
PACIFIC JOURNAL OF MATHEMATICS
Vol. 105, No. 2, 1983

A DUAL GEOMETRIC CHARACTERIZATION OF
BANACH SPACES NOT CONTAINING lx

ELIAS SAAB AND PAULETTE SAAB

It is shown that a Banach space E does not contain a copy of /, if
and only if every bounded subset of E* is w*-deniable in
(£"*, σ(£*, £**)). The notion of w*-scalarly deniable sets in dual Banach
space is introduced and it is proved that a Banach space E does not
contain a copy of /, if and only if every bounded set in E* is w *-scalarly
dentable. Finally, a point of continuity criterion that characterizes Asplund
operators and those operators that factor through Banach spaces not
containing copies of /,, is given.

Introduction. In [11], [13] Rosenthal and Odell showed that a
separable Banach space E does not contain an isomorphic copy of /, if
and only if every element x** G E** is Baire-1 when restricted to
(2?£*, σ(is*, E)). Haydon [6] showed that a Banach space E (separable or
not) does not contain a copy of lλ if and only if every element x** G E**
is universally measurable when restricted to (BE*> o(E*, E)).

In this paper we first show that if E is any Banach space such that for
every x** €Ξ E** and for every w*-compact subset M of BE*, the restric-
tion of x** to (Λf, σ(E*, E)) has a point of continuity then E contains no
copy of/,.

In [10] Namioka and Phelps showed that a dual Banach space E* has
the Radon-Nikodym property if and only if every bounded subset of E* is
n>*-dentable in (£*, || ||). Here we shall show that a Banach space E does
not contain a copy of lx or equivalently E* has the weak Radon-Nikodym
property if and only if every bounded subset of E* is w*-dentable in
(£*,σ(£*, £**)).

To do this we show that a Banach space E does not contain a copy of
/1 if and only if for every x** E E** and for every w*-compact convex
subset C of E*, the set of points of continuity of JC** restricted to
(C,σ(£*,£)), that are extreme points of C is a Gδ dense subset of
(Ext(C), σ(E*, E)% where Ext(C) denotes the set of extreme points of C.
On the way of proving that we show that a Banach space does not contain
a copy of lx if and only if every bounded set in E* is n>*-scalarly dentable.
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Finally, we give a point of continuity criterion that characterizes
Asplund operators and those operators that factor through a Banach
space not containing copies of lx.

Preliminaries. Let X be a topological Hausdorff space and / be a real
valued function on X. If A C X, the oscillation of / on A is defined by
O(/, A) — suρ{|/( y) — f(x) I , x G A,y G A) and the oscillation of/at a
point JC is given by O(/, x) = inf{0(/, U)9 U open, x G £/}. It is clear
that / is continuous at x if and only if O(f,x) is equal to zero. The
function is said to be Baire-1 if/is the pointwise limit of a sequence of
continuous functions on X. A Banach space E is said to contain a copy of
a Banach space F if F is isomorphic to a subspace of E, we also say that F
embeds into E. The closed unit ball of a Banach space E is denoted by BE.
If A is a subset of the dual E*9 we denote by w* — A the weak* closure of
A and by norm -v4 its norm closure, the convex hull of A will be denoted
by conv(^4). The symbol (A9τ) will mean A endowed with the topology T.
If C is a convex set in a Banach space, the set of its extreme points will be
denoted by Ext(C). If B is a bounded subset of a Banach space E, an
open slice of B is a set of the form

S(A9F9a)=

for some/ 7̂  0, / G £* and some a > 0. If £ = F* is a dual Banach space
and / G F, the slice is called a w*-open slice. A closed convex bounded
subset C of a Banach space E is said to have the Radon-Nikodym
property "RNP" (resp., the weak Radon-Nikodym property " WRNP") if
for any bounded linear operator T: L][0,1] -> E such that T(lA/λ(A)) G C
for any Lebesgue measurable set A whose Lebesgue measure λ(A) φ 0,
the operator Γis represented by a Bochner kernel (resp., by a Pettis-kernel)
/ taking its values in C. We also call such a set C an RNP set (resp., a
WRNP set). If the unit ball of E has the RNP (resp., the WRNP) we say
that E has the RNP (resp., the WRNP). For more about RNP and WRNP
we refer the reader to [4], [8], [5] and [12].

The Banach spaces ll9 c0, l^ will have their usual meaning. A
sequence (xn)n7>\ in a Banach space is said to be equivalent to the usual
/,-basis if there is a 8 > 0, such that

n=\ n=\
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for any k > 1 and any scalars al9 α2,. >ak- Άΰ Banach spaces considered
are over the real field.

If T: E -> F is a bounded linear operator, T*; F* -» £* will always
denote the adjoint of Γ.

Let £ b e a Banach space, let £* be its dual and £** its bidual. Let us
consider the following two properties of E.

(PI)—For every x** in £**, the restriction of x** to (BE*, σ(E*9 E)) is a
Baire-1 function on (BE*> σ(E*, E)).

(P2)—For every %** in E** and for every closed subset M of
(BE*, σ(E*, £)), the restriction of x** to M has a point of continu-
ity.

It is easy to see that (PI) implies (P2), the converse is not true in
general, an example will be provided later. In [11] Odell and Rosenthal
showed that if E is any Banach space that does not contain a copy of /,
then E satisfies (P2) and if E is in addition separable then (BE*, σ(E*9 E))
is metrizable and therefore (P2) implies (PI) by the Baire charaterization
theorem [1].

In what follows, we will show that if E is any Banach space that
satisfies (P2), then E does not contain any copy of lλ. First,'we need the
following two propositions.

PROPOSITION 1. Let X be a compact Hausdorff space and f be a real
valued function on X such that for every e > 0, and every closed subset
A of X, there exists an open subset U of X such that U Π A φ 0 and
O(f,U Π A) < ε. Then the set of points of continuity of f is a Gδ dense
subset of X.

Proof. Let n > 1 be an integer and consider the set

Zn— {x ELX.X has an open neighborhood U such that O(f9 U) < \/n).

It is clear that Zn is open. We will show that Zn is dense in X. To this end,
let W be a non-empty open subset of X and let A = W be the closure of
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Win X. Choose an open set Usuch that U Π A φ 0 and # ( / , U Π A) <

1/Λ. It is clear that U Π Wφ 0 and any t; E t/ Π PF belongs to Zn.

Hence W Π Zn φ 0. Therefore Zn is dense in X Apply the Baire Cate-

gory Theorem to conclude that the set

z= r\zn
n=\

is a Gδ dense subset of X. The set Z is precisely the set of points of

continuity of /.

PROPOSITION 2. Let E be a Banach space that satisfies (P2) and H be

any Banach space. If L: H -> E is a bounded linear operator, then for every

w*-compact subset M of E* and every x** G H**9 the restriction of x** to

(L*(M), σ(H*, H)) has a point of continuity.

Proof. Let L*: E* -> if* and let M be a w*-comρact subset in £ * and

x** E if**. Let B be a w*-compact subset of L*(M). By Proposition 1 it

is enough to show that B contains a w* -relatively open non-empty subset

on which x** has arbitrarily small oscillation. To this end, let ε > 0 and

let A = L*'\β) Π M, then A is a w*-compact subset of JE* satisfying

L*(A) = B. Let Aλ be a minimal (under inclusion) w*-compact subset of

£ * such that L*(AX) - B. The linear functional x**L* belongs to £** ,

therefore by hypothesis Ax contains a w*-relatively open set W such that

0(x**L*, ίΓ) < ε. Let 5, = L*(v41\W/), the set Bx is a w*-compact

subset of if* and β 1 Φ B by the minimality of Av Let w and v be elements

in 5 \ ΰ l 9 there exists ux and i?! in M^such that u = L*(ux) and v - L*(υx).

Notice that

I x**(w) - x**(v) | = | x**L*(w,) - x**L*(ϋ 1 ) | ^ O(x**L*, ΪΓ) < ε.

This shows that O(x**9 B\BX) < ε9 and finishes the proof of the proposi-

tion.

With the help of the above proposition we obtain the following

theorem.

THEOREM 3. Let E be a Banach space. The following statements are

equivalent:

(i) The space E does not contain any copy oflx

(ii) For every x** in E** and for every w*-compact subset M ofE*9 the

restriction O/JC** to M has a point of continuity when M is endowed with the

relative w*-topology σ(E*9 E).
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Proof. All we have to show is (ii) -> (i). Suppose that (ii) holds and E

contains a copy of /,. Let H: lx -> E be the isomorphic embedding of /,

into E. Then L*: E* -> /^ is onto. Let C = J?/QO denote the unit ball of !„.

Let A G / * and M be a w*-compact subset of C. Proposition 2 implies

that the restriction of h to (M, σ ^ , /,)) has a point of continuity. By the

Baire Charaterization Theorem [1] (C is metrizable) A will be a Baire-1

function on C. But this shows that any h E /£ is Baire-1 on C, and this is

a contradiction since any h E /^V, is not Baire-1 on C.

Example of a Banach space E that satisfies (P2) but not (PI). [11].

Let E — co(Γ) where Γ is uncountable. Because /, does not embed

into £ , E satisfies (P2). Let K be the unit ball of /,(Γ), and let x** =

(w«)«er E Όo(Γ) i f *** restricted to K is Baire-1, then x** will be the

w*-limit of a sequence in E = co(Γ), therefore x** will be countably

supported. This shows that E does not satisfy (PI).

DEFINITION 4. Let A be a bounded subset of £ * . We say that A is

w*-scarlarly deniable if for every ε > 0 and every JC** E £ * * there exists a

w*-open slice 5 of A such that 0(;c**, S) < ε.

The above definition should be compared to the following definition

of w*-dentability [10].

DEFINITION 5. Let A be a bounded subset of E*. We say that A is

w*-dentable, if for every ε > 0, there exists a w*-open slice S of A such

that the norm diameter of S is less than ε.

THEOREM 6. Let E be a Banach space and let E* be its dual. The

following statements are equivalent:

(i) The space E does not contain a copy oflx\

(ii) Every non-empty bounded subset of E* is w*-scalarly deniable;

(iii) Every non-empty w*-compact convex subset of E* is w*-scalarly

deniable;

(iv) For every non-empty bounded subset A of E* and every x** in

E**9 A contains a non-empty w*-relatively open subset of E* on which x**

has arbitrarily small oscillation;

(v) For every non-empty w*-compact subset A of E* and every x** in

E**, A contains a non-empty w*-relatively open subset of E* on which x**

has arbitrarily small oscillation;

(vi) For every non-empty w*-compact subset A of E* and every x** in

E** the restriction ofx** to (A, σ(E*, E)) has a point of continuity.
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(vii) For every non-empty w*-compact subset A of E* and every x** in

2?** the set of points of continuity of x** restricted to (A,σ(E*> E)) is a

w*-dense Gδ subset of (A, σ(E*, E)).

Proof, (i) «-> (vi) is Theorem 3.
(ϋ) -»(iii), (iv) -* (v) and (vii) -> (vi) are evident,
(iii) -* (iv) by taking C = w>*-conv(̂ 4).
(v) -> (vii) is Proposition 1. All that remains is to prove that (vi) -> (ii).
Let C = w*-conv(,4), let JC** G £** and let/be the restriction of JC**

to C. Consider the set

Z = { n e C ; O ( / , i # ) > ε } .

It is easy to see that Z is a w*-closed subset of C. The set Z is also
convex, for let u and v be two elements in Z and let 0 < α < 1. Consider
W a w*-open subset such that au + (I — a)v G W Π C. Choose U and V
two w*-open neighborhoods of u and t> respectively such that
(aU + (1 - α)F) Π C C W Π C. It follows that O ( / , ί / n C ) > ε and
O ( / , F Π C ) > ε. Therefore O(/, WΠ C) > β. Hence αu + (1 - α)o
G Z If Ext(C) C Z, then by the Krein-Milman theorem Z = C but
Z ^= C because / has a point of continuity. Let e E Ext(C) such that e
does not belong to Z. This means O(f, e) < ε. Let U be a w*-closed
convex neighborhood of e such that O(f9 U Π C) < ε. By the extremality
of e, there exists a w*-open slice S of C ([2], Theorem 25.13) such that
e G 5 C [/ Π C. It is easy to see that S Π A φ 0. Hence O(f9S ΠA)<
ε. In fact we have more, since

w*-conv(S' ΠA)CUΠC,

then

0(/,w*-conv(Sf n^4)) < ε .

This completes the proof.

In the proof of (vi) -> (ii) we showed the following fact that we state
as a proposition.

PROPOSITION 7. Let A be a bounded subset of E*, x** be an element of

£ * * , and let C = w*-conv(Λί). // x** restricted to (C, σ(E*, E)) has a

point of continuity, then for any ε > 0, there exists a w*-open slice S of C

such that A Π S φ 0 , and

O(JC**, H>*-conv(y! Π S)) < ε.
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REMARK. Using Proposition 7 and a result of Haydon [6] we are going
to give another proof of (ii) -» (i) in Theorem 3. The argument goes as
follows: If /, embeds in E, then there exists a w*-compact convex subset C
in £* such that C φ norm-conv(Ext C) [6]. From this fact, Haydon was
able to find x** G E**, ε> 0 and a bounded non-empty subset A of E*
satisfying 0(Λ;**, w*-conv(£/ Π ̂ 4)) > ε for any w*-open subset U of £*
such that ί/ Π yl T^ 0 . Apply Proposition 7 to find a contradiction.

Let £ be a Banach space not containing /1# Let C be a w*-comρact
convex subset of E* and let x** G £**. By Theorem 6 we know that the
set Z of the points of continuity of x** restricted to (C, σ(E*, E)) is a (rδ

dense subset of (C9(E*9 E)). A question can be asked: Does Z contain
any extreme point of C? In the next proposition we will give an affirma-
tive answer to this question. In fact we have more.

The proof of the next proposition uses the idea of ([9] Theorem 2.2)
and Proposition 7.

PROPOSITION 8. With the above notations, the set Z Π Ext(C) is
a Gδ dense subset of (Ext(C), σ(£'*? E)) and consequently C — w*-
conv(Z Π Ext(C)).

Proof. Let X = Ext(C) and e > 0. Let Bε = {u G X; u has a π>*-open
neighborhood V such that O(x**, C Π V) < ε}. The set J?ε is open in
(X, σ(E*9 E)). It is also dense in (X, σ(E*9 -B^For, let J^be a w*-open
subset such that WΠ Xφ 0. Let D = w* - X and let Λ = W Π D. By
Proposition 7, there exists a w*-open subset U such that ί / Π ^ ^ 0 and
0(x**, w * . ^ ^ ( c / n ^t)) < ε/2. Let V = U Γ\ W, then 0 ^ F Π D C

WΠD and #(*** , κ>*-conv(Kn Z))) :<β/2. From now on the proof

goes as in ([9], Theorem 2.2) with some obvious changes.

COROLLARY 9. A Banach space E does not contain a copy of lλ if and
only if for every x** G E** and every w*-compact convex subset C in E*9

the intersection Z Π Ext(C) of the set Z of the points of continuity of x**
restricted to (C, o(E*, E)) with the extreme points of C is a dense G8 subset
of(Ext(C), σ(E*9 E)) and C - w*-cόnv(Z Π Ext(C)).

If (X, τ) is a locally convex Hausdorff topological vector space, and A
is a bounded subset of (X9r)9 the set A is said to be deniable if for every
zero-neighborhood V in X, there exists an open slice S of A such that
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S — S C V. We say that (X, T) is dentable if every bounded subset of
(X, T) is dentable. It is clear from this definition that a subspace (closed
or not) of a dentable space is dentable.

If A is a bounded subset of E*, the dual of a Banach space 2?, let us
agree to say that A is n>*-dentable in (E*9 σ(E*9 E**))9 if for any
σ(E*> £**) zero-neighborhood V in 2s*, there exists a w*-open slice S
such that S — S C V9 accordingly, the set A is w*-dentable in (2?*, II II) if
A is w*-dentable in the sense of Definition 5.

In [10] Namioka and Phelps showed that the dual E* of a Banach
space E has the RNP if and only if every non-empty bounded subset of
E* is w*-dentable in (2?*, || ||). It turns out, as we shall soon show, that
E* has the WRNP if and only if every non-empty bounded subset of 2?*
is w*-dentable in (£*, σ(E*, E**)).

THEOREM 10. For a Banach space E, the following statements are
equivalent:

(i) The space E does not contain a copy oflx\
(ii) Every non-empty bounded subset A in E* is w*-scalarly dentable;

(iii) Every non-empty bounded subset A in E* is w*-dentable in
(£*,σ(£*, £**)).

Proof. All we have to show is (i) implies (iii). For this, let A be a
bounded subset of E* and V be a σ(2?*, E**) zero-neighborhood in E*,
the set Khas the form

V= {x* EE*; \x**(χ*)\<:e9x** eE**9i= 1,2,...,«

Let C = w*-conv(,4), and let Z, be the set of points of continuity of the
restriction xf* to (C, σ(E*, E))9 i= 1,2,... 9n9 and let Tt = Z, Π Ext(C).
By Proposition 8, Ti is a Gδ dense subset of (Ext(C), σ(E*> E)). Hence
Γ = ΓΊ"=17; is also a Gδ dense subset of (Ext(C), σ(£*, £)) since this
later is a Baire space by a theorem of Choquet [2]. Let e G T and choose
1/a w*-neighborhood of e such that O(xf*9 U Π C) < ε for / = 1,2,... 9n.
By the extremality of e in C, choose a π>*-open slice S of C such that
e E S C U Π C. This means that O(xf*9 S) < ε for / = 1,2,... ,/i. Hence
S - S C K . Therefore 5 Π ̂ 4 ^ 0 is a w*-open slice of A and 5 Π yί -
S Π A C V. This completes the proof.

It is known that the dual E* of a Banach space is has the WRNP if
and only if E does not contain a copy of lλ [7]. Combining this fact with
Theorem 10 we get
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THEOREM 11. The following statements about a Banach space E are
equivalent:

(i) The space F * has WRNP;
(ii) Every non-empty bounded subset ofE* is w*-scalarly deniable;

(iii) Every non-empty bounded subset of E* is w*-dentable in
(F*,σ(F*,F**)).

REMARK. It is easy to see that for every locally convex Hausdorff
space F, the space (F, σ(F, F*)) is deniable, for (F, σ(F, F*)) can be
identified with a subspace of RF* by the map h(x) = (x*(x))x*<=f*. The
space RF* is of course deniable. Hence (F,σ(F9F*)) is also deniable,
therefore one cannot replace the statement "w*-dentable in
(E*9 a(E*9 E**))" in (iii) of Theorem 11 by the statement "dentable in
(E*9 o{E*9 E**))". This also shows that there is no connection whatsoever
between the WRNP for a Banach space F and the dentability of
(F, σ(F, F*))9 while the RNP for a Banach space F is equivalent to the
dentability of (F9II II) see ([4], p. 136).

In the following theorems we give a point of continuity criterion that
characterizes Asplund operators and those operators that factor through a
Banach space not containing lx.

THEOREM 12. Let H and F be two Banach spaces, and let T: H -> F be
a bounded linear operator', then the following statements are equivalent:

(i) The operator T factors through a Banach space not containing /,
(ii) For every w*-compact convex subset M in F * and every x** E H**9

the restriction of x** to (T*(M), σ(i/*, H)) has a point of continuity.

Proof. To see that (i) implies (ii), let £ be a Banach space not
containing lx and such that T factors through E as follows

If M is a w*-compact subset of F*, then T*(M) = L*(β*(Λf)). An
appeal to Proposition 2 and Theorem 3 finishes the proof of this implica-
tion.

Conversely, it is enough to show that T(BH) contains no copy of the
/,-basis and apply the construction of Davis, Figiel, Johnson and Pelczyn-
ski [3]. Suppose not and let (xn)n>x be a sequence in T(BH) equivalent to
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the /j-basis. For every n > 1, choose ynE.H such that T(yn) — xn. It is
easy to see that (yn)n>\ is also equivalent to the /rbasis. Let S: lx -> H
defined by S(en) = yn where (en)n>x is the usual basis of lx. The map
S* o T*: F* ^ H* -» l^ is onto. To see this, let z e l^ and let 7? the
closed linear span of (xn)n^\. Define ύ E R* by ύ{xn) — (en9 z). Let
M 6 P be an extension of ύ. It is clear that S* <> Γ*(w) = z. Hence every
w*-compact subset N of /^ can be written N — S*(T*(M)), where M is a
w*-compact subset of F*. Now use (ii) and Proposition 2 to find a
contradiction.

DEFINITION 13. A Banach space G is called an Asplund space if G*
has the Radon-Nikodym property.

Theorem 12 has to be compared with the following:

THEOREM 14. Let H and F be two Banach spaces and let T: H -> Fbe a
bounded linear operator, then the following statements are equivalent:

(i) The operator T factors through an Asplund Banach space;
(ii) For every w*-compact convex subset M ofF* the identity map

(T*(M)9σ(H*9H))->(T*(M)9\\\\)

has a point of continuity.

Proof. Consider the same diagram as in Theorem 12, and suppose that
E is an Asplund space, then T*(M) = L*(g*(M)) and g*(Af) is an
RNP set. Therefore L*(Q*(M)) is an RNP set [14]. Any w*-strongly
exposed point [10] of T*(M) is a point of continuity of
(T*(M), σ(i/*, H)) -> (Γ*(M), || ||). Conversely (ii) implies that any w*-
compact convex subset C of T*(BF*) contains w*-relatively open subsets
of arbitrarily small diameter and therefore by [10] T*(BF) is an RNP set.
Apply [15] to finish the proof.

An operator that satisfies one of the above equivalent conditions is
called an Asplund operator.
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