in some neighbourhood of z. Then using standard differential geometry
[see e.g. 7,16.8.9] we obtain the following

5.6. COROLLARY. F generates I(Sk)z9 the ideal in β2 of germs of
functions vanishing on Sk9 for each z E ί/.

6. The main theorem. Throughout this section R will again be a
commutative unital Banach algebra with maximal ideal space X. Since the
Gelfand transform γ: R -* C(X) induces a map γ*: Sk(R) -* Sk(C(X))9

and since γ* is continuous with the topologies given in §4, it induces a
map between components. We can now give the first version of our main
result

THEOREM 6.1. The map γ*: [Sk(R)] -> [Sk(C(X))] is bijective.

Proof. By Proposition 5.2 and Corollary 5.3 we are in a position to
apply the Taylor-Novodvorskϋ Theorem (2.3). Thus the Gelfand trans-
form induces a bijection [RSk] -*[X,Sk] and using Proposition 2.3 and
Corollalry 5.6,

RSk= {aGR": sp(δ) C Uandg(a) = 0 for allg E F).

We identify the spaces involved in a series of Lemmas.
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LEMMA 6.2. There are natural isomorphisms

Ek(C(X)) - C(X, Ek); Ek(β(X)) - B(X, Ek).

In particular, the first of these induces a topological isomorphism Sk(C(X))
-> C(X, Sk) and hence an identification [Sk(C(X))] = [X, Sk].

Proof. Let εx: C(X) -* C be the evaluation map at x E X. This
induces a map (ε^)*: Ek(C(X)) -> Ek which is of course continuous as a
function of x. Thus we obtain

ε: Ek(C(X)) ^ C(X, Ek)

and it is clear that this is bijective. The argument for β(X) proceeds in the
same way.

Restricting ε to Sk(C(X))9 the image certainly lies in C(X, Sk) by
Lemma 3.3. Conversely if a E Ek(C(X)) and ε(α) E C(X, Sk)9 it is clear
that a E Nk(C(X)) since if an equation between matrices of functions
fails to hold, it will fail at some point of the underlying space. It is thus
sufficient to check that a(C(X)k) is separable. However since the quo-
tient map modulo any maximal ideal m is given by some εx we have,
a(C(X)k) ®R C(X)/m = ex(Ck) E Sep(C), whence a E Sep C(X) by
Proposition 1.1.

In order to identify Rs we make explicit certain isomorphisms. We
have already used the identification of Ek with Cn to embed Sk in Cn. In
the same way we identify Rn with R ® Ek. Let /: R® Ek ^ Ek(R) be the
obvious isomorphism, and for a E R ® Ek9 write J(a) — a. The following
description of RSk is a consequence of the composition property for the
functional calculus.

LEMMA 6.3. Let F and U be as described in §5. Then for a E Ek(R)
with sp(ά) C U9 we have g(ά) = 0 for all g E F iff fR(a) — 0.

Proof. As in §2 we write a for the image of a under the composition

Ek(R) ^R®Ek^R**®Ek^ β(X, Ek)

so that S(ά) = α. Since Sp(ά) C U9 we have α E Θ(X, £/) and again as in
§2, S(g ° ά) = g(a) for any scalar-valued g holomorphic on U. Thus
g(ά) = 0 for all g E Fiff 5(/o ά) = 0 where/: ί/ -> Fk is the map which
defines S .̂
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Regarding/as a map Ek -* Fk gives the diagram

(1) lRf ihR

J
R®Fk -* Fk(R)

which we claim commutes. Assuming this, and again restricting / t o U we
have

e(χ, Fk) -

Rυ

lRf

I R®Fk i

If*

Fk{R)

which commutes by Proposition 2.2. Thus for a G Ek(R) with sp(α) C U
we have

fR(a) = / Λ / α ) - JRf(S(ά)) - /S(/o ά)

and the result follows since / is a linear isomorphism.
To check that (1) commutes consider the diagram

Ek(β(X)) - 6(X9Ek) - R9Ek i

Fk{e(X)) - 6(X,Fk) - Λ®FΛ i

where the left-hand square is obtained from the isomorphism in Lemma
6.2. It is a simple matter to check that this left-hand square commutes
since an equation holds in a function space iff it holds pointwise. As
before, the middle square commutes, and since the top and bottom rows
are simply the map v* induced by the functional calculus v: Θ(X) -* iϊ,
the outer rectangle commutes by Lemma 3.2. Since S is onto, the
right-hand square commutes.

LEMMA 6.4. RSk = Sk(R).

Proof. Let a G Sk(R); then a = γ*(α) G Sk(C(X)) by Lemma 3.3
and hence sp(ά) = {ά(x): x G X) C Sk by Lemma 6.2. Since a G Nk(R)9

fR(a) = 0 and so α G i ϊ 5 by Lemma 6.3.
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Conversely let a E RSk. Note that for each x G X, ( ε x °γ)* : Ek(R) -»
Ek and that (ε^ © γ)#(α)*= ^(Λ:). Since /Λ(α) = 0 we have ά(jc) E JV̂
( j c £ l ) by Lemma 3.2, and since ά(x) E Sp α C U we in fact have
ά(x) G Ŝ  by Proposition 5.2.

Let m be the maximal ideal of R corresponding to x so that
ε / γ : i? -> R/m is just the quotient map. By Lemma 3.3, if A =
α(iί*) then 4 ®Λ Λ/m ^ ά(x)(C*) E Sep(Λ/m) for every maximal ideal
m of R. Thus by the local characterisation of separability (Proposition 1.1)
A E Sep(i?) and the lemma follows.

These identifications complete the proof of Theorem 6.1 since the
map induced by γ on RSk is clearly γ* on Sk(R) and the topologies
induced on these two sets come from equivalent norms on Rn.

THEOREM 6.5. The map A A/^ A <8>R C(X) is a semigroup isomorphism
from Sep(A) to Sep C(X).

Proof. As described in §1, the map is certainly a semigroup homomor-
phism.

Let B E Sep C(X) and choose k > 0 and β E Sk(C(X)) with
β(C(X)k) ^ B. From Theorem 6.1 there is some a E Sk(R) with a - β,
whence ά{C(X))k ^ B by Proposition 4.2. But a = γ*(α) and so if
,4 = α(l?*) we have A ®R C(X) ^ y*(a)(C(X))k ^ B using Lemma 3.3.
Thus the map is surjective.

To check injectivity let Ao, Ax E Sep(i?) with A0®RC{X) ^
Ax ®R C{X). Choose k > 0 and α, E Sk(R) such that α^Λ*) ^ 4̂,. (/ =
0,1). Then by hypothesis άo(C(X)k) =* ά,(C(-Y))* and so by Proposition
4.2, ά0 Θ 0 - ά1 θ 0 in 54Λ(C(ΛΓ)). By the injectivity part of Theorem 6.1
α0 θ 0 ~ aλ θ 0 and hence Ao ^ ^4lβ

COROLLARY6.6. LetAG Sep(R)andletB = A®RC(X)ESeip C(X).
Then

(i) A is faithful iff B is
(ii) A is commutative iffB is

(iii) A is central iff B is.

Proof. It is elementary that if A has one of the above properties, then
so does B.
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Note that in general we can write R = tr(A) θ ann(yl), the direct
sum of the trace and annihilator ideals [6,1.1.9] and hence obtain an
idempotent e G R with eR — ann(^4). Working in B = A ®Λ C(X) we
have

(1 ® l)έ = 1 ® e = e 1 ® 1 = 0 since e G ann(v4).

Thus if 2? is faithful, e is the zero idempotent in C( X), and hence by the
Silov idempotent theorem e = 0. Thus ann(^l) = (0) and yl is faithful.

Let e G A ® ̂ 4° be the separability idempotent for v4. Then Z(>4), the
centre of 4̂ is simply e A; from this it is clear that Z(B) = Z(^4) ®* C( Jf).
By [6, II.3.8] we know that Z(A) is itself a separable algebra, and since e is
idempotent in A <8>A°, the projection a ~* a.e. shows that Z(A) is also
projective.

Now assume that B is commutative. Then Z(A) ®RC{X) ~
A ®Λ C(X) and so by the injectivity part of Theorem 6.5, A and Z(A) are
isomorphic i?-algebras and thus A is commutative.

If instead we assume that B is central we have Z(A) ®RC(X) —
C(X)^R ®R C(X) so Z(A) ^ R as iϊ-algebras, again by Theorem 6.5.
Thus A is central.

This corollary enables us to specialise the isomorphism of Theorem
6.5 both to Cov(i?), the subsemigroup of Sep(jR) consisting of those
commutative algebras which are faithfully projective as modules, and to
AZ(JR), the subsemigroup of Sep(i?) consisting of the central i?-algebras.

COROLLARY 6.7. The map A ~* A <8>R C( X) induces semigroup isomor-
phisms

Az(R) -^AzC(X)

and hence a group isomorphism

Bτ(R) ^BτC(X).
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