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/7-HENSELIAN FIELDS: ^-THEORY,
GALOIS COHOMOLOGY, AND

GRADED WITT RINGS

ADRIAN R. WADSWORTH

For a field T7 with a/?-Henselian valuation v, direct sum decomposi-
tions will be proved for Milnor's ^Γ-theory mod n ( n a power of the prime
/?), for the Galois cohomology of F with Zw-coefficients, and for the
graded Witt ring of quadratic forms of F (with p = 2). In each case, the
summands of the ring associated to F are copies of the corresponding
ring associated to the residue field of v, and the number of summands is
determined by its value group. The theorems generalize results known
for a field with a complete discrete valuation.

The direct decompositions in ^-theory, in Galois cohomology, and
for the graded Witt ring, for a field with a complete discrete valuation are
a familiar part of the "local" machinery of field theory. In view of the
increasing importance of Henselian fields, it seems worthwhile to spell out
just how these results for complete discrete fields generalize to the
Henselian case. While such generalizations are not surprising, and may in
certain cases be known to some, they have not appeared in the literature.
(The Witt ring of a Henselian field has been described, see [15, §12.2], but
not the graded Witt ring.)

The basic setting for our results is a field F with a /7-Henselian
valuation (p a prime number), as described in §1. The /7-Henselian
property is a weaker relative version of the Henselian condition on a
valuation. We work with /?-Henselian valuations because they are exactly
the ones for which direct sum decompositions exist (at least when F has
enough roots of unity) — see (2.3), (3.10), and (4.7). We will consider
AΓ-theory, cohomology, and the graded Witt ring in separate and largely
independent sections. While the direct sum formulas are strikingly similar
in each category, the methods used to obtain them are quite different.

I would like to thank Richard Elman and Bill Jacob for several
helpful conversations during the preparation of this paper.

1. /7-Henselian fields and a ring construction. We will use the
notation (F, v, Γ) for a field F with valuation v: F -> Γ (where F — F —
{0}). The value group Γ will be written additively. The valuation ring,
maximal ring, group of units, and residue field associated to υ will be
denoted respectively Vυ, mv, Uv, and F. For a E Vv, a will denote its
image in F.
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Let p be a prime number. A field extension F C K is said to be a
p-extension if if is Galois over F with Galois group a pro-/?-group. The
p-closure of JF, which will be denoted F(p), is the unique maximal
/^-extension of F in some algebraic closure. A valuation v on F is said to
bep-Henselian if there is only one extension of v to F(p). This is a special
case (Ω = F(p)) of the Ω-Henselian valuations introduced in [5] and
discussed also in [4, Ch. II]. Brόcker points out [5, §1] that the usual
characterizations and properties of Henselian fields have natural ana-
logues for /?-Henselian fields.

All Henselian valuations are /7-Henselian. Valuations which are 2-
Henselian but not in general Henselian have arisen naturally in connec-
tion with superpythagorean fields (see [5, (3.5)], [6, Cor. 8]) and in
quadratic form theory — see [14] and [28]. Notably, Ware has shown [28,
Th. 4.4] that essentially whenever the Witt ring of F is a group algebra
there is a 2-Henselian valuation on F which induces the group algebra
structure on WF.

PROPOSITION 1.1 Let (F, v,T) be a field with valuation. Then v is
p-Henselian if and only if υ extends uniquely to each Galois extension L of F
with [L: F] = p.

Proof. Let ϋ be any extension of υ to F(p), and let M be the
decomposition field of v/v (see, e.g. [11, p. 110]). Suppose v is not
/?-Henselian; then M φ F by [11, (15.7)]. Let L be a minimal proper
extension of F lying in M. Then L lies in some /^-extension K of F with
[K: F] < oc. Since the Galois group §(K/L) is a maximal proper sub-
group of the /7-groιιp §(K/F), L is Galois over F and [L: F] — p. Also,
because L is normal over F the decomposition field of the restriction of ϋ
to L is M Π L — M, by [11, (15.6)(c)]. Hence, υ does not extend uniquely
to L. So, if v extends uniquely to every Galois extension of F of degree/?,
then υ must be ^-Henselian. The converse is clear. D

For any integer n > 1, μn will denote a group of n nth roots of unity
in a field. To say that F contains n nth roots of unity (and hence,
char F\n) we will often write for short, μn C F. Note that if F has a
valuation v and charF{_«, then μn C F implies μnQF\ when this occurs,
the residue map Vυ -> F sends the nth roots of unity in F bijectively to
those of F.

PROPOSITION 1.2. Let p be a prime number and (i7, v9 Γ) a field with
valuation. Suppose μp C F and char F φ p. Then, the following are equiva-
lent'.

(i) v is p-Henselian;
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(n)l+mΌQFP;
(iii) 1 + m . C FpC; for every integer c >: 1.

Proof, (i) => (iii) Take any a G 1 + mΌ9 and letf(X) = -Y*c - α. Then
/ has an unrepeated linear factor mod xnv and / splits in F(p). So, the
usual argument for Henselian fields applies here (cf. [5, (1.2)]), showing
that/has a linear factor over F, i.e., a G Fp\

(iii) => (ii) Clear.
(ii) => (i) Suppose l + π t ^ P . Then, for any s G £/o, if ί G F ' , then

5 G Fp. Let (L, w, Δ) be any extension of (F, v9 Γ), such that L is Galois
over F and [L: F] = />. By Kummer theory, L — F(dl//p), for some
d<ΞF-Fp. If t?(ί/)g/>Γ, then | Δ : Γ | > / > . If t?(J) G/>Γ,_ we_may
assume t>(</) =_0 (replacing dby dtp for suitable / E F). Then, d_£_Fp, so
g( X) = X^ — d is irreducible in -F[ Jf], Since g has a root in L, [L: i7] > ̂ .
In either case, the fundamental inequality Σ ef / < [L: i7] = p [11, (17.5)]
shows that w is the only extension of v to L. Hence, by (1.1), F is
/7-Henselian. D

For/ι = 2, (1.1) and (1.2) were proved by Dress [8, Satze 2, 3].

REMARKS 1.3. (i) Note that, for any field with valuation (F, v9 Γ) the
condition 1 + xnυ C Fp is of interest only when chari 7 ^/?. For, when
char F = /?, we have 1 + mo C F p iff F = F^ or υ is the trivial valuation.
(If char F = 0, this is deducible from the identity in [4, p. 2, bottom line].)

(ii) If charF = /?, then the analogue of (1.2), at least for a discrete
valuation, is: υ is ̂ -Henselian iff mv Q {ap — a\ a E F}. This is a little
harder to prove than (1.2).

The next lemma, which is well known, gives a basic property of
/7-Henselian valuations (when μp C F) which we will use heavily. We
write Zn for Z/nZ (with Z the integers).

LEMMA 1.4. Let n = pc, p prime. If (F, ι>, Γ) w a field with valuation
for which 1 + mv C F n , /Λe« /Aere zs 0 canonical short exact sequence

-i- -L. 1

(1.5) 1

is split exact, not canonically, since T/nT is a free Zn-module.

Proof. For any field with valuation (F, v9 Γ) we have the canonical
short exact sequence

(1.6) 1 - UJ {US - F/F" i*T/nT - 0,
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where v is induced from tr. F -* Γ. If 1 + mΌ C Fn

9 then the canonical
surjection Uv/(Uv)

n -> F/Fn is an isomoφhism, which we substitute into
(1.6) to obtain (1.5). To obtain a Zn-base of Γ / Λ Γ , take any subset of
T/nT mapping bijectively to a Z^-base of Γ/pΓ. D

For a field with /?-Henselian valuation, we will compare a ring (in
ΛΓ-theory, Galois cohomology, or a graded Witt ring) for F with the
corresponding one for F. In each case the same kind of ring extension
occurs, which we will now describe in general terms. All the rings we
consider are assumed to be associative.

Let A — ®^0At be a graded ring with 1 which is anticommutatiυe,
i.e., in which

(1.7) *,-** = {-\)ιkakaι9 for all at GA^ndak EAk.

Take any t G A with It = 0, any index set /, and let {XJ}J(ΞJ be a
collection of distinct symbols not in A.

DEFINITION 1.8. A[J; t] denotes the anticommutative graded ring
extension of A by the x,'s (with each x. given degree 1), subject only to
the relations

xj — txj9 for eachy G / .

More precisely, let A0{XJ}JGJ denote the polynomial ring over Ao in
noncommuting indeterminates X . Then A[J\ t] is the factor ring of the
free product A * A A0{X} GJ modulo its ideal 5 generated by [XJaι —
(-lYatXj9 XjXk+\xp Xf-tXjl^EίA,, / > 0, j9kEJ}; Xj is the
image of Xj. The free product is given a grading extending that on A by
assigning degree 1 to each Xjm Since ί is a homogeneous ideal there is an
induced grading on A[ J; t]. The first two types of generators of ί (and the
anticommutativity of A) assure that A[J; t] is anticommutative. To
describe A[J; t] more fully we need further

NOTATION 1.9. For an index set /, let %m denote the collection of all
subsets of / with m elements, for m G Z, m > 0. Let % - U * = 1 %m. A
typical member of (Sm will be written as J, and the elements of the set j
listed asjι,j2,".jm.

REMARKS 1.10. The ring A[J\ t] of (1.8) is a free left (and right)
Λ-module, with base {1} U {XjXj2 xjm \ J= {j\>. Jm} e \} This is
easily seen by induction on the cardinality | /1 of / if | /1 < oc, and by a
direct limit argument if | /1 = oc. (Note that in the base for A[J\ t] there
is one term c. Xj for each J G f. That term depends on the order of
they- (not just o n / ) ; but the dependence is only up to sign, and can be
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ignored.) Since the terms in the base are homogeneous, we can read off
the homogeneous components of A[J; t]: for k > 0,

k

(l.ii) A[j;t]k = Ake(B Θ V ^ ^

In this direct decomposition, each summand Ak_mxJι xJm is isomoφhic

The ring A[J; t] can be described as a tensor product of A with
another ring, but this is somewhat cumbersome to do in general (cf. the
discussion of products of /c-algebras in [3, p. 366]). We note a few special
cases.

EXAMPLES 1.12. (i) If t = 0, then A[J; t]=A <8>ZΛ(/), where Λ(J)
denotes the exterior algebra (over Z) of the free Z-module with base
{χj}jej- Note that / = 0 whenever A is (additively) an ̂ -torsion group, n
odd.

(ii) If A is 2-torsion, then A and A[J; t) are commutative rings, and
we have the graded ring isomorphism

(1.13)

where Z2[X] is the polynomial ring over Z 2 and GR = Z2[X][J; X]. That
is, GR is the factor ring of the (commutative) polynomial ring Z 2 [ Z ,
{XJ}JE:J] modulo the ideal generated by {Xf - XXj \ j G /} . (GR can also
be described as a graded Witt ring — see §4.) A is made into a Z2[X]-al-
gebra by mapping X to t. To see that (1.13) is an isomorphism, note that
each side is a free A -module, and corresponding basis elements multiply
analogously.

2. Milnor's AΓ-theory mod n. Let (K*F)n denote Milnor's iΓ-theory
for a_ field F, taken modn. We now show how (K*F)n is related to
(K*F)n for a/7-Henselian field, n a power of/?. The arguments are easy
and natural generalizations of those given by Milnor [19, §2] for a
complete discrete valuation. The resulting decomposition of (K*F)n in
terms of (K*F)n provides a prototype of what should be expected in the
setting of Galois cohomology and of graded Witt rings.

We recall briefly Milnor's construction in [19] of K*F. For a field F
let T(F) denote the tensor algebra of F as a Z-module. Reducing T(F)
modulo the (homogeneous) ideal generated b y { α ® ( l — a)\ a E: F, aφ
1} yields the anticommutative [19, (1.1)] graded ring K*F, whose ith
homogeneous component is denoted KtF. For any integer n > 1, let
(K*F)n denote the graded anticommutative ring obtained by reducing
K^Fmodn; so (KiF)n = K^/niK^). For a G F, let l(a) denote the
image of a in (KxF)n (which is canonically isomorphic to F/Fn). Since



478 ADRIAN R. WADSWORTH

the group operation on (KxF)n is written additively, we have l(ab) = l(a)
+ l(b). This is a slight modification of Milnor's "logarithmic" notation in
that our l(a) lies in (KxF)n9 not in KXF.

PROPOSITION 2.1. (cf. [19, (2.1), (2.2)]). Let (F, v, Γ) be any field with
valuation, and let n—pc, where p is prime. Choose any subset {πj}jΊΞJ of F
which maps bijectiυely under ϋ to a Zn-basis of T/nT. Then there is a
surjective graded ring homomorphism θ: (K*F)n -* (K*F)n[J; /(—I)] such
that

l(u) ι-» l(ϊi) for uE.Uυ and l(τrj) h* Xj forj G /.

Proof. Let B = (K*F)n[J; /(-ϊ)], the extension ring of (K*F)n

described in (1.8)—(1.11).
Any a G F can be written a = bm™λ π£kdn where b G UΌ,jl9... Jk

are distinct elements of /, and d G F, Such a decomposition of a is not
unique, but mλ,...,mk arejiniquely determined mod n (by v(a) in Γ/wΓ)
and & in F is unique mod Fn. Thus, there is a well-defined surjective group
homomoφhism a: F -^ Bλ given by

This map extends uniquely to a ring homomoφhism β: T(F) -* B.Ύo see
that β induces a map γ: K*F -> 5, we show that /?(# ® (1 — α)) = 0, for
every α G /, a φ 1. By definition, β(a ® (1 — Λ)) = α(α) α(l - Λ).

I . Λ G mβ. Then I — 0 = I in i% so a(l — a) — 1(1) = 0, hence

2. β G ί̂ . If a = ΐ in i7, then α(α) = 0, and we are done as in
Case 1_. If άφ\, then 1 - a = 1 - 5 G F, and J8(Λ ® (1 - α)) =

3. a £ Vv. Then v(l — a) = ϋ(β) and (l — #)/# = -1 in F.
Writing a = ft^1 π™kdn as above we have correspondingly \_ — a =
(6(1 - a)/a)πjfι π/*^M. Since /(Z?(l - α)/β) = /(-ΐ) in ( ^ F ) ^ and
2/(-l) = /(I) =l 0, and mj - mκ is even, it follows that

β(a ® (1 — α)) :

= 0 + 2 (-/Fϊ)«Λ + 'FOwjjx^ = 0.
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Thus, γ exists, and since B is n-torsion, γ induces a homomorphism θ:
(jfiΓ5jei

7)M -»B. One easily sees that θ has the properties described in the
proposition; θ is surjective since a is surjective and the ring B is generated
by its terms of degree 1 (since this is true for (K*F)n). D

Note that the ring (K*F)n[J; /(-ϊ)] has the form described in
(1.12)(i) if n is odd and (1.12)(ϋ) if n = 2. Observe also that the argument
of (2.1) shows that if Γ itself is a free abelian group (not just T/nT), then
there is a map K*F -> K+F[J\ /(-ϊ)].

REMARK 2.2 (cf. [19, (2.Γ), (2.2)]). We can obtain various "residue
maps" from (K*F)n to (K*F)n by composing_0 of (2.1) with projection
onto any of the (Λ^F)π-components of (K*F)n[J; /(-ϊ)] in the direct
decomposition given in (1.11). With one exception, these residue maps
depend substantially on the choice of {iΓj}JEίj. The exception occurs when
T/nT has finite rank, say r9 as a Z^-module. Then set J = {1,2,... 9r}.
Using projection onto the component of xxx2 xΓ, we have 3: (K*F)n

-> (K*F)n, of degree -r, such that for any ul9...9uk E ί£,

8(7(11,) - - /(«*)/(*,) - - /(*,)) - /(δ,) l(uk)9

d(l(ux) - l(uk)l(πh) -Ί(πimj) = 0 i fθ<m<r.

If we make a different choice of the πi9 say {τr[,...,7r/}, and form the
corresponding map 9', then 3' = dd. The constant d, a unit in Z π , is the
determinant of the change of base matrix from the ordered base
{tJ(TΓJ),... 9v(ir{)} of T/nT to {ϋ(w,),... ,ϋ(τ7r)}. Of course, if π = 2 or if
there is a preferred basis of T/nT (e.g., when Γ s Z), then 3 is canonically
determined.

PROPOSITION 2.3 (cf. [19, (2.6)]). Let n — pc, where p is prime. For a
field with valuation (F9 v9 Γ) the map θ of (2.1) isjan isomorphism if and
only if 1 + mΌ C Fn. When this occurs, and (K*F)n is identified with its
image in (K*F)n, we have (using notation (1.9)) for every k > 0,

(KkF)n = {KkF)n Θ 0 0 {Kk_mF)nl(πΆ) . . . l(πj.

Furthermore, we have for each summand, (Kk_mF)nl(iTj) •••/(ττy ) =

Proof. Assume some choice of {IΓJ}JGJ has been made as in (2.1).

Suppose 1 + mΌ C Fn. It is easy to verify that the canonical injection

/: F/Fn -> F/Fn of (1.5) induces a graded ring homomorphism λ:

(K*F)n-*(K*F)n for which λ(/(δ)) = l(u) for any u <Ξ Uv. Since
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(K+F)n[J\ /(-ϊ)] i s a free ( l ^ F ^ - m o d u l e by (1.10), there is a well-de-
fined map v\ (K*F)n[J; /(-I)] -> (K+F)n given by v(a) = λ(α) and
K « ^ , * Λ ) = λ(α)iryi mh for any a G (iί:*/1),, and distincty1 ?... Jk

G /. It is easy to check that v is an inverse for θ; hence θ is an
isomorphism. For the converse, note that if a G 1 + χnΌ, then θ(l(a)) = 0.
The injectivity of θ implies /(*) = 0 in (KλF)n s / / / " ; hence l + ί n . C
F " . The rest of (2.3) is immediate from (1.10). D

COROLLARY 2.4. Letji — pc, p prime, and let (F,v,T) be a field with
valuation such that char F Φ p* Then the map θ of(2Λ) is an isomorphism if
F is p-Henselian and μ C F or if F is Henselian.

Proof. The /?-Henselian case is immediate from (1.2) and (2.3). The
argument of (1.2)(i) => (in) showing that 1 + xnv C Fn is actually valid if v
is Ω-Henselian (cf. [5, §1]) for some normal extension Ω of F such that
F C Ωπ. If F is Henselian, we may take Ω to be the separable closure of
F. D

REMARK 2.5. The number n was restricted to be a prime power in
(2.1)-(2.4) to assure that T/nT be a free Z^-module. For more general
values of n one can always reduce to the prime power case: if n — nλ nk,
with ni — Pi* and the pi distinct primes, we have the primary decomposi-
tion (K*F)n = ® L\(K^F)n. This is also a direct sum decomposition of
rings. Note that the rank of Γ/fl/Γ may vary with /.

3. Galois cohomology. We now prove the analogues to ̂ 2.1) and
(2.3) for Galois cohomology with Zn coefficients. The case F = F((t)) and
n — 2 was proved by Milnor [19, p. 341]. Arason [1, pp. 475-477]
obtained the corresponding direct decomposition for υ a Henselian dis-
crete valuation on F and n = 2, and Elman [9, Th. 2.6] generalized
Arason's argument to arbitrary n. (Of course the analogous direct decom-
position for the Brauer group, with F a field with complete discrete
valuation is much older — tracing back to Witt [29].) Our approach here
applies to Henselian valuations with arbitrary value group, using an
induction argument with an abstracted version of Arason's argument for
the induction step.

For a profinite group G and a discrete G-module M, let H'(G9 M),
i > 0, denote the /th (continuous) cohomology group of G on M. (See [7,
Ch. IV, V] or [23] for definitions and general background.) For any integer
n > 2 , we write H\G,n) for fl"''(G,ZΛ) with G acting trivially on
Zn : = Z/ΛZ. Identifying Zn ®zZn with Zn via 1 ® 1 -> 1,
H*(G9n):= θ£0//'"((?, Λ) becomes an anticommutative (see (1.7))
graded ring with multiplication given by the cup product (cf. [7, pp.
107-108]).
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THEOREM 3.1. Let G be a profinite group, N a closed normal subgroup of
G, and n >2 an integer. Suppose,

(i) there is an isomorphism φ: H\N, n) = Zn;
(ii) G/N acts trivially on H\N, n);

(iii) the restriction map TQSG_N: Hι(G, n) -* H\N, n) is surjective;
(iv) H\N9 n) = 0 for every i > 1.

Choose any β GH\G,n) such that φ(resG_^(β)) = 1 in Zn. Then, for
every k > 1, there is a short exact sequence

0 -* Hk(G/N, n) ̂ Hk(G9 n) ̂ Hk~ι(G/N, n) -> 0,

which is split by the map

ψ: Hk~\G/N, n) -» ̂ ( G , w) g/ra fey a ̂  β U infG / j V^G(a).

Proof. For any A: > 1, consider the following diagram:

(3.2)

• iHk(G/N, n)^Hk(G, n) ^Hk~\G/N, Hι(N, n)) ^Hk+ι(G/N, n)^

Hk~\G/N, n)

Because Hι(N, n) — 0 for i > 1, the top line of (3.2) is part of a long exact
sequence obtained by Hochschild and Serre [13, p. 132, Th. 3] using their
spectral sequence for group extensions. The map inf is inflation from G/N
to G, and d is the map d2 of the Hochschild-Serre spectral sequence,

Ep,q = HP(G/N, Hq{N, «)). The map r is determined by the following:
For every element η of Hk(G, n) there is an inhomogeneous continuous
normalized cocycle τ E Ck(G, n), with class [T] = η, such that for
gι9..-,gk €Ξ G, the value of τ(g1 ?... ,gk) depends only on gx and the cosets
g2N9...,gkN. For any such T, r([τ]) — [σ], where the cocycle σG
Ck~\G/N, H\N, n)) is defined by

σ(g2iV,...,g,JV)(Λ)-τ(Λ,g2,...,gJ, for all h G N, g2,.. .,gk E G .

The map φ* in (3.2) is the isomorphism induced from φ, using (i) and
(ii). ψ was defined above. We compute φ* © r o ψ. Take any α = [p] E
Hk~\G/N, n). Then ψ(α) = [r], where, for g,,...,gΛ E G, τ(g,,...,g*)
= β{gλ) p(g2N9...9gkN). This cocycle r has the property given above.
Hence, r(ψ(α)) = [σ], where

σ(g2N9...9gkN):h»β(h) p(g2N,...,gkN), for h E iV, g2,... ,gk E G.
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Thus, φ*(r(ψ(α))) = [K] where

= p(g2N9...9gkN) φ(τesG_N(β))

= p(g2N9...9gkN) l.

This calculation shows that φ* © r © ψ = id. Hence, r is surjective, so
d = 0 in the long exact sequence in (3.2), and this sequence breaks up into
short exact sequences. (For k — 1, the injectivity of mlG/N_G follows from
the standard isomorphism Hι(G9 n) = Hom(G, Zπ).) Setting p = φ* ° /*,
we have the split short exact sequences of the theorem. D

REMARKS 3.3. (i) The quoted theorem from [13] is proved there for
ordinary group cohomology, not continuous cohomology. However, the
proof in [13] carries over to the profinite setting simply by replacing the
cochains and coboundaries by continuous cochains and coboundaries.

(ϋ) Alternative proofs of [13, Th. 3] can be found in [21, (11.35),
(11.45)] or in [12] — Hattori gives a proof without using spectral se-
quences. However, the specific property of the map r needed to see that ψ
splits the short exact sequence in (3.1) (the property given in the sentence
earlier beginning "For any such T. ..") is not apparent from the arguments
in [12] or [21]. Nor is it very clear in [13], either, but it follows from the
proof of [13, Th. 1, pp. 121-122].

COROLLARY 3.4. With the hypotheses o/(3.1), we have, for each k>\,

Hk(G, n) = inf(Hk(G/N, n)) θ (βuinf(Hk'ι(G/N9 «))),

with inf(Hk(G/N, n)) ss Hk(G/N, n) and β u wί{Hk~\G/N9 n)) =
Hk-\G/N,n).

Proof. This is immediate from (3.1). D

For the rest of this section we adopt the following

Standing Hypotheses 3.5. Let (i% t», Γ) be a field with valuation. We
assume μn C i% where n — pc, p prime, and char F ¥= p. Fix some subset
{πj}j<ΞJ £ ^> such that {v(πj)} is a Zn-base of T/nT. Let %m denote the
collection of subsets of J with m elements (as in (1.9) above), m— 1,2,

Let Fs denote a separable closure of i% and let GF denote the Galois
group §(FS/F). Since μn C F, GF acts trivially on μn. Fixing henceforth a
generator ω E μn to be mapped to 1 in ZΛ, we will identify /ί*(GF, μn)
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with H*(GF,n). Let

8:F->Hι(GF,n)

denote the connecting homomorphism arising from the short-exact Gjr
module sequence given by the nth. power map

. ( )"
\->μn->Fs -»Fs->\.

Because μnQF (as c h a r F ^ p ) we have an analogous map 8: F->
H\GF,n).

Suppose now that (F, v, Γ) is Henselian. Let_(Fnr,w, Γ) denote the
maximal unramified extension of F in Fs. Then Fnr = (F)s. Since w/v is
indecomposed and unramified, GF = GF/§(FS/Fnr); after identifying these
groups, we have an inflation map inf: H*(GF, n) -* H*(GF, n).

THEOREM 3.6. Suppose, in addition to hypotheses (3.5), that (F, v, Γ) is
Henselian. Let /? = 8(τrj),for every j E /. Then, for each k > 0,

Moreover inf w injective and for eachj E J^,

inf(i/^-(GF-, Λ )) U ̂  u uβJm « Hk-™(GF, n).

Furthermore, there is a graded ring isomorphism (in notation (1.8))

vi H*(GF, n) Ξ>H*(GF, n)[j; 8 ( - Ϊ ) ] , m/A v{βj) = JC, J E / .

Proof. To simplify the notation, we write H*(G) for H*(G, n) and
H*(L/K) for H*(§(L/K)). For a field K, FQKQFS, let (#, % , Γ*)
denote the unique extension of t> to A'.

Let # = chari 7 (so qΦp), and let i^r denote the maximal tamely
ramified extension of F in Fs. Note that for the valuation extension vFJv,
Ftr is the ramification field, Fnr is the inertia field, and F itself is the
decomposition field (cf. [11]). If q — 0, of course Ftr — Fs. If q ¥= 0, the
Galois group §(FS/F(r) is a pro-^-group ([11, (20.11)]); hence, as q is prime
to n = /?c, Hk(Fs/Ftr) = 0 for all A: > 1. It follows by the inflation-restric-
tion sequence [7, p. 101] that inf: H*(Ftr/F) -> H*(GF) is an isomor-
phism. Thus, it suffices to prove the theorem with §(Ftr/F) replacing GF

(and the βj modified correspondingly).
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By valuation theory Ftr/Fnr is an abelian Galois extension [11, (20.14)]
(see also [22, (1.1)]) and every intermediate field K is completely de-
termined by the image of Γ^ in ΓF [11, (20.19)]. Furthermore, by [11,
(20.20)], for all fields K and M with FnrQKQMQFtr and [M: K] < oo,
wehave[M: K] =\TM: Tκ\ .

For every j = {j»...Jm} e £m, let Kγ= Fnr{{<π]/P°\ i = 1,2,.. .,m,
a = 1,2,...}). Since μ * C i^ r for each a, Kγ is a Galois extension of F.
Let L— U ̂ jAy.Then ΓL is /?-divisible, as {ϋ(iry )} spans Γ//?Γ. So
ΓF /TL has no/^-torsion, and the previous paragraph shows that §(Ftr/L)
has order prime to p (as a supernatural number —cf. [23, p. 1-4]).
Therefore, arguing as before, Hk(Ftr/L) = 0 for all /c > 1, so it suffices to
prove the theorem with §(L/F) replacing GF. Since L — lim Kj, it

suffices to analyze H*(Gγ\ where Gγ= §(Hj/F).
For each c G F, the character δ(c) E H\GF) is given by δ(c):

σh-> σ(c1 / w)/c1 / / 2 E jurt (σ E GF); so, clearly 8(c) lies in the image of
infg(F(ci/n)/F)_>G/r. For each jGJ, let /?y' be the unique element of
H\F(ψ»)/F) such that infg(F(^)/F)_>cF(jβ;) = jS,.

We claim that for eυeryj— {j\,... Jm) E ^, α«ύ? every A: >: 0,

(3.7)

min(A;,m)

Hk{GT)=infHk(Gj?)<B 0 0 (inf i/^(G F )) υ γ̂  u uΎ//,

^ - inf ^ E /ί^G-). Further, inf: /ί^(GF) -. //^G/) is injectiυe
and each term (inf Hk~ι(GF)) u γf u uγ,- = Hk~l(GF). (There are vari-
ous inflation maps here — each is the only one that makes sense in its
context.)

We prove the claim by induction on m. To simplify notation write
j = {l,2,...,m} andΛ*= (l,2,...,m — 1}, and set TΓ = πm. (If m — 1, set
Kt=Fnr.) Then Kγ= Kχ{{πι"m}ΐ=ι), and TΓ1^ «! ^ ? (Otherwise, by
Kummer theory, TΓ E span of {ττ1?. ..,T7W__1} in F/Fp\ for some #, con-
tradicting the choice of the π/s.) Let G = Gj and iV = §(Kj/Kjf), a closed
normal subgroup of G. Note that for each α, K^{iτλ^pa) is a cyclic
Galois extension of Kj; of degree pa. Since i ^ = U~=1 K-^(πι/pa\ N s
lim Z/paZ = Z , which is a free pro-/?-group of rank 1. Hence, there is
an isomorphism φ: H\N) S Z W , and H\N) = 0 for / > 1 (see [23, pp.
1-6, 1-37] or [17, pp. 43, 45]). Furthermore, as μn C F, G acts trivially on
H\N). (For, recall that the action of G on //•(#) = Hom(iV, n) is given
by

(τ χ)(σ) = τ[χ(τ" !στ)] = X ( T ~ W ) ,
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for T G G, x G Hι(N), and σ G N. But x ( r ~ W ) = χ(σ), since τ ~ W = σ
(mod §(Kγ/K-£(πx/"))), and this group lies in kerχ.) Also, if we choose
σ G iV mapping to a generator of §(K-£(πι/n)/Kχ), then resG_^(γm(σ))
= σ(7r1/M)/7r1/w, which is a generator of μn. Thus, resG_>ΛΓ(γm) is a
generator of Hι(N); for some b G Z prime to π, φ(resG_N(6γm)) = 1 in
Z n . Since G/JV = G^and (- l )*"^* ! generates the same group as bym it
follows by (3.1) that, for every k > 1,

(3.8) ff*(G7) - inf tf*(G?) θ ( i n f / ^ ( G ^ ) ) u γ m ,

with Hk(Gjf) and Hk~ι(Gjf) mapping injectively into the respective sum-
mands. If m = 1, G^^ GF and this establishes the claim. If m > 1, we
may assume by induction that the claim holds for H*(Gj*); substituting
(3.7) for H*(Gjf) into (3.8) yields (3.7) for Hk(Gf). Thus, the claim is
proved for all/ G £.

Since all the inflation maps inf: H*(Gγ) -> H*(Gγ) are injective for
Γ, / G ^, Γ c / , and H*(L/F) = Km H*{Gj)y it follows that inf: #*((?/)
-*H*{L/F) is injective for every/. Hence, we have for H*(L/F) a direct
sum formula corresponding to (3.7); that formula is just the one in (3.6)
with §(L/F) replacing GF (and inf(^ ) replacing /?.). As shown above,
this proves the direct sum formula in (3.6), and the injectiivity assertions
for the maps. Hence, H*(GF) is a free left 7/*(G^)-module. It follows that
there is a well-defined degree-preserving i/*(G^)-module isomorphism v:
H*(GF) - H*(Gj?)[J; δ(-ϊ)] given by

*>((inf a) u βj^ u uβ^) = axjχ - .x^, and ?(inf α) = α,

for any a G H\Gf)._Since distinct /?y's anticommute, jfif. u βj = δ(-l) u /?y,
and δ(-l) = inf δ(-l), we see that v is actually a ring isomorphism. . D

REMARK 3.9 (cf. (2.5)). If n is composite, say n = /j^ ρc

k

k, with the
^, distinct primes, then H*(GF, n) s* ®JLιH*(GF9 pp). Hence, there was
no loss in restricting to a prime power in (3.6).

For any field F with μn C F it is known (cf. [20, §15] and [19, §6])
that there is a well-defined graded ring homomorphism φF: (K*F)n -*
H*{GF,n) such that,

< P F ( ' ( * I ) ' " ' ( * * ) ) ~ δ ( β i ) u ••• u δ ( α ^ ) ^ for any α̂  G A

PROPOSITION 3.10. Le/ (JF, υ, Γ) Z?e α //>W with valuation for which
hypotheses (3.5) hold. Then there is a graded ring homomorphism

v\ H*(GF, n) -> H*(GF, n)[j; δ (-Ϊ)] with δ(w, ) H> * . .
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// v is injective, then F is p-Henselian. Furthermore, the following diagram
commutes:

( ) n j ; /(-ϊ)]

(3.Π) \ \

H*(GiF9n)[j;δ(-ϊ)].

Proof_Let {EΛw, Δ) be any Henselization of (F, v9 Γ). Then, we may
identify E with F and Δ with Γ. Let vE denote the map of (3.6) for E
(using the same {πy}_for E as for F). Define v : = vE° (VQSGF^GE). For any
a G UΌ9 v(δ(a)) — 8(a). Hence, if v is injective, then 1 + mv C kerδ =
Fn\ so v is /7-Henselian, by (1.2). The map φ^is the canonical extension of
φF: (K*F)n -> H*(GF, n). It suffices to check the commutativity of the
diagram on generators /(α), a G F, and this is easily verified. D

REMARK 3.12. As in (2.2), if | /1 = r < oo, the map v of (3.10) induces
a "nearly canonical" residue map 3': H*(GF, n) -» H*(GJF, n) of degree
-r. Furthermore, if 3: (K*F)n -»(ΛΓ*/^)^ is the corresponding residue
map defined in (2.2), we have φ/ro 3 = 3 r o φ F .

COROLLARY 3.13. Suppose the field with valuation (i 7, υ, Γ) w Henselian
and satisfies hypotheses (3.5). 77j£« φF is an isomorphism (resp. injective,
surjective) in degree < k iff φ/: w α« isomorphism (resp. injective, surjec-
tive) in degree < A:.

/. This is immediate from the commutative diagram (3.11), since
by (2.4) and (3.6) the rows of the diagram are isomorphisms. D

REMARK 3.14. There is a/?-Henselian version of (3.6) and (3.10)-(3.13).
Let GF denote §(F(p)/F)9 where F(p) is the /^-closure of F, and let δ:
F -» H\GF, n) be the analogue of the earlier δ (when μnQ F). Then the
analogue to (3.6) holds for (F, t>, Γ) /?-Henselian (for n — pc), with GF,
GF, and δ(7ry) replacing GF, GF, and δ(7ry). The proof can be carried out in
the same way as for (3.6), and is a little easier, because the reduction from
Fs to L is not needed. Likewise, (3.10)—(3.13) hold with the corresponding
changes.

REMARK 3.15. Jacob points out an alternative approach to (3.6) and
its /7-Henselian analogue (cf. [14, pp. 266-267]). With the hypotheses of
(3.6), and the notation as in its proof, let G = §(L/F) and K = §(L/Fnr).
So H*(GF) = H*(G), as noted above, and K is an inverse limit of free



/7-HENSELIAN FIELDS: AΓ-THEORY 487

abelian pro-p-groups. The short exact sequence

is split exact, since GF^%{L/Lr), where Lr is a maximal totally ramified
extension of F in L. Hence, in the Hochschild-Serre spectral sequence

the d2 maps are all 0 [13, Th. 4], so the dt maps are all 0 for / > 2, yielding
E£q = E™- Therefore, Hk(G) = ®p+q=kE%>q. From the description of
K, Hq(K) is a direct sum of copies of Zn; using that Hq{K) is generated
by cup products of terms from H\K)9 one can check that GFacts trivially
on Hq(K). This determines Eξ*q

9 and shows that Hk(G) decomposes into
a direct sum of copies of Hm(GF), 0 < m < k, as in (3.6). One is left with
the task of identifying the summands within Hk(G)\ this further informa-
tion is needed for proving (3.10) and (3.13).

(This argument, or (3.6) and (3.10) can be used to prove the group
extension case of [14, Th. 6], replacing the argument on the bottom of
p.266 of [14]; the reduction given there using composite valuations is
invalid.)

REMARK 3.16. Whereas H2(GF, n) is the w-torsion in the Brauer group
of F (when μn C F), the full Brauer group is H2(GF, Fs). It is natural to
ask for a description like (3.6) of H*(GF, Fs) in terms of H*(GF,(F)S)
when (F9 V, Γ) is Henselian. Let Ω denote the set of all roots of unity in
Fs. Then, in the short exact sequence

1 -*Q-+Fs^Fs/Q-> 1,

the right-hand term is uniquely /^-divisible for each prime p ¥= char F.
Hence, (with A(p) denoting the / -primary component of the abelian
groups),

H*{GF9 Fs)(p) » H*(GF9 Q)(p) *Kig# ((?F, μpή.
a

For F as in (3.6) with μpa c F for each a, this direct limit is calculable
from (3.6). The question then arises whether there is an analogue to (3.6)
for H*(GF, μM), n = pa

9 when μn <£ F. For this, the argument using (3.1)
does not seem to work, since for the G and N in the proof of (3.6), one has
H\N9 μn) = Zn (with trivial G action), and this is not G-isomorphic to μn.
Nonetheless, the spectral sequence argument of (3.15) shows that some
sort of direct decomposition of H*(GF, μn) is still possible.

For an extensive discussion of H2(GF, Fs) for F Henselian, see
Scharlau's paper [22]. But note that, as Becker observes in [4, p. 130] Satz
4.1 in [22] is incorrect. (The error arises in 11.-8—6 of [22, p. 247]. In fact,
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in Scharlau's terminology, the image of Br(Ktr/K) in Br(Ktr/Knr) is the
union of the fz-torsion parts of Br(Ktr/Knr), for those n with μn C K.)

4. The graded Witt ring. In this section we will obtain results like
those of the preceding sections (with n = p — 2) for the graded Witt ring
GWF of quadratic forms of a field with valuation (F, v, Γ). This is a
matter of translating to associated graded rings known theorems about the
Witt ring of F, which we will first review briefly.

For a field F, with char/7 φ 2, let WF denote the Witt ring of
anisotropic quadratic forms over F. Let IkF := (IF)k, for k > 0, where
IF is the fundamental ideal in WF of even-dimensional forms. For
au.. .9am E F, (al9...9am) denotes the diagonal quadratic form axX

2

+ ••• + amX^ (or its image in WF). We write ((al9...9am)) for the
m-fold Pfister form 0/^,(1, at). For background and undefined terminol-
ogy, see [18]. At times we will abuse notation by not distinguishing
between an element in F/F2 and an inverse image in F.

Let (F9 v, Γ) be a fixed field with valuation. We will assume throughout
this section that char F Φ 2. Let T be a subgroup of F/F2 mapped
bijectively to Γ/2Γ by ϋ; let WF[T] denote the group algebra of T over
the Witt ring WF. Knebusch has shown [16, Th. 3.1]_that there is a
well-defined additive group homomorphism p: WF -> WF determined by:
p « β » = (a) if a <Ξ Uv and p « α » = 0 if v(a) ί 2Γ. From p one
obtains (cf. [2, p. 174]) a surjective map

(4.1) λ: WF^ WF[T]9 given by λ(q) = 2 p(q(t))t-

λ is well-defined, since p(q(t)) = 0 for almost all ί E Γ; one easily
verifies that λ is a ring homomorphism. Knebusch has shown [15, §12.2]
that λ is an isomorphism if and only if 1 + mv C F2 (iff F is 2-Henselian,
by (1.2))._χΓhe proof is like that for (2.3) above: if F is 2-Henselian, the
map F/F2 -> F/F2 of (1.5) induces a canonical map WF'-» )^T, from
which one can build up an inverse of λ.) Of course, if v is a complete
discrete valuation the isomorphism of (4.1) is a restatement of Springer's
Theorem [26].

For a ring R and an ideal 2ί of i?, the associated graded ring of R with
respect to 2ί is denoted G^R (or just GR): G^R= θ £ L 0 8r*/8ί*+1

Taking i? = WF, F a field, and 31 = /F, the associated graded ring GWF
is the graded Witt ring of F. The summands of GWF are written, for short
/ * F : = IkF/Ik+]F.
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The map λ of (4.1) induces a surjective graded ring homomorphism

(4.2) η: GWF-> G%{WF[T\), where 91 = λ(lF).

Let {^ }7 e y C F map to a Z2-base of T in F/F2. Then, in terms of the
ring construction of (1.8), we have

LEMMA 4.3. G%{WF[T}) s GWF[J\ « 1 » ] , fl graded π/ig womor-

. (Here, ((1>> is the image of ((1>> in IιF.) Viewing ^ E Γ, let

τ; = ( ϊ ) ~ 77-7 E WF[Γ]. Then, in notation (1.9), we have

(4.4) WF[T] = ^ Θ 0 0 WFrJ

with each summand isomorphic to WF. (To see that {1} U {τyi τJm \ j
E^} is a WF-module basis of WF[T], note that for any finite subset JQ of

/ (and corresponding %cfy)> the coefficient matrix for expressing 1 and

ί τj\ ''' τj \ J ^ ^o) i n t e r m s °f 1 a n d {'ITjx ''' ητjm I j ^ %} * s a triangular
matrix with diagonal entries ± 1 so the matrix is invertible.) The descrip-
tion of 91*, k > 1 relative to (4.4) is:

00

(4.5) »* = / * F θ $ φ /*-mFτy. T>M.
m = 1 y*̂  j .

Here, set Ik~mF'-— WF when m>k. Formula (4.5) is easy to see for
k = 1, since J WF[T]/% | = 2; it follows for /c > 1 by induction, noting
that τy

2 = ( ( l ) ) i } . Since the decompositions of 9ί* and 2I*+ 1 are compati-
ble, we have

k _

(4.6) »ysi*+1 =/*FΘ 0 0 {ϊk'mF)τΆ" τJm,

where_^ is the image of Ί. in 2I/9ί2, and each term (ϊk~mF)τJ] fJm ^

Equation (4.6) shows that G a(WT[Γ]) is a free GH^F-module with
base {1} U {rJι ^ | j E ^}. Hence, there is a GWF-module isomor-
phism

G*(WF[T])-+GWF[j-,J(Γ))\

given by 1 H> 1 and fyi τJm h^ xh - - - x; . Since each of these rings is

commutative and ΊJ —{(\))ΊP we see that this map is also a ring
isomorphism. D
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PROPOSITION 4.7. There is a surjectiυe graded ring homomorphism

γ: GWF -» GWF[j\

such that γ(«fl>» = <(fl» if a G Uv and γ(((-'τr/>» = *,. 77ze map γ
an isomorphism if and only if υ is 2-Henseίian.

Proof, γ is the composition of η of (4.2) with the isomorphism of (4.3).
If v is 2-Henselian, λ is an isomorphism, hence also are η and γ.
Conversely, if γ is an isomorphism, then for any a GΞ 1 + mΌ, ((-a)) = 0
in PF = F/F2. Hence, 1 + mv C F2; so Fis 2-Henselian, by (1.2). D

REMARKS 4.8. (i) Milnor has defined [19, §4] a graded ring homomor-
phism sF: (K*F)2-+ GWF. It is easy to see that for any field with
valuation (i7, v, Γ) (with char F Φ 2), there is a commutative diagram like
(3.11) above for sF, i.e., γ ° sF = s'F° θ (where the same {π} G / is used for
both γ and θ).

(ii) Just as in (2.2) above, if | Γ/2Γ | = 2r < oo, we obtain from γ a
canonical residue map 9: GWF -» GWF of degree -r. The formula for 9 is
like the one in (2.2), with ((-a)) replacing l(a).

(iii) Let R be the group algebra Z[Γ], for T a 2-torsion abelian group.
Then R is the Witt ring of a field with 2-Henselian valuation (£, w, Δ),
such that Δ/2Δ ^ Γ and E is Euclidean (so WE ~ Z). The fundamental
ideal 31 of R is 2R + Σ / e Γ ( l - 0 Λ As (43) shows, for the associated
graded ring with respect to 9ί, GR = GZ[/; 2], where / is an index set for
a Z2-base of T and 2 = 2 + 4Z G (GZ)lβ Here, GZ = G2ZZ, so GZ =
Z2[X] as graded rings (with 2 H> Jί). See (1.12)(ii) for another description
of GR.

Now assume (F, v, Γ) is a field with 2-Henselian valuation with
Γ/2Γ = T. The isomoφhism λ of (4.1) can be repeated: WF s t^F ® z R.
For graded Witt rings we have analogously from (4.7) and (1.12)(ii),

(Here GWF is made into a GZ-algebra by mapping 2 H > ( ( 1 ) ) . )

(iv) Suppose (F, v, Γ) is 2-Henselian, with {ιrrj}J^j C F mapping
bijectively to a Z2-base of Γ/2Γ. Fory E /, let εy = ((-77}>> G ZF. From
the isomorphisms λ (4.1) and γ (4.7) above, the direct decompositions in
(4.4)-(4.6) above correspond to direct decompositions of WF, IkF, and



jP-HENSELIAN FIELDS: ^-THEORY 491

ϊkF% After identifying WF with its canonical image in WF induced from i:
F/F2 -> F/F2 of (1.5), formula (4.5) translates to

(4.9) IkF = IkF® φ 0 (Ik-mF)eλ ejm, for k > 0.
m=l Mm

There are similar decompositions for other ideals of WF. For example,
consider qWF9 with q a Pfister form. We can write q — ((-al9...9-am9

-πl9...,-τr/)), where av...yam G l£ and v(πx)9...,0(07) are Z2-indepen-
dent in Γ/2Γ. Set 9 ' = ((-άl9... , -* m » G WF. If / = 0, we have

(4.10) qWF = q'WF θ φ φ q'WFejχ • εJm.
m=l Mm

If / > 0 we can assume our basic set {^}}yG/ contains πl9..., w/# Then, with

i = {1,2,...,/}, we have

00

(4.11) qWF = 0 0 ? Wε,. ε .̂

5. Multiquadratic extensions of a 2-Henselian field. Throughout
this section, let (F, v, Γ) be a field with 2-Henselian valuation for which
char F φ 2. Let 5 be a finite subgroup of F/F2 and let M = F(0)9 a
multiquadratic (i.e., 2-Kummer) extension of i7. (That is, M =
F({)fb I feF2 G Jϊ}.) We continue to blur the distinction between elements
of F and their images in F/F2. Let (M, w, ΓM) denote the unique
extension of t> to M w is also a 2-Henselian valuation. We will show how
the image and kernel of the canonical map of Witt rings

r: WF-> WM

can be described in terms of the corresponding map WF -> WM. This will
illustrate how one can work with the decompositions of WF and WM
given by (4.9), with k — 0. Then we will indicate the proofs of a few
results mentioned without proof in [10] and [25]. A key part of the
argument involves lining up Z2-bases of Γ/2Γ and ΓM/2ΓM; since this
clearly generalizes to /?-Kummer extensions of a /7-Henselian field, analo-
gous results hold for K-theory and Galois cohomology, for any prime p.

Let Y = Γ/2Γ and YM = YM/2YM, and let y: Y -> YM be the map
induced by the injection (which we treat as an inclusion) Γ -> TM. Let
Q(F) = JF/JF2. Identify Q(F) with its canonical image in Q(F) (see
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(1.4)). Let B — B Π Q(F). Then we have a commutative diagram with
exact rows by (1.4):

(5.1)

1

I

B

1

Q(F)

i

Q(M)

1
i

-» B

i

- Q(F)

- Q(M)

0

I

- v(B)

i

t Y

ϊy
W

- YM

The middle column is exact by Kummer theory, and the left and right

columns are clearly zero-sequences. So, F(vB) C M. Note that kery —

(Γ Π 2rM)/2r.

Let / = [M: F] and e = \ Γ M : Γ | = | 2 Γ M : 2Γ | (as ΓM is torsion-free).
Then,

(5.2) \B\ = \B\ -\

But, by Kummer theory [M: F] =\B\ , so equality holds throughout
(5.2). Hence, M = ^ ( / F ) , 2ΓM C Γ, t;(5) = k e r j = 2ΓM/2Γ (with order
e), and the outer columns of (5.1) are exact.

Choose bv. ..,bs G B which map to a Z2-base of v(B), and choose
{aj}jej QQ(F) which map to a Z2-base of Y/ΰ(B). Further, for each bn

choose a fixed square root {Ft E Q(M). (That is, let /&" be yfcM2 E
Q(M), where /c i s a square root of some c G F with c / 2 = £z E β ( F ) .
Since c is determined only mod F2, {bt can be any element of
yfcFM2/M2.)

PROPOSITION 5.3. {v(aj)}jΊΞJ U {v(bι)9...9v(bs)} is a Z2-base of Y.

Further, {iv(fly)}ye/ U {w(fc)9... ^

Clearly the first set is a base for Y. Since ϋ(l?) = ker j>,
{w(aj)}jΊΞJ is a base of im y. Let Bo be the subgroup of B generated by
{bl9.. .,bs}, and let C be the subgroup of Q(M) generated by

M τ h e n >
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(the last equality because 2ΓM C Γ). But since v(B0) - ϋ{B) - 2TM/2T,
dividing by 2 (in ΓM) shows that w(C) maps onto YM/im y. A comparison
of orders shows that this map must be bijective and {w(/ϊ7),... ,vv(/&~)}
maps to a base of YM/ivn y. So, combining this set with our base of im y
yields a base of YM. D

For j G /, let αy - «-*,.» G WKF and a) = «-tf y » M G ίFM; let
A = «-*,•» G WF and γf. = <(- {bt)) E JFM, 1 < ί < j . Let % (resp. 6)
denote the set of nonempty subsets of / (resp. of {1,2,...,s}). For

/ = Uv -Jm) E % ( a s i n notation (1.9)), let <xγ= ajaji oijj likewise
for βγ if I E fi. Formula (4.9) for k = 0 becomes a little more com-
plicated because we have split up the base for Y. It now reads:

(5.4) WF - WF ® 0 W^%θ 0 W^5rθ 0 WFayβj.

Let us adopt the following notation as an abbreviation for (5.4):

(5.5) WF=( WF, WFaγ, WFβγ, WFaγβγ).

Correspondingly,

(5.6) WM = (WM, WMaf, WMyγ, WMafyγ).

The map r: WF -> ) W sends αy to αy and βI to 0, so we can read off
the image and the kernel (denoted W(M/F)) of r:

(5.7) r(WF) = (r(WF),

(5.8) W{M/F) - (w(M/F),W{M/F)aγ,WFβr,WFaγβr).

In the notation of [10, §2], WD{M/F) is the obvious part of
W{M/F\ i.e., WD(M/F) = ΣhGB((-b))WF. Since B U{bl9...9bs] gen-
erates J?, we have, using (4.10) and (4.11),

(5.9) WD(M/F) = Σ _ « - & » ^ + Σ A

- (WD(M/F)9WD(M/F)af9WD(M/F)βγ9WD(M/F)otfβr)

= (WD{M/F),WD{M/F)aj, WFβγ.WFaγβγ).
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Setting h2(M/F) := W(M/F)/WD(M/F) as in [10, (2.2)], (5.8) and
(5.9) yield

(5.10) h2(M/F)=h2(M/F)Φ φh2(M/F).

M

Likewise, let r'(WF) be the obvious part of r(WF), i.e., r\WF) =
ΠL im( WL -» WM\ as L ranges over fields FQLCM with [M: L] = 2.
Using compatible direct sum decompositions for WL and WM, one can
compute im( WL -> ffiί/); this image has two forms, depending on whether
M/L is ramified or unramified. One obtains from this,

(5.11) r'{WF) = (r'(WF)9 r\

Hence, from (5.7) and (5.11),

(5.12) h3(M/F):= r{WF)/r'{WF) s h3(M/F) Θ 0 h3(M/F).

Note that the index set for the direct sums in (5.10) and (5.12) is in
one-to-one correspondence with the elements of y/kery; so when \Y\<
oo the number of summands is | Y\/e. Formulas (5.10) and (5.12) yield
[10^(2.15)] and show that Fis 1-amenable (resp. strongly 1-amenable) iff
WF is 1-amenable (resp. strongly 1-amenable).

The formulas for the direct decompositions of IkF (and (KkF)n and
Hk(GF, n)) are slightly different from (5.4), and this is illustrated by the
analogue to (5.4) for IkF. F o r / = (y,,... Jm) E £, set | / | = m. Then (4.9)
becomes, in the shortened notation of (5.5), for any k > 0,

(5.13) IkF= ^ ^ ^ ^ )

Again, set ImF = WF when m < 0. For the corresponding formula (5.13)
for ϊkF= IkF/Ik+ιF, simply place bars over the /'s, α's and jS'sin
(5.13). Note, though, that_some of the summands in the formula for IkF
will drop out because ImF = 0 when m < 0. From (5.13) and (5.13) one
easily obtains the analogues to (5.7) and (5.8) for the image and kernel of
IkF -» IkM and IkF -> /̂ Af. By using the corresponding image and kernel
formulas for the case of H2(-> 2), one can show that, in TignoΓs notation
[27, p. 6],

(5.14) Nι{M/F)=Ni(M/F), for i = 1,2,3.

(Formula (5.14) corresponds to (5.10) and (5.12) above; but the sum-
mands indexed by % in (5.14) are all 0's because they come from terms
involving H°(-92) and H\-,2), where there is complete cancellation.)^
From (5.14) it follows that F has Tignol's property P^n) [27, p. 6] iff F
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has property P.(n)9 for i = 1,2,3, n = 1,2,... (cf. [25, (3.10)]. This was
proved by Tignol [27, §6] for v a complete discrete valuation.

REFERENCES

1. J. Kr. Arason, Cohomologische Inυarianΐen quadratischer Formen, J. Algebra, 36
(1975), 448-491.

2. J. Kr. Arason and M. Knebusch, Uber die Grade quadratischer Formen, Math. Ann.,
234(1978), 167-192.

3. H. Bass and J. Tate, The Milnor ring of a global field, pp. 349-446, in Algebraic
K-Theory II, (H. Bass, ed.), Lecture Notes in Math. 342, Springer-Verlag, Berlin, 1973.
4. E. Becker, Hereditarily-Pythagorean Fields and Orderings of Higher Level, Mono-

grafias de Matematica, No. 29, IMPA, Rio de Janeiro, 1978.
5. L. Brδcker, Characterization of fans and hereditarily Pythagorean fields, Math. Z., 151

(1976), 149-163.
6. R. Brown, Superpythagorean fields, J. Algebra, 42 (1976), 483-494.
7. J. W. S. Cassels and A. Frδhlich (eds.), Algebraic Number Theory, Academic Press,

London, 1967.
8. A. Dress, Metrische Ebenen uber quadratisch perfekten Kόrpern, Math. Z., 92 (1966),

19-29.

9. R. Elman, On Arason's theory of Galois cohomology, Comm. Algebra, 10 (1982),
1449-1474.
10. R. Elman, T. Y. Lam, J.-P. Tignol, and A. R. Wadsworth, Witt rings and Brauer
groups under multiquadratic extensions, I, to appear in Amer. J. Math.
11. O. Endler, Valuation Theory, Springer-Verlag, Berlin, 1972.
12. A. Hattori, On exact sequences of Hochschild and Serre, J. Math. Soc. Japan, 7 (1955),
pp. 312-321.
13. G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math.
Soc, 74 (1953), 110-134.
14. B. Jacob, On the structure of Pythagorean fields, J. Algebra, 68 (1981), 247-267.
15. M. Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilin-
earformen, Sitz.-ber. Heidelberg. Akad. Wiss., 1969/70, 3. Abh., pp. 93-157.
16. , Specialization of quadratic and symmetric bilinear forms, and a norm theorem,
Acta Arithmetica, 24 (1973), pp. 279-299.
17. H. Koch, Galoissche Theorie der p-Erweiterungen, Math. Mon., No. 10, V.E.B.
Deutscher Verlag der Wiss., Berlin, 1970.
18. T. Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass.,
1973.

19. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318-344.
20. , Introduction to Algebraic K-Theory, Annals of Math. Studies, No. 72, Prince-
ton University Press, 1971.

21. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York,
1979.
22. W. Scharlau, Uber die Brauer- Gruppe eines Hensel-K'όrpers, Abh. Math. Sem. Univ.
Hamburg, 33 (1969), 243-249.
23. J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer-Verlag,
Berlin, 1965.
24. J.-P. Serre, Local Fields, Springer-Verlag, Berlin, 1979.
25. D. B. Shapiro, J.-P. Tignol, and A. R. Wadsworth, Witt rings and Brauer groups under
multiquadratic extensions, II, to appear in J. Algebra.
26. T. A. Springer, Quadratic forms over a field with a discrete valuation, Indag. Math., 17
(1955), 352-362.



496 ADRIAN R. WADSWORTH

27. J.-P. Tignol, Corps a involution neutralises par une extension abelienne elementaire, pp.
1-34, in Groupe de Brauer (M. Kervaire and M. Ojanguren, eds.), Lecture Notes in Math.,
844, Springer-Verlag, Berlin, 1981.

28. R. Ware, Valuation rings and rigid elements in fields, Canad. J. Math., 33 (1981),
1338-1355.

29. E. Witt, Schiefkόrper tiber diskret bewerteten Kδrpern, J. Reine Angew. Math., 176
(1936), 153-156.

Received September 8, 1981. Supported in part by the National Science Foundation.

UNIVERSITY OF CALIFORNIA AT SAN DIEGO

LA JOLLA, CA 92093




