SOME REMARKS ON ALGEBRAIC EQUIVALENCE OF CYCLES

Giuseppe Ceresa and Alberto Collino ${ }^{1}$

Abstract

Let $F \subseteq \mathbf{P}^{4}$ be a 3-fold with one ordinary double point p, and let F^{\prime} be the proper transform of F under the blowing up of \mathbf{P}^{4} at p. If $H \subseteq F^{\prime}$ is the preimage of p on F^{\prime}, we prove that for F general the algebraic l-cycle given by the difference of the two generators of the smooth quadric surface H, is not algebraically equivalent to zero on F^{\prime}. Griffiths has shown this cycle to be homologically equivalent to zero. Also, we show that on a general quintic 3 -fold X there are no non-trivial algebraic equivalence relations between the lines of X.

One of the most remarkable results of Griffiths' paper on rational integrals [3] is the proof that homological equivalence does not imply algebraic equivalence for algebraic cycles. The argument is essentially based on two theorems, the so-called inversion theorem and the theorem of $\S 14$, stating properties of primitive cycles.

Our purpose here is to show that the inversion theorem alone implies, quite directly, that on a general threefold of degree 5 in \mathbf{P}^{4} two lines are not algebraically equivalent, although they are homologically equivalent because of Lefschetz' theorem. Strengthening the inversion theorem a little bit we can also answer a natural question which may occur to a reader of [3] which we explain now. Let $F \subseteq \mathbf{P}^{4}$ be a threefold with exactly one singular point p, which is a node (ordinary double point) and let F^{\prime} be the proper transform of F under the blowing up of \mathbf{P}^{4} at the node. F^{\prime} is non-singular and the inverse image of p is a smooth quadric surface H. If L, M, are two lines on H belonging to the two different rulings then L is homologically equivalent to M on F^{\prime}, loc. cit. §15. The question is whether L and M are algebraically equivalent:

Theorem. If $\operatorname{deg} F \geq 5$ and F is general then L and M are not algebraically equivalent on F^{\prime}.

We thank H . Clemens for useful advice [1], which has allowed us to improve and simplify to a great extent a previous version of this paper.

[^0]
I. The inversion theorem in the nodal case.

(1.1) Theorem. If $X \subseteq \mathbf{P}^{4}$ is a generic threefold with one node, of degree $d \geq 5$ and if $b: X^{\prime} \rightarrow X$ is the desingularization of X obtained by blowing up the node, then every 1-cycle algebraically equivalent to 0 is contained in the kernel of the Abel-Jacobi map of X^{\prime}.

We recall that on a non-singular threefold Y a class $\alpha \in H_{3}(Y, \mathbf{Z})$ is said to be of rank 2 if there is a surface W and an inclusion $g: W \rightarrow Y$ such that $\alpha=g_{*}(\beta), \beta \in H_{3}(W, \mathbf{Z})$. Proposition 13.3 of [3] says that if there are no non-zero classes of rank 2 on Y then the Abel-Jacobi map sends to 0 every cycle which is algebraically equivalent to 0 . To prove (1.1) it is enough to show
(1.2) If X is as in (1.1) then X^{\prime} contains no non-zero classes of rank 2.

Remark. We stress that generic means that the set of threefolds which have non-zero classes of rank 2 is contained in a countable union of proper analytic subvarieties of the family T of threefolds of degree d with one node. In particular this implies that if in a pencil of threefolds one element has no non-zero classes of rank 2 then at most a countable number of elements in the pencil have non-zero classes of rank 2.

Proof of (1.1). For simplicity we set $d=5$. Let \mathbf{P}^{N} be the projective space parametrizing the hypersurfaces of degree 5 in \mathbf{P}^{4} and let T be the subset of hypersurfaces with one node. Let $z_{0} \in T$ represent X and let D_{0} be its equation. Then:
(1.3) Locally at $z_{0} T$ is a non-singular hypersurface in \mathbf{P}^{N}. The tangent space to T at z_{0} is the hyperplane in \mathbf{P}^{N} given by the lines through z_{0} which correspond to pencils $D_{0}+\lambda E$, where E is a polynomial of degree d which satisfies the adjoint condition, namely E passes through the node of D_{0}.

The proof of this fact is elementary and we omit it.
Now, fix $\alpha \in H_{3}\left(X^{\prime}, \mathbf{Z}\right)$ and suppose that there is a neighborhood U of z_{0} in T containing a dense subset U^{*} with the property that for $z \in U^{*}$ the cycle α_{z} is of rank 2 on X_{z}^{\prime}. By α_{z}, we mean the cycle class obtained by the following process. Choose a representative cycle for α on X which does not pass through the node, (such a representative exists by (15.9) of [3]),
and transport it to nearby X_{z} by taking a solid tube over this representative and intersecting it with X_{z}, see loc. cit. §3. If X_{z} is sufficiently close to X, then the transported cycle does not meet the node on X_{z}. The lifting of this cycle to X_{z}^{\prime} is what we call α_{z}. Note that α_{z} of rank 2 implies that there exists a surface W_{z} and an inclusion map $g_{z}: W_{z} \rightarrow X_{z}^{\prime}$ such that $\alpha_{z}=$ $\left(g_{z}\right)_{*}\left(\beta_{z}\right)$. Following the notation of [3], set $\eta_{z}=\Omega / D_{z}$, where D_{z} is the equation of X_{z}, and let $b_{z}:\left(\mathbf{P}^{4}\right)^{\prime} \rightarrow \mathbf{P}^{4}$ be the blowing up of \mathbf{P}^{4} at the node of X_{z}. By loc. cit. $\S 16$, the residue $R\left(b_{z}^{*} \eta_{z}\right)$ induces a cohomology class in $H^{3,0}\left(X_{z}^{\prime}\right)$. Then

$$
\begin{equation*}
\int_{\alpha_{z}} R\left(b_{z}^{*} \eta_{z}\right)=\int_{\beta_{z}} g_{z}^{*} R\left(b_{z}^{*} \eta_{z}\right)=0 \tag{1.4}
\end{equation*}
$$

because on a surface every $(3,0)$ form is 0 .
Also, since the integral (1.4) is an analytic function of z vanishing on U^{*}, it is identically zero on U.

Let $D(\lambda)=\Sigma_{k \geq 0} D_{k}\left(x_{0}, \ldots, x_{4}\right) \lambda^{k}$ be an analytic curve on T centered at D_{0}, and suppose that for small $|\lambda| D(\lambda)$ is the equation of a threefold X_{λ} with one single node so that the corresponding point $z(\lambda)$ is in U. By (1.3) the polynomial D_{1} satisfies the adjoint condition, and conversely every polynomial which satisfies the adjoint condition can be given as D_{1} in the power series expansion of some $D(\lambda)$.

The integral (1.4) is then a function of λ which is identically 0 because $z(\lambda) \in U$. Differentiating (1.4) at $\lambda=0$ gives (see [3], pg. 508)

$$
\begin{equation*}
\left.0=\int_{\alpha} R\left(b_{o}^{*}\left(-D_{1} \Omega / D_{0}^{2}\right)\right) \quad \text { where } R b^{*}\left(D_{1} \Omega / D_{0}^{2}\right)\right) \in F^{2} H^{3}\left(X^{\prime}\right) \tag{1.5}
\end{equation*}
$$

Thus $\int_{\alpha} \omega=0$ for every $\omega \in F^{2} H^{3}\left(X^{\prime}\right)$, because this vector space is generated by residues of type (1.5) (see loc. cit. §16). Since α is a real homology class, $0=\int_{\alpha} \omega=\int_{\alpha} \bar{\omega}$, hence by Hodge's theorems $\alpha=0$.

We have therefore proved that if $0 \neq \alpha \in H_{3}\left(X^{\prime}, \mathbf{Z}\right)$ then there is a neighborhood U of z_{0} in T such that the set of points $z \in U$ for which α_{z} is of rank 2 is a proper analytic subvariety of U. The statement in (1.2) follows by varying α in $H_{3}\left(X^{\prime}, \mathbf{Z}\right)$.
II. The nodal case. Let $G=Q\left(x_{0}, \ldots, x_{3}\right) x_{4}^{d-2}+K\left(x_{0}, \ldots, x_{3}\right)$ be the homogeneous equation of a threefold V_{0} in \mathbf{P}^{4} of degree d. We assume that K and Q are the equations of two non-singular surfaces in \mathbf{P}^{3} which intersect transversally along a curve C. Then V_{0} is non-singular, but for the node at $p=(0,0,0,0,1)$. Blowing up V_{0} at p yields V_{0}^{\prime}, and the linear projection from p induces a morphism $g: V_{0}^{\prime} \rightarrow B_{C}\left(\mathbf{P}^{3}\right)$, where $B_{C}\left(\mathbf{P}^{3}\right)$ is
the blowing up of \mathbf{P}^{3} along C. The map g is a finite covering of degree ($d-2$), and the exceptional divisor H on V_{0}^{\prime} is mapped isomorphically onto Q^{\prime}, the proper transform on $B_{C}\left(\mathbf{P}^{3}\right)$ of the quadric Q.

Since the Jacobian variety of C and the intermediate Jacobian of $B_{C}\left(\mathbf{P}^{3}\right)$ are isomorphic [2], the morphism of intermediate Jacobians g_{*} : $J\left(V_{0}^{\prime}\right) \rightarrow J\left(B_{C}\left(\mathbf{P}^{3}\right)\right)$ induces a morphism $g_{*}: J\left(V_{0}^{\prime}\right) \rightarrow J(C)$. A straight computation gives

$$
\begin{equation*}
g_{*}(\varphi(L-M))=-i^{*}(L-M) \quad \text { in } J(C) \tag{2.1}
\end{equation*}
$$

where φ is the Abel-Jacobi map, $i: C \rightarrow Q$ is the inclusion, $i^{*}: \operatorname{Pic}(Q) \rightarrow$ $\operatorname{Pic}^{0}(C) \simeq J(C)$, and L, M are lines representing the two different rulings of $Q \simeq Q^{\prime} \simeq H$.
(2.2) Lemma. $\varphi(L-M) \neq 0$ in $J\left(V_{0}^{\prime}\right)$.

Proof. It suffices to show that $i^{*}(L-M)$ is not trivial in $\operatorname{Pic}(C)$. If it were, the first ruling on Q would cut on C a linear system which would not be complete, because $i^{*}(M)$ is not cut by the first ruling. On the other hand, it is easy to show that the first ruling cuts on C a complete linear system.

Now, let V be a generic threefold of degree d with one single node. Without restriction we may assume that the equation of V is $F\left(x_{0}, \ldots, x_{4}\right)$ $=Q x^{d-2}+\cdots=0$, i.e., V is singular at p and it has the same tangent cone as V_{0}. Define a fourfold $\mathfrak{V} \subseteq \mathbf{P}^{1} \times \mathbf{P}^{4}$ by the equation $s F+t G=0$ and blow it up along $\mathbf{P}^{1} \times\{p\}$ to obtain a family $\pi: \mathscr{V}^{\prime} \rightarrow \mathbf{P}^{1}, \pi^{-1}((0,1))$ $=V_{0}$. Note that the exceptional divisor on \mathbb{V}^{\prime} is isomorphic to $\mathbf{P}^{1} \times H$, so that on $V_{s}^{\prime}=\pi^{-1}((s, 1))$ the exceptional divisor is identified with H, the exceptional divisor on V_{0}^{\prime}.

Set $B=\left\{z \in \mathbf{P}^{1}: V_{z}^{\prime}\right.$ is non-singular $\}$, and let $\mathcal{G} \rightarrow B$ be the associated family of intermediate Jacobians.

Fixing L and M on H, the family of cycles $\left(\mathbf{P}^{1} \times L-\mathbf{P}^{1} \times M\right)$ gives a section $\sigma: B \rightarrow \mathcal{q}$, defined by means of the Abel-Jacobi maps, i.e., $\sigma(z)=\varphi_{z}(L-M) \in J\left(V_{z}^{\prime}\right)$.
(2.3) Lemma. σ is not identically zero.

Proof. By (2.2) $\sigma(0) \neq 0$ and σ is analytic.
By our choice of $V_{\infty}^{\prime}=V^{\prime}$ and the remark after (1.2), for generic $z \in B$ the kernel of the Abel-Jacobi map φ_{z} contains all the cycles which
are algebraically equivalent to zero on V_{z}^{\prime}; on the other hand, by the lemma $0 \neq \sigma(z)=\varphi_{z}(L-M)$, hence
(2.4) For generic z the lines L and M are not algebraically equivalent on V_{z}^{\prime}.
III. Lines on a quintic threefold. We recall that on a generic non-singular threefold of degree 5 there are at least two lines which do not intersect [4]; we shall show that they are not algebraically equivalent. Since the method of the proof is the same as in the nodal case, we only construct the analogue of V_{0}^{\prime} and leave further details to the reader.

Our purpose is to produce a smooth quintic threefold W containing two lines, l_{a} and l_{b}, which do not intersect and such that the cycle $\left(l_{a}-l_{b}\right.$) does not belong to the kernel of the Abel-Jacobi map φ. For this we consider the threefold W defined by the equation $x_{0} x_{4}^{4}+$ $K\left(x_{0}, \ldots, x_{3}\right)=0$, where: (i) K is a non-singular surface in \mathbf{P}^{3} of degree 5 , (ii) K contains two lines l_{a}^{*} and l_{b}^{*} which do not intersect and do not lie on the plane $H:\left\{x_{0}=0\right\}$, (iii) in \mathbf{P}^{3}, H and K intersect transversally along a curve C. Then, on W, the lines l_{a} and l_{b} are the lines l_{a}^{*}, l_{b}^{*} contained in the hyperplane section $x_{4}=0=K$.

Blowing up W at $p=(0,0,0,0,1)$ gives W^{\prime}, and we have $J(W) \simeq$ $J\left(W^{\prime}\right)$ and $\varphi\left(l_{a}-l_{b}\right)=\varphi\left(l_{a}^{\prime}-l_{b}^{\prime}\right)$, where l^{\prime} denotes the proper transform of l on W^{\prime}.

As in (2.1) we get a morphism $g_{*}: J\left(W^{\prime}\right) \rightarrow J(C)$ and $g_{*}\left(\varphi\left(l_{a}-l_{b}\right)\right)$ $=-\operatorname{class}\left(z_{a}-z_{b}\right)$, where $z_{a}, z_{b} \in C$ are the points of intersections of l_{a} and l_{b} with H.
(3.1) Lemma. $\varphi\left(l_{a}-l_{b}\right) \neq 0$.

Proof. It suffices to show that on $C z_{a}$ and z_{b} are not linearly equivalent. This is true since C is a plane curve of degree >3, hence not hyperelliptic.

Arguing as in the nodal case one has
(3.2) Two lines on a general quintic threefold are not algebraically equivalent.

Also we thank the referee for suggesting to us this more general statement.
(3.3) If X is a general quintic threefold, l_{1}, \ldots, l_{2875} the lines on X, then no linear combination

$$
\sum a_{i} l_{i}
$$

of the l_{i} is algebraically equivalent to zero.
The reason is that if we have a relation $\sum a_{i} l_{i} \sim 0$, it would follow that $\sum a_{i} l_{\sigma(2)} \sim 0$ for any σ in the monodromy group M of the 2875 lines. Since $M=S_{2875}$, then, any relation at all would imply that $l_{i} \sim l_{j}$ for all i, j.

References

1. C. H. Clemens, Applications of mixed Hodge theory to the study of threefolds, Rend. Sem. Mat. Univ. Politecn. Torino, 39, 1 (1981).
2. C. H. Clemens and P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math., 95 (1972), 281-356.
3. P. Griffiths, On the period of certain rational integrals, I and II, Ann. of Math., 90 (1969), 460-541.
4. J. Harris, Galois groups of enumerative problems, Duke Math. J., 46 (1979), 685-724.

Received September 25, 1981.
Universita Di Torino
Via P. Amedeo 8
10123 Torino, Italy

[^0]: ${ }^{1}$ Both authors are members of G.N.S.A.G.A. of C.N.R.

