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LIFTING GROUP HOMOMORPHISMS

RICHARD HARTLEY

If a knot K has Alexander polynomial different from 1, then its knot
group, G maps onto some metacyclic group, Zr§Zp. We show that in
that case, it also has a homomorphism onto a split extension of a free
abelian group of rank p — 1 by Zr§Zp, and hence also onto a split
extension of a direct sum of p — 1 cyclic groups of order s by the
metacyclic group. In many cases, (such as if s is coprime with p), this
group can be specified exactly. Otherwise there are a finite number of
possibilities. A special case is Perko's result that a homomorphism of a
knot group onto S3 = Z2^Z?) lifts to S4 = Z2ίS)Z3<$(Z2 Θ Z2).

As an application we obtain information about the derived series
of G.

In a final section it is shown how to associate a rational polynomial
invariant to every metacyclic representation.

1. Lifting metacyclic representations. Let p be a prime, r a divisor
of p — 1 and β a primitive rth root modulo p. Let E — Zj§Zp — (Y, S:
γr zn sp = 19Y'1SY= Sβ). Up to isomorphism, the group is indepen-
dent of β. Let G be the knot group of a knot, AT, in the 3-sphere, S3, and
let φ be a homomoφhism of G onto E which takes a meridian, m, of K to
YaSh. Then g.c.d. (α, r) — 1, since G is generated by conjugates of m.
Setting X — YaSb and eliminating 7, we obtain a presentation

E= (AT, S:Xr = Sp= l,X'ιSX= Sa),

where a = βa and mφ = X We describe this situation by saying that φ
maps G onto E(a), meaning that (mφ)~ιSmφ = Sa. The following condi-
tion is well known: [6,3]

(1.1) G maps onto E(a) if and only if p divides Δ(α) where Δ is the
Alexander polynomial of K.

We assume throughout this paper that φ maps G onto E(a).

Let η be a primitive pth root of unity, and Q the rational numbers.
Then Q(η) can be given the structure of an 2s-module by

(1.2) Vs=V.η and Vx = Vσ

for F G β(τj), where σ is the Galois automorphism of Q(η) determined
by ησ = if. (Module action is denoted by writing the element of E as a
superscript.)
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Let (E, Q(η)) denote the corresponding split extension of Q(η) by E.
This is the set {(x, V): x E E, V G Q(η)} with multiplication given by
(x, U) (y, V) = (xy, Uy + F). Via the module action, E permutes the
pth roots of unity, and in fact this affords a faithful transitive permutation
representation, θ, of E on the set {0,1,...,/? — 1) given by i(xθ) — j
where (η')x — ηJ. Then φθ is a transitive permutation representation of G
and there is a corresponding ^-sheeted covering, M, of S3 branched over
K. This covered space is characterised as follows. Above the base point b
in S3 lie/? points, ό0, bl9... ,bp_λ. If x is an element of G, that is, a path in
S 3 — N(K)9 (where N(K) is a regular neighbourhood of Λf), and if jc, is
the lifting of Λ: to a path in M starting at the point bi9 then the end point
of x{ is bi(xφθy

Now, suppose that u2 is a rational 2-chain in M — N(K) with
boundary in d(M — N(K)) and assume that for all /, bt does not lie in
I u2 I . Define a map φ': G -> (E, Q(η)) by

(1.3) Φ r:x^ ( X Φ / Σ Int(n
2 ,

i = 0

where Int is the algebraic intersection number. Then, using the fact that
(χy)i — *i + yi(xφθ)> o n e easily verifies that φ' is a homomoφhism.

This gives a homomoφhism of G onto a subgroup, if of (E,Q(η))
and there is an exact sequence 0->$^>H^>E->0, where 5 is a subgroup
of β(τj). Since H and £ are finitely generated, so is ί. Furthermore, ί
inherits an ^-module structure from <2(τj). In particular, ί is invariant
under multiplication by rj, so it is a fractional ideal of Q(η). It is also
invariant under the Galois automoφhism, σ. Such an ideal will be called
symmetric. Denote H by (E, ί ) . I claim:

(1.4) // φ w a homomorphism of G onto E(a), then φ lifts to a
homomorphism of G onto an extension of i by E, where ί is a non-zero
symmetric fractional ideal of Q(η).

It will be shown later, in §2, that this extension splits.

To prove (1.4), it remains only to show that u2 can be chosen in such
a way that ί is non-zero. We examine the covering space in more detail.
Let b, the base point in S3, lie in dN(K). If mis a meridian of K, then
mφθ consists of n — (p — \)/r cycles β 1 ? . . . ,βw of length r, and one cycle
β 0 = (0) of length one. A longitude is sent to the identity, since it lies in
the second derived subgroup of G. In the covering space, therefore, K is
covered by a link, K, of n + 1 components, Ko of branching index one,
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and Kt\ i — 1,...,n of branching index r. Point bi lies in d(Kj) if and only
if/ee,[4,§3]. _

Let βέ and λf. be the homology classes represented by meridian and
longitude of Kr

All homology groups referred to in the following are rational homol-
ogy groups and as such, vector spaces over Q. Consider the homomor-
phism /*: HX{K) -> HX(M) induced by inclusion. Its kernel contains the
element γ = KQ + rΣ^xKi9 as can be seen from "lifting" the relation
K~0 in HX(S3) [4,Proposition 4.4]. If keφ'*) contains an element
β = Σ"=o£,/£,, then there exists a 2-chain, w2, in M — N(K) with boundary
ΣJLo^ X,. + api. This gives rise to a homomorphism φ': G -» (£, β(τj)). If
x = mr, then x0 = rμ0 and Jcz = /ϊy if / G β7 for i ί£ 0, so it is easily seen
that mrφ' = (1, rb0 + ΣfjV^V) where 6; = b} if 1 is in the cycle Gr This is
a non-zero element of § as long as ̂ 8 is chosen not to be a multiple of γ.

If this cannot be done, then ker(z*) is generated by γ over β, and by
[4, Proposition 1.3], dim HX{M - K) = dim(HX{M)) + 1. Since HX{M) is
obtained from HX(M — K) by killing the meridians, it follows that the
meridians of the Kt generate a dimension one subspace of HX(M — K).
Thus, μ0 — qμx in HX(M — K). Since μ0 covers m once, and JSJ covers m
r times, we have m ~ #rm in HX(S3 — ίΓ), whence 9 = 1/r, since m ̂  0.
This shows rβ0 — μx ^ 0 , and so there is a rational 2-chain, t/2, with this
boundary. Since /~ — λy for i G β., the corresponding homomoφhism, φ',
sends / to (1, r — η — if — - — ηα r ) which is a non-zero element of 5.
In all cases, therefore, u2 can be chosen so that # is non-zero. D

Note that in the case where E is just the dihedral group, Dp9

(E, Q(η)) can be embedded in the group of motions of the complex plane.
Representations of G by motions of the complex plane have been studied
by Burde [1,2] and his existence theorem for such representations is a
special case of 1.4.

2. Structure of (£, if). In order to understand the group (2?, ί )
better we have two goals: to prove that the extension splits and to
enumerate the possible symmetric ideals of Q(η), thus determining the
structure of ί as an ^-module, and determining the group.

To prove that the extension splits, we show that H2(E, ί ) = 0 using
the Lyndon-Hochschild-Serre spectral sequence [12, Theorem 11.45]. Given
0 -> Zp -> E -> Zr -> 0, there is a spectral sequence H\Zr, HJ(Zp, ί)) =>
Hι+J{E, #). The action of the generator, 5, of Zp on ί is multiplication by
η. Thus,

ker(S - 1) = 0 = Im(l + S + S2 + +Sp~ι).
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It follows that HJ(Zp9 0) = 0 ίoτj = 0,2, and so H2~J(Zr, HJ(Zp, $)) = 0
for 7 = 0,2. Now pΉ\Z9 ί ) = 0, [12,Theorem 10.26] and so Z r

and H\Zp9 ί ) have coprime orders as groups. It follows that
H\Zr9 H\Zp9 ί)) = 0 as well (see proof of [12,Theorem 10.27]) and so,
H2(E, ί ) = 0.

Our next task is to classify symmetric ideals of Q(η) up to isomor-
phism as is-modules. The ring Z[η] will be denoted by i?, the fixed field
of σ by L and its ring of integers by Ro. First remark:

(2.1) If$* is any E-module of Q(η) and q E L, then q$* is E-isomor-
phic to ί*. 77*e isomorphism is given by multiplication by q.

In particular, we may assume that ί is an ideal of R.

LEMMA. Let § be a symmetric ideal in R. Then ί = (1 — Tj)e/R,
0 < ε < r α/id / w α« ίέfeα/ of Ro.

Proof. The proof is based on the proof of Lemma 1.2 in [7]. Let
ί = (1 — τ})eί', where ί r is an integral ideal not divisible by (1 — η). Let P
be a prime factor of ί' and Po = P Π iί 0 . Now PQ does not ramify, since
the only Z-prime to ramify is (/?), and this factors into (1 — η)p in R.
Furthermore, σ acts transitively on the prime factors of P0R in R ([11], p.
163). Thus, for some /", P0R = PPσ Pσ\ where the ideals on the right
are all distinct and divide ί, since ί is symmetric. By induction, therefore,
ί = (1 — η)εJR, with / an ideal of 7?0. Finally, note that the ideal
generated by (1 — η)r is generated by the element Πpd(l — τj)σ'of JR0. D

The ideal (1 — η)εJR depends only on ε and the ideal class of / in i?0,
as can be seen from (2.1). There are, therefore, only a finite number of
non-isomorphic ί's. In particular, when Ro is a principal ideal domain,
which is the case at least when r = 2 and /? < 47 (and possibly when
/? < 97 [8]), it may be taken that ί = (1 - τj)εΛ.

3. Finite Quotients. We now turn our attention to finite quotients
of (E9ί). The group (£,5) has a homomorphism onto the split extension
(£, $/s$)9 where s is any integer, and the structure of §/s§ as an
is-module is inherited from ί.

(3.1) LEMMA. // ί = (1 - η)εJR with J an ideal of i?0, then ί/sί is
E-isomorphic to ί'/sί' with $' — (1 — η)εR. If p does not divide s, then

is E-isomorphic to R/sR.
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Proof. Let Qs be the ring {a/b G Q; g.c.d. (6, s) = 1} and let
ίs = Qβ. Then Ss is a symmetric ideal of Rs — RQS, and there is an
^-module isomorphism §/s§ = $s/s$s given by a + s i -> a + s$s for α E 5.
Let 5 = (1 - η)ε/i?. Then ί, = (1 - η)εJQsRs, and / β , is an ideal of
ROQS. Now, i?0 is a Dedekind domain, and unique factorisation of ideals
in Ro implies unique factorisation in ROQS, so ROQS is a Dedekind
domain. If Ps is a prime ideal in R0Qs9 then P5 divides PR0 for some prime
ideal, P of Qs, namely, P = Ps Π Qs. However, Qs has only finitely many
prime ideals, and each PR0 has only finitely many divisors in ROQS. So,
ROQS has only finitely many prime ideals, and so it is a principal ideal
domain [11, p. 112]. Therefore, for some q G ROQS C L, we have $s —
(1 — r})£qRs which is isomorphic to ί/ = (1 — τj)ε2ϊ5 as an .E-module by
(2.1). Setting ί' = (1 - η)εiί, we have $/*$ = $s/sίs =

Now, (1 — η) divides p in iϊ, and so in Rs. But, if g.c.d. (s, p) = 1,
then/? is a unit of i?5, and so, therefore, is (1 — η)ε. Then §'s = Rs, and we
may taken V = i?. D

4. Restrictions on the value of ε. We have shown that if Δ(α) =
Omod /? then G maps onto (E, ί ) where 5 = (1 — τj)ε/i? for some ε. We
now investigate what values of ε may occur. Lemma 3.1 shows that G
maps onto (E, $'/p$') where ί' = (1 — η)εR. As an abelian group, Ϋ has
a basis Tt, = (1 — rj)6!]^ / = 1,...,/?— 1. The action of 2? is given by

If = (1 - η)V+1 - V^i/l - H)V = ' Σ 1 ^
y-i y-i

^ = ( 1 _ ^ ) y , = ( 1 _ η ) . . (i + η + . . . +,«- i )y« = ̂  6O7}

for certain readily calculable atj and 6l7. A presentation for (E, §r/p§r) is

Ix, S, T(: X
r = Sp=Tf= 1, X~ιSX= Sa, Tt ̂  TJ9 X~%X

P-\ P-\ \

= Π 7}V5-17;.5= Π ^ ) .
y=i y=i /

Now, setting all Tt equal to a single element, Γ, of order/?, and noticing
thatΣ^Γ/fl/y = 1 mod /?, and ΣJΓ/δ^ = αεmod /?, we see that G maps onto
the group

9 S,T: Xr = Sp = Tp = \, S ^ T, XλSX = 5α, J >

and a meridian is mapped to XTV. Suppose ε ^ O and so αε 2 1 mod p.
The above group is then a semi-direct product, Zr§ι(Zp @ Zp), and using
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the notation of [3], Zp θ Zp has structure Xp(t - a) ® Xp(t - aε) as a
Z^-module.

Let Ar be the (integral) homology group of the r-fold cyclic branched
covering space of K. Let Arp — Ar/pAr. Then Arp has the structure of a
Zp-module, and Xp(t — a) θ Xp(t — aε) must be a quotient module of
Arp. According to [3, §2, Case 1, considerations (ii) and (iii)], the modulo p
reduction of Δ(Γ), denoted Δp(t), must be divisible by t — a and t — aε

— α ) 2 divides Δ ^ ί ) over Zp.p

over Zp, and if a = αε, then (/ — α ) 2 divides Δ ^ ί ) over Zp

If r = 2 and >42f/, = Z^ as an abelian group, then Alp clearly cannot
map onto Zp® Zp, so we must conclude that ε = 0. (This is exactly the
case when G has a single representation onto the dihedral group, Dp.) If
r > 2, however, metacyclic representations occur in pairs, and G maps
onto 2s(α) if and only if it maps onto E(β) where aβ = I mod p [3, Pro-
position 1.6]. If then Arp = Zp® Zp as an abelian group, then as a
module, Arp = ^ ( ί — a) θ Λ^(ί — β) with α j S ^ l mod />. This means
that β = αε, and so, ε = r — 1.

We now collect our conclusions.

(4.1)THEOREM. Let φ be a homomorphism of G onto E(a) = p

Then there is an integer ε: 0 < ε < r such that
(i) φ lifts to a homomorphism of G onto (e, ί ) w/zere 5 is the ideal

(1 - η)εJR ofR = Z[τj], αwJ
(ii) Ifr = 2 andp < 47,

(iii) For any integer, s, φ ή/to to a homomorphism of G onto (E, ί / s ί )
wΛere 5 = (1 — η)εR. If g.c.d. (s, p) — 1, then we can take 5 = R.
The notation (Ey-) denotes a split extension, and the action of E on R is
given by (1.2).

The following restrictions on the value of ε apply:
(iv) Ifε φ 0 then Δ(αε) = 0mod p.
(v) Ifε-\ then (t - a)2 divides Δp(t) over Zp.

(vi) Ifr — 2 andArp = Zp, then ε — 0.
(vii) Ifr > 2 andArp = Zp® Zp9 then ε = 0 or r - 1. D

Thus, any cycle of M — N(K)° relative to its boundary gives rise to a
homomorphism φ': G -> (E, Q(η)) which is a lifting of φ. It can be shown
that every such φ' arises in this way. Namely, if φ' is a homomorphism
from G into (E, Q(η)) which is a lifting of a homomoφhism φ: G -^ E,
then there exists a rational 2-chain w2 with boundary in d(M — N(K)°)
such that φ' is given by (1.3). The proof is not difficult, and is omitted.
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The hypothesis of the theorem is true exactly when p divides Δ(α).
But Δ is a knot invariant which depends only on G/G". It seems
remarkable, then, that a metabelian invariant, Δ, can provide a necessary
and sufficient condition for the existence of certain non-metabelian quo-
tients of the knot group.

5. Applications. As an abelian group, ί is free of rank p — 1.
Therefore, (E99) is a semi-direct product Zr$Zp§l(Z Θ ΘZ) and
(£, S/sS) is Zr$ZptSt(Zs θ @ZS) where there are p - 1 copies of Z
(respectively Zs) in the direct sums. The special case r — 2, /? = 3, s = 2
gives Z2§Z3§(Z2 θ Z2) s S .̂ According to (4.1), then, a knot group, G,
maps onto 54 if and only if it maps onto 53 s Z2§Z3. (See also [9].)

We can use (4.1) to obtain information about the third derived
quotient of G.

(5.1) IfGis a knot group for which Δ(/) φ 1, r/κ>w G"/G"' has infinite
rank.

Of course, if Δ(ί) = 1, then G" = G\ and so G'" = G". Thus, the derived
series either stops with G' = G", or else G> G' > G" > Gf" with all
inclusions proper.

of (5.1). Calculate the derived subgroup of H = (£, ί ) . It is
generated by S and an ideal ί' with (1 - ij)ί C ί ' C J . Then # " is
(1 - η)$' and ίf/r/ = 0. Thus, H"/Hf" = (1 - η)ί" which is free abelian
of rank/? — 1. Now G maps onto (2?, ί), with E = Zr§Zp for some r, if
and only if/? divides Δ(α) for some α. For any polynomial Δ of degree at
least one, there are an infinite number of primes occurring as divisors of
Δ(α) as a runs over all integers. For if Δ(ί) = a0 + axt + +ant

n and q
is any sufficiently large integer, then Δ(αo#) is divisible by a prime not
occuring in aoq. Thus, for arbitrarily large /?, G maps onto some
(Zr(S)Zp, ί ) , and G"/Gr" maps onto a free abelian group of rank/? — 1.
So G"/G"' does not have finite rank. D

6. An invariant. In [1] and [2], G. Burde derived an invariant of φ:
G -> £ in the case where £ is dihedral from the value of /φ' in a properly
normalised lifting of <f>. This can be generalised to the case considered
here. Metacyclic representations have an important property not pos-
sessed by dihedral representations, namely, the associated invariants are
the only known generally applicable invariants which may be used to
prove that a knot is non-invertible. In fact metacyclic invariants are
sufficient to determine all non-invertible knots with 10 crossings or less.
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(Details of this are to be found in my paper "Identifying Non-invertible
Knots" [5].) For this reason, I feel that it is worthwhile giving the
appropriate generalisation of Burde's invariant here.

Givenmφ' = (X, C/J, let Όm = l / r (l/w + Umo + + Umor~λ). Let
lφ' = (id, [//). The case where Uι — Um — 0 is somewhat troublesome, and
we exclude it from consideration, though it certainly occurs. Otherwise, we
may consider the ratio C///t/w in Q(-η) U {oo}.

(6.1) THEOREM. Let φ: G -» E be a homomorphism and let M be the
covering space corresponding to φ. There exists a lifting φ'\ G -> (E, Q(η))
of Φ for which not both Um and Vι are zero.

(i) The value of Uι/Um depends only on G and φ, and not on the
particular φ' chosen.

(ii) U//Um Φ oc if and only if all linking numbers are defined in M.
(iii) // U^U^Φ oo and Vι/ϊϊm is written as lf=larf with Σf=1α, = 0,

then at — link(i^0, Kj) where i E Gj (notation as in §1). D

_ Proof. According to the proof of (1.4), there always exists φ' with
Um φ 0 or Uι 7̂  0. We prove (iii) first. As a first step, one can normalise φ r

as follows. Consider the map l + σ + σ2-f + σ r ~ 1 acting on Q(η).
Now, Um — Um is in its kernel, and so as is easily verified, there exists V in
Q(η) such that V(\ — σ) = Um — Um. Now composing φf with conjuga-
tion in ( £ , Q(η)) by (id, F)_we obtain a new homomorphism—call it φf

also—such that mφf — (X, Um). If Um Ψ 0, then we can further compose
φf with the map (E, Q(η)) -> (E^Qiη)) given by (x, W) - (x, WUm

x\
which is a homomoφhism since Um E L = fixed field of σ. This gives a
new normalised φf such that mφ' — (X, 1). Neither of these normalisation
steps affects the ratio U^U^ The proof of (iii) is now a direct generalisa-
tion of Theorem 6.3 of [4], and can be adapted almost word for word.
Hence, it is omitted.

To prove (i) it remains in view of (iii) just to show that the cases
Um — 0 and Um φ 0 cannot both occur for the same φ (but different φ').
Suppose, then, that there exist homomorphisms φ': x -> (xφ, Ux) and φ":
x->(xφ9Vx), where UmΦ0, Vm = 0, VtΦ0. One can define a third
homomorphism x -»(xjfr, Ux -I- V^). Setting Wx — Ux + Vχ9 we see that
Wι/Wm φ oc, but Wι/Wm Φ Ut/Um in defiance of (iii).

Finally, if Um Φ 0 then by (iii) all linking numbers exist. Conversely,
if all linking numbers exist, then (by definition) for all /, K^ 0 in
HX(M\ Q). By the proof of (1.4), then, there exists a φ' such that Um Φ 0.
This proves (ii). D
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Uι/Um is not entirely satisfactory as an invariant of (G, φ) as it
stands, since different, but equivalent choices of φ give rise to different
values. In particular, for each k, there is an automorphism yk of E taking
S to Sk and fixing X. If φ is a homomorphism from G to E{a) then so is
φyk9 and φyk is equivalent to φ in the usual sense of differing by an
automorphism of E. However, the values of Uι/Um for these two maps
differ by the Galois automorphism γ* of Q(η) taking η to ηk. Thus, in
order to obtain an invariant of_the equivalence class of φ, one must
consider the set of values {(t///t/m)γ*: k — 1,...,/?}. This is a somewhat
cumbersome object. Given Ut/Um = Σ / L ^ TJ1, one can define some lexico-
graphical ordering and obtain a "least" element of this set to serve as a
"normal form" for Ut/Um. I would like to suggest a different approach
which is, I believe, more natural, and more clearly shows up symmetry
properties of the knot.

DEFINITION^Given a homomophism φ ofG onto l?(α), define Aφ(t) to
be charL /£( £//{/,„), the characteristic_polynomial of \Jι/lJm with respect to
the fixed field, L, of σ, where Όι/JJm is defined with respect to any_ φ':
G -> ( £ , Q(η)) lifting φ such that not both Uι and Um are zero. If \Jι/lJm =
oo, define Aφ(t) — 0.

Aφ(t) is a polynomial of degree (p — \)/r with rational coefficients.
Since the characteristic polynomial is invariant under Galois automor-
phisms, Aφ(t) depends only on the equivalence class of φ. Let K be a knot
and K* its mirror image. If φ is a representation of the knot group, G, of
K, then there is a "mirror-image" representation φ* of G*, and it is easily
verified that Λφ5|ί(/) = Aφ(-t). Thus, as expected, Aφ(t) is useful in
determining whether a knot is amphicheiral.

Given Λφ(/) one can regain Uι/Um as one of its roots, and this in turn
determines the values of link (KQ9 Kj) according to (6.1). However, all
values of link (Ki9 K) can be determined from the values of link
(KQ9 Kt). (Perko [10] gave a formula for the case r — 2, and a similar
formula holds for r > 2). Thus, complete information about the covering
linkage invariants associated with φ is contained in the polynomial Λφ(/).
The advantage of this invariant over the set of linking numbers is that it is
unnecessary to take into account the effect of a different renumbering of
the components of the covering link. The disadvantage is that sometimes
the coefficients of Λφ(/) become very large.
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