EXPECTATIONS IN SEMIFINITE ALGEBRAS

S. K. BERBERIAN

Every semifinite von Neumann algebra A possesses an expectation $\natural: A \to W$, where W is a commutative von Neumann subalgebra of Acontaining the center of A, and where \natural extends the trace of a "large" finite subalgebra of A. An AW^* -algebraic proof yields applications to the embedding of semifinite AW^* -algebras in algebras of type I.

1. Uniform algebras. An algebra of type I may be studied by decomposing it into homogeneous algebras. In an analogous way, we propose to study semifinite algebras via their decompositions into uniform algebras.

DEFINITION [2, p. 242, Exer. 5]. An AW^* -algebra is said to be *uniform* if it contains an orthogonal family of equivalent finite projections with supremum 1. (The definition of homogeneous algebra is obtained by replacing "finite" by "abelian".)

LEMMA 1. Every semifinite AW^* -algebra is the C^* -sum of a family of uniform algebras.

Proof. Since finite algebras are trivially uniform, one can suppose the given algebra A to be properly infinite. Let $(e_i)_{i \in I}$ be a maximal orthogonal family of pairwise equivalent finite projections; since A is infinite, one can suppose the index set I to be infinite. Then there exist a nonzero central projection h of A and an orthogonal family of projections $(f_i)_{i \in I}$ such that $h = \sup f_i$ and $f_i \sim he_i$ for all $i \in I$ [1, p. 102, Prop. 2]. This shows that the algebra hA is uniform, and an exhaustion by Zorn's lemma completes the proof.

2. Matrix units. A uniform von Neumann algebra A may be regarded as a tensor product $A = D \otimes L(H)$ with D finite and L(H) the algebra of all bounded operators on a Hilbert space H [2, p. 25, Prop. 5]. There is no analogous theory of tensor product for AW^* -algebras, but an effective substitute is to pursue the discussion of "matrix units" in [4, §5].

Let A be an AW^* -algebra, with center Z, containing an orthogonal family $(e_i)_{i \in I}$ of pairwise equivalent projections with sup $e_i = 1$. As in [4, §5] construct a family of elements $e_{ij} \in e_i A e_j$ $(i, j \in I)$ such that $e_{ii} = e_i$, $e_{ij}^* = e_{ji}$, $e_{ij}e_{jk} = e_{ik}$ and $e_{ij}e_{mk} = 0$ for $j \neq m$. In particular, $e_{ij}e_{ij}^* = e_i$

and $e_{ij}^* e_{ij} = e_j$, thus e_{ij} is a partial isometry effecting the equivalence $e_i \sim e_j$. Let

$$S = \{e_{ij} : i, j \in I\}, \qquad T = \{e_i : i \in I\}$$

and let

$$D = S', \qquad W = T''$$

be the commutant and bicommutant, respectively, of these sets in A; D and W are AW*-subalgebras of A with D = D'', W = W'' [1, p. 23, Prop. 8]. Since T is a commutative set, W is a commutative algebra; from $W \subset W'$ we see that W' has center W, thus the e_i are orthogonal central projections in W' with supremum 1, consequently $W' = \bigoplus e_i W'$ [1, p. 53, Prop. 2]. If $x_i \in e_i W'$ for all $i \in I$ and $\sup ||x_i|| < \infty$, we write $\bigoplus x_i$ for the unique element $x \in W'$ such that $e_i x = x_i$ for all *i*. Since $T \subset S$, one has

$$D = S' \subset T' = T''' = W',$$

thus $Z \subset W \subset D'$. The center of D is $D \cap D' = Z$ [4, Lemma 14].

For each $i \in I$, the mapping $d \mapsto de_i$ is a *-isomorphism $D \to e_i Ae_i$ [4, Lemma 12], consequently $||de_i|| = ||d||$ for all $d \in D$ and $i \in I$ [3, 1.3.8 and 1.8.1]. Moreover [4, Lemma 13],

$$e_i A e_i = D e_{ii} \qquad (i, j \in I);$$

the mapping $d \mapsto de_{ij}$ is an isomorphism of Banach spaces $D \to e_i A e_j$, since

$$\|de_{ij}\|^2 = \|(de_{ij})(de_{ij})^*\| = \|dd^*e_i\| = \|dd^*\| = \|d\|^2.$$

In particular, for each element $a \in A$ there exists a unique family (a_{ij}) of elements of D determined by the relations

(1)
$$e_i a e_j = a_{ij} e_{ij} \qquad (i, j \in I);$$

one calls (a_{ij}) the "matrix" of a relative to the matrix units e_{ij} . One has

(2)
$$||a_{ij}|| \le ||a|| \quad (i, j \in I)$$

because $||a_{ij}|| = ||a_{ij}e_{ij}|| = ||e_iae_j||$.

From $D \subset W'$ we see that $e_i D \subset e_i W' = e_i W' e_i \subset e_i A e_i = e_i D$, thus $e_i W' = e_i D$; therefore $W' = \bigoplus e_i D = \bigoplus e_i A e_i$.

 $\mathbf{34}$

LEMMA 2. With the preceding notations,

$$D' = \{a \in A : e_i a e_j \in Z e_{ij} \text{ for all } i, j\},\$$

(4)
$$W' = \bigoplus e_i W' = \bigoplus e_i D = \bigoplus e_i A e_i$$

$$= \{a \in A : e_i a e_j = 0 \text{ whenever } i \neq j\},\$$

(5) $W = \bigoplus e_i Z,$

$$W = D' \cap W',$$

 $(7) Z = D \cap W.$

The algebra D' is homogeneous, with center Z.

Proof. Let $a \in A$ and write $e_i a e_j = a_{ij} e_{ij}$ as in (1).

(3) If
$$d \in D = S'$$
 then d commutes with every e_{i_i} , therefore

$$e_i(ad-da)e_j=(a_{ij}d-da_{ij})e_{ij}.$$

This expression is 0 if and only if $a_{ij}d - da_{ij} = 0$; thus $a \in D'$ if and only if $a_{ij} \in D \cap D' = Z$ for all i, j.

(4) The formulas $W' = \bigoplus e_i W' = \bigoplus e_i D = \bigoplus e_i A e_i$ are noted above. For all *i*, *j*, *k* one has

$$e_i(ae_k - e_ka)e_j = \delta_{jk}a_{ik}e_{ik} - \delta_{ik}a_{kj}e_{kj}$$
$$= \delta_{jk}a_{ij}e_{ij} - \delta_{ik}a_{ij}e_{ij} = (\delta_{jk} - \delta_{ik})a_{ij}e_{ij},$$

which is 0 whenever i = j. One has $a \in W' = T'$ if and only if this expression is 0 for all i, j, k. If $a \in W'$ and $i \neq j$ then $a_{ij} = 0$ (take k = j); on the other hand if $a_{ij} = 0$ whenever $i \neq j$, then the expression is 0 for all i, j, k, so $a \in W'$. Thus $W' = \{a \in A : e_i a e_j = 0 \text{ for } i \neq j\}$.

(5), (6) From (3) we have $e_i Z = e_i D' e_i$; since $e_i \in W \subset D'$, this shows that $e_i Z$ is an AW^* -algebra, and $Z \subset W$ yields $\bigoplus e_i Z \subset \bigoplus e_i W = W$. Obviously $W \subset D' \cap W'$. If $a \in D' \cap W'$ then $a = \bigoplus e_i a$ by (4), and $e_i a = e_i a e_i = e_i a_{ii}$ with $a_{ii} \in Z$ by (3), thus $a \in \bigoplus e_i Z$. Summarizing, we have $\bigoplus e_i Z \subset W \subset D' \cap W' \subset \bigoplus e_i Z$, whence equality throughout.

(7) Citing (6), $D \cap W = D \cap D' \cap W' = Z \cap W' = Z$.

Finally, $e_{ij} \in S \subset S'' = D'$ for all i, j; this shows that the projections e_i are equivalent in D'. By (3), $e_i D' e_i = Z e_i$ is commutative, so the e_i are abelian projections in D'. Thus D' is homogeneous, with center $D' \cap D'' = D' \cap D = Z$.

3. Semifinite algebras. The foregoing results on matrix units yield a structure theorem for semifinite algebras; we first review some definitions needed for its statement.

Let A be an AW^* -algebra, A_p its projection lattice, A_h the ordered linear space of hermitian elements of A with the set of elements x^*x as positive cone; A is said to be normal [15] if A_p is monotonely embedded in A_h , that is, whenever (f_α) is an increasingly directed family of projections with supremum f in A_p , then f is also the supremum of the family in A_h (briefly, $f_\alpha \uparrow f$ in A_p implies $f_\alpha \uparrow f$ in A_h). Every finite AW^* -algebra is normal [15, Th. 4], as is every AW^* -algebra that acts faithfully on a separable Hilbert space [16, Cor. 3.4]. (It is not known if there exists a non-normal AW^* -algebra.) Every von Neumann algebra is normal, hence so is every W^* -algebra. A positive linear mapping $\varphi: A \to B$ between AW^* -algebras is said to be normal if $a_\alpha \uparrow a$ in A_h implies $\varphi(a_\alpha) \uparrow \varphi(a)$ in B_h , and completely additive on projections (CAP) if $f_\alpha \uparrow f$ in A_p implies $\varphi(f_\alpha) \uparrow \varphi(f)$ in B_h . If A is a normal algebra and φ is a normal mapping, then φ is CAP.

LEMMA 3 [10]. If A is a normal AW*-algebra, then for every element $x \in A$ the positive linear mapping $a \mapsto xax^*$ on A is CAP.

Proof. Suppose $f_{\alpha} \uparrow f$ in A_p and $xf_{\alpha}x^* \leq b \in A_h$ for all α ; we are to show that $xfx^* \leq b$. Let $\varepsilon > 0$ and let $c = (b + \varepsilon)^{-1/2}$. Then

$$cxf_{\alpha}x^{*}c \leq cbc = b(b+\epsilon)^{-1} \leq 1,$$

thus $(cxf_{\alpha})(cxf_{\alpha})^* \leq 1$; this means that $||cxf_{\alpha}|| \leq 1$, so $(cxf_{\alpha})^*(cxf_{\alpha}) \leq 1$, whence $f_{\alpha}(1 - x^*c^2x)f_{\alpha} \geq 0$ for all α . It follows from normality that $f(1 - x^*c^2x)f \geq 0$ [10, Lemma 3], whence $fx^*c^2xf \leq f \leq 1$, $||cxf|| \leq 1$, $cxfx^*c \leq 1$, $xfx^* \leq c^{-2} = b + \varepsilon$. Thus $xfx^* - b \leq \varepsilon$ for all $\varepsilon > 0$, therefore $xfx^* - b \leq 0$.

THEOREM 1. Let A be a semifinite AW^* -algebra with center Z. There exist AW^* -subalgebras D and W of A with the following properties:

(i) D = D'' and W = W'' in A;

(ii) D is finite, its center is Z, and D' is of type I with center Z; D is *-isomorphic to eAe, with e a faithful finite projection of A;

(iii) W is commutative, $W = D' \cap W'$ and $Z = D \cap W$;

(iv) there is a mapping #: $A \to W'$ that is left and right W'-linear, positive, faithful, and leaves fixed the elements of W'; when A is a normal algebra, the mapping # is CAP.

(v) If Z is a W^* -algebra then so are D' and W; if D is a W^* -algebra, then so is W'.

(vi) If A is normal and D is a W^* -algebra, then A is a W^* -algebra.

Proof. By Lemma 1 we are reduced to the case that A is uniform; we adopt the notations of Lemma 2, with the e_i finite projections of A. In particular, D is *-isomorphic to e_iAe_i , hence is finite; the rest of (i)–(iii) is clear from Lemma 2.

(v) The formula $W = D' \cap W'$ means that W coincides with its commutant in D' (thus is a maximal abelian subalgebra of D'); if Z is a W*-algebra (that is, *-isomorphic to a von Neumann algebra) then so is the type I algebra D' with center Z [4, Th. 2], hence so is W. On the other hand, if D is a W*-algebra, then so are the isomorphic algebras e_iD , hence so is W' by formula (4) of Lemma 2; in this case, the center Z of D is also a W*-algebra, hence so are D' and W.

(iv), (vi) If $a \in A$ then $||e_i a e_i|| \le ||a||$ for all *i*, so by (4) of Lemma 2 we can define $a^{\sharp} = \bigoplus e_i a e_i \in W'$. It is clear that $a \mapsto a^{\sharp}$ is a positive linear mapping $A \to W'$, leaving fixed the elements of W' hence having range W'. If $a \ge 0$ and $a^{\sharp} = 0$, then $(e_i a^{1/2})(e_i a^{1/2})^* = e_i a e_i = 0$ for all *i*, whence a = 0; thus \sharp is faithful.

If $c \in W' = T'$ and $a \in A$, then c commutes with every e_i , thus $e_i cae_i = (e_i ce_i)(e_i ae_i)$ for all i; therefore $(ca)^{\sharp} = c^{\sharp}a^{\sharp} = ca^{\sharp}$, similarly $(ac)^{\sharp} = a^{\sharp}c$.

Finally, suppose A is a normal algebra and $f_{\alpha} \uparrow f$ in A_p . By Lemma 3, for each *i* one has $e_i f_{\alpha} e_i \uparrow e_i f e_i$ in A_h , hence in $(e_i A e_i)_h$; therefore $\bigoplus e_i f_{\alpha} e_i \uparrow \bigoplus e_i f e_i$ in $(\bigoplus e_i A e_i)_h$, that is, $f_{\alpha}^{\#} \uparrow f^{\#}$ in $(W')_h$. Thus # is CAP. If, in addition, D is a W*-algebra, then by (v) so is W', therefore W' has a separating family of normal positive linear forms; since # is CAP, it follows that A has a separating family of positive linear forms that are CAP, therefore A is a W*-algebra by a theorem of G. K. Pedersen [7].

4. Trace and expectations. Our next objective is to show that, in the notations of Theorem 1, a center-valued trace $\natural: D \to Z$ on the finite algebra D is extendible to a trace-like mapping $\natural: A \to W$ (more precisely, in the terminology of [6], an expectation of A onto W). If, in addition, the algebra A is normal, then the resulting expectation of A is a normal mapping. All of these hypotheses are fulfilled when A is a semifinite W^* -algebra. First, we review a result implicit in [12]:

LEMMA 4. Let A be a finite AW^* -algebra with center Z, possessing a trace $\natural: A \rightarrow Z$. Then A is monotone complete and the mapping \natural is normal.

Proof. The hypothesis is that \natural is a positive Z-linear mapping such that $1^{\natural} = 1$ and $(ab)^{\natural} = (ba)^{\natural}$ for all a, b in A. It follows that $z^{\natural} = z$ for all $z \in Z$. Moreover, \natural is faithful: if $a \ge 0$ and $a^{\natural} = 0$ then a = 0 (because

every nonzero positive element of A majorizes a positive scalar multiple of a simple projection [1, §26]).

Let $D: A_p \to Z$ be the dimension function A [1, p. 181, Th. 1]. By the uniqueness of D, $e^{\natural} = D(e)$ for all projections e; since D is completely additive, \natural is CAP [1, p. 184, Exer. 4]. It follows that for every $x \in A$, the Z-linear mapping $a \mapsto (xax^*)^{\natural}$ is also CAP (cf. the Appendix), thus \natural is continuous in the sense of [12, p. 316]. Since \natural is faithful, it follows that there exists an AW^* -algebra B of type I, with center Z, such that A is an AW^* -subalgebra of B [12, Th. 3.1], indeed A = A'' in B [12, Th. 4.4]. Since B is monotone complete [12, Lemma 1.4] and A = A'' in B, it follows that A is monotone complete. (An AW^* -algebra A is said to be monotone complete of A_h , has a supremum in A_h .)

Suppose $a_{\alpha} \uparrow a$ in A_h ; we are to show that $a_{\alpha}^{\natural} \uparrow a^{\natural}$ in Z_h . Passing to a cofinal set of indices, we can suppose that $||a_{\alpha}||$ is bounded. Viewing *B* as the algebra of bounded operators on an AW^* -module over *Z* [5, Th. 8], a_{α} is strongly convergent to *a* [12, Lemma 1.4], therefore $a^{\natural} = \liminf a_{\alpha}^{\natural}$ in Z_h [12, Lemma 4.3]; since the family (a_{α}^{\natural}) is increasing, $\liminf a_{\alpha}^{\natural} = \sup a_{\alpha}^{\natural}$, thus $a_{\alpha}^{\natural} \uparrow a^{\natural}$ in Z_h .

In Theorem 2 it will be assumed that the finite algebra D of Theorem 1 has a trace, equivalently, that the isomorphic algebra eAe has a trace; the next two lemmas free this hypothesis from its reference to a particular faithful finite projection e.

LEMMA 5. If the finite AW^* -algebra A has a trace, then so does every corner eAe of A and every matrix algebra $M_n(A)$ over A.

Proof. If $\natural: A \to Z$ is the trace of A (Z the center of A) and if r is the relative inverse of e^{\natural} in the regular ring of A [1, p. 235], then the trace $eAe \to eZ$ of eAe is given by the formula $x \mapsto erx^{\natural}$. Identifying the center of $M_n(A)$ with Z, the trace of a matrix is defined to be the average of the traces of its diagonal elements.

LEMMA 6. Let A be a semifinite AW^* -algebra containing a faithful finite projection f such that fAf has a trace. Then for every finite projection e of A, eAe has a trace.

Proof. The first step of the proof is to find a nonzero central projection h of A such that (he)A(he) = heAe has a trace. We can suppose $e \neq 0$; then $eAf \neq 0$ (because f is faithful), so there exist nonzero

subprojections $e_1 \le e$, $f_1 \le f$ with $e_1 \sim f_1$. Passing to a subprojection of e_1 , we can suppose that e_1 is a simple projection in *eAe* [1, §26]. The central cover of e_1 in *eAe* has the form *he* with *h* a central projection of *A* [1, p. 37, Prop. 4], thus $heAe = M_n(e_1Ae_1)$ for a suitable integer *n* (the "order" of e_1 in *eAe*). Since *fAf* has a trace, so does its corner f_1Af_1 (Lemma 5), hence so does the isomorphic algebra e_1Ae_1 , hence so does the matrix algebra heAe (Lemma 5).

Let (h_{α}) be a maximal orthogonal family of nonzero central projections of A such that every $h_{\alpha}eAe$ has a trace. Necessarily $\sup h_{\alpha} = 1$ (otherwise the preceding argument could be used to contradict maximality); thus $eAe = \bigoplus h_{\alpha}eAe$, $eZ = \bigoplus h_{\alpha}eZ$ (Z the center of A), and the traces of the $h_{\alpha}eAe$ may be combined to give a trace for eAe.

THEOREM 2. Let A be a semifinite AW^* -algebra with center Z, and adopt the notations of Theorem 1. Suppose, in addition, that the finite algebra D has a trace $\natural: D \to Z$ (as is the case when A is a W^* -algebra). Then the trace of D is extendible to a positive linear mapping $\natural: A \to W$ with the following properties:

(i) $w^{\natural} = w$ for all $w \in W$;

(ii) $(wa)^{\natural} = wa^{\natural} = a^{\natural}w = (aw)^{\natural}$ for all $a \in A, w \in W$;

(iii) $a \ge 0$ and $a^{\natural} = 0$ imply a = 0;

(iv) $(ad)^{\natural} = (da)^{\natural}$ for all $a \in A$, $d \in D$; equivalently, $(uau^*)^{\natural} = a^{\natural}$ for all $a \in A$ and all unitary $u \in D$;

(v) if A is a normal algebra, then the mapping $\natural: A \to W$ is normal and there exists a type I AW*-algebra B with center Z such that A = A'' in B.

Proof. By Lemma 6 and the proof of Theorem 1, we can suppose A to be uniform; we adopt the notations of Lemma 2, with the e_i finite projections, and we write $\#: A \to W'$ for the mapping defined in the proof of Theorem 1.

Suppose, more generally, that $\varphi: D \to Z$ is any positive linear mapping. For each $i \in I$ let $\varphi_i: e_i A e_i \to e_i Z$ be the unique (positive, linear) mapping such that $\varphi_i(e_i d) = e_i \varphi(d)$ (recall that $d \mapsto e_i d$ is a *-isomorphism $D \to e_i A e_i$); then

$$\|\varphi_{i}(e_{i}d)\| \leq \|\varphi(d)\| \leq \|\varphi\| \|d\| = \|\varphi\| \|e_{i}d\|,$$

so $\|\varphi_i\| \le \|\varphi\|$ for all *i*. Define a mapping $\overline{\varphi}: W' \to W$ as follows. By (4) of Lemma 2, every $x \in W'$ has the form $x = \bigoplus x_i$ with $x_i \in e_i A e_i$ and $\|x_i\|$ bounded; then $\|\varphi_i(x_i)\|$ is bounded and we can define

$$\bar{\varphi}(x) = \bigoplus \varphi_i(x_i) \in \bigoplus e_i Z = W$$

by (5) of Lemma 2. (So to speak, $\overline{\varphi} = \bigoplus \varphi_i$.)

Composing the positive linear mappings $\sharp: A \to W'$ and $\overline{\varphi}: W' \to W$, we obtain a positive linear mapping $\Phi: A \to W$, where $\Phi(a) = \bigoplus \varphi_i(e_i a e_i)$ for $a \in A$; thus if $e_i a e_i = a_{ii} e_{ii}$ as in (1), we have

(8)
$$\Phi(a) = \bigoplus e_i \varphi(a_{ii}).$$

 Φ extends φ . {*Proof*: If $a \in D$ then $e_i a e_i = a e_i$ shows that $a_{ii} = a$ for all *i*, whence $\Phi(a) = \bigoplus e_i \varphi(a) = \varphi(a)$.}

If φ is faithful then so is Φ . {*Proof*: If φ is faithful then so is every φ_i , therefore so is $\overline{\varphi}$; since # is also faithful, so is $\Phi = \overline{\varphi} \circ \#$.}

If φ is Z-linear, then each of the mappings $a \mapsto \varphi(a_{ii})$ is Z-linear and Φ is both left and right W-linear. {*Proof*: Clearly every φ_i is $e_i Z$ -linear, therefore $\overline{\varphi}$ is both left and right $\bigoplus e_i Z$ -linear, that is, W-linear. If $z \in Z$ then za has matrix (za_{ij}) , whence the Z-linearity of the mappings $a \mapsto \varphi(a_{ii})$.}

If φ is normal then so is $\overline{\varphi}$; if, moreover, A is a normal algebra, then the mappings Φ and $a \mapsto \varphi(a_{ii})$ on A are CAP. {*Proof*: If φ is normal then so is every φ_i , hence so is $\overline{\varphi} = \bigoplus \varphi_i$. Suppose in addition that A is normal. If $f_{\alpha} \uparrow f$ in A_p , then $f_{\alpha}^{\pm} \uparrow f^{\pm}$ in $(W')_h$ by (iv) of Theorem 1, therefore $\overline{\varphi}(f_{\alpha}^{\pm}) \uparrow \overline{\varphi}(f^{\pm})$ in W_h , that is, $\Phi(f_{\alpha}) \uparrow \Phi(f)$; thus Φ is CAP. Also, for each *i* the mapping $a \mapsto e_i a e_i = e_i a_{ii}$ is CAP (Lemma 3); by virtue of the *-isomorphism $e_i D \to D$ and the normality of φ , it follows that the mapping $a \mapsto \varphi(a_{ii})$ is also CAP.}

Assume now that there exists a trace $\natural: D \to Z$ and let \natural play the role of φ . By the foregoing remarks, the mapping $\natural: A \to W$ defined by the formula

$$a^{\natural} = \bigoplus e_i a_{ii}^{\natural}$$

is left and right W-linear, positive, faithful, and extends the trace of D; thus the properties (ii), (iii) are verified, hence so is (i) (because $1^{\natural} = 1$). If $a \in A$ has matrix (a_{ij}) and if $u \in D$ is unitary, then uau^* has matrix $(ua_{ij}u^*)$, therefore

$$(uau^*)^{\natural} = \bigoplus e_i (ua_{ii}u^*)^{\natural} = \bigoplus e_i a_{ii}^{\natural} = a^{\natural}$$

This is equivalent to the identity $(ad)^{\natural} = (da)^{\natural}$ since every $d \in D$ is a linear combination of unitary elements of D [2, p. 4, Prop. 3].

The trace of D is normal (Lemma 4); if, moreover, A is a normal algebra, the above remarks show that the mappings $\natural: A \to W$ and $a \mapsto a_{ii}^{\natural}$ on A are CAP; in particular, A has a family of Z-linear mappings $A \to Z$ that are CAP and separating (for, if $a \ge 0$ and $a_{ii}^{\natural} = 0$ for all *i*, then

 $a^{\natural} = 0$, therefore a = 0). It then follows from K. Saitô's embedding theorem [9, Th. 2] that there exists a type I AW^* -algebra B with center Z, such that A = A'' in B. By the arguments in the proof of Lemma 4, A is monotone complete and the above-mentioned Z-linear mappings $A \to Z$ are normal, therefore so is the mapping $\natural: A \to W$.

The following corollary is due in essence to H. Widom [11, Th. 6.3]:

COROLLARY 1. If A is a normal, semifinite AW^* -algebra containing a faithful finite projection f such that fAf has a trace, then A may be embedded as a bicommutant in a type I algebra with the same center.

Proof. With notation as in Theorem 1, it follows from Lemma 6 that eAe has a trace, hence so does the isomorphic algebra D; thus all of the hypotheses of Theorem 2 are fulfilled.

{We remark that the result in [11, Th. 6.3] is stated without assuming normality, but normality figures in the proof [11, p. 55, line 4] via an appeal to the property in Lemma 3 above. The countability hypothesis in [11, Th. 6.3] can be omitted by virtue of Saitô's embedding theory [9, Th. 1].}

COROLLARY 2. If, under the hypotheses of Corollary 1, the center of A is a W^* -algebra, then A is also a W^* -algebra.

Proof. The type I algebra given by Corollary 1 is also W^* [4, Th. 2], hence so is its subalgebra A.

It is an open question whether every AW^* -factor of type II₁ has a trace; if the answer is yes, then Corollary 2 would imply that every normal AW^* -factor of type II_{∞} is a W^* -algebra.

COROLLARY 3 [13, p. 445, Cor.]. Let A be a normal, semifinite AW^* -algebra whose center Z is a W^* -algebra. If A has a faithful positive linear form then it is a W^* -algebra.

Proof. With notations as in Theorem 1, the finite algebra D also has center Z and has a faithful positive linear form, hence is a W^* -algebra [14, p. 437, Cor. 7]; therefore D has a trace and Corollary 2 applies.

5. Appendix. The following proposition (stated without proof in [8]) is implicit in the proof of Saitô's embedding theorem [9, Th. 2]; the brief proof given here was communicated to me by Professor Saitô.

PROPOSITION [8, 1.1.2]. If A is an AW*-algebra, B is a commutative AW*-algebra, and $\varphi: A \to B$ is a positive linear mapping that is CAP, then for every $x \in A$ the mapping $a \mapsto \varphi(xax^*)$ is also CAP.

Proof. Assuming $f_{\alpha} \downarrow 0$ in A_p , it will suffice to show that $\varphi(xf_{\alpha}x^*) \downarrow 0$ in B_h . This is clear if x is unitary, for then $xf_{\alpha}x^* \downarrow 0$ in A_p . In general, x is a linear combination of four unitaries, say $x = \sum_{i=1}^{4} \lambda_i u_i$. Then

$$\varphi(xf_{\alpha}x^*) = \sum_{i,j} \lambda_i \overline{\lambda}_j \varphi(u_i f_{\alpha}u_j^*).$$

Writing $|b| = (b^*b)^{1/2}$ for $b \in B$, the Cauchy-Schwarz inequality [cf. 5, p. 840] yields

$$\begin{aligned} \left|\varphi(u_i f_{\alpha} u_j^*)\right|^2 &= \left|\varphi(u_i(u_j f_{\alpha})^*)\right|^2 \\ &\leq \varphi(u_i u_i^*)\varphi(u_j f_{\alpha} u_j^*) = \varphi(1)\varphi(u_j f_{\alpha} u_j^*); \end{aligned}$$

writing $M = \max |\lambda_i \lambda_j|$, we thus have

$$\varphi(xf_{\alpha}x^*) \leq 4M\varphi(1)^{1/2}\sum_{j=1}^{4}\varphi(u_jf_{\alpha}u_j^*)^{1/2},$$

where $\varphi(u_j f_\alpha u_j^*)^{1/2} \downarrow 0$ in B_h for each *j*, therefore also $\varphi(x f_\alpha x^*) \downarrow 0$.

We remark that for the CAP mappings occurring in Lemmas 3 and 4 (hence in Theorems 1 and 2), the conclusion of the Proposition can be seen directly: in the case of Lemma 3, one notes that $y(xf_{\alpha}x^*)y^* = (yx)f_{\alpha}(yx)^*$; in the case of Lemma 4, $(xf_{\alpha}x^*)^{\natural} = (f_{\alpha}x^*xf_{\alpha})^{\natural} \le ||x||^2 f_{\alpha}^{\natural}$.

PROBLEMS. 1. Is every semifinite AW^* -algebra normal?

2. In the notations of Lemma 2, does every *-automorphism of D extend to a *-automorphism of A?

3. If A is an AW^* -algebra containing a faithful projection e such that eAe is a W^* -algebra, does it follow that A is a W^* -algebra? (The answer is yes if A is normal.)

ACKNOWLEDGEMENT. This work was done while I was a Senior Visiting Fellow at the University of Reading. I am deeply indebted to my colleagues J. D. M. Wright and K. Saitô, whose insights and suggestions greatly improved the manuscript.

References

1. S. K. Berberian, Baer *-Rings, Springer-Verlag, New York, 1972.

2. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), 2^e edn., Gauthier-Villars, Paris, 1969.

3. ____, Les C*-algèbres et leurs représentations, 2^e edn., Gauthier-Villars, Paris, 1969.

4. I. Kaplansky, Algebras of type I, Ann. of Math., (2) 56 (1952), 460-472.

5. ____, Modules over operator algebras, Amer. J. Math., 75 (1953), 839-858.

6. M. Nakamura and T. Turumaru, *Expectations in an operator algebra*, Tôhoku Math. J.,
(2) 6 (1954), 182–188.

7. G. K. Pedersen, *Operator algebras with weakly closed abelian subalgebras*, Bull. London Math. Soc., 4 (1972), 171-175.

8. K. Saitô, On the embedding as a double commutator in a type I AW*-algebra, Tôhoku Math. J., (2) 23 (1971), 541–557.

9. ____, On the embedding as a double commutator in a type I AW*-algebra. II, Tôhoku Math. J., (2) **26** (1974), 333–339.

10. ____, On normal AW*-algebras, Tôhoku Math. J., (2) 33 (1981), 567-571.

11. H. Widom, Embedding of AW*-algebras, Ph.D. Thesis, University of Chicago, 1955.

12. ____, Embedding in algebras of type I, Duke Math. J., 23 (1956), 309-324.

13. J. D. M. Wright, On semifinite AW*-algebras, Math. Proc. Cambridge Phil. Soc., 74 (1975), 443-445.

14. ____, On AW*-algebras of finite type, J. London Math. Soc., (2) 12 (1976), 431-439.

15. ____, Normal AW*-algebras, Proc. Royal Soc. Edinburgh, 85A (1980), 137-141.

16. ____, On some problems of Kaplansky in the theory of rings of operators, Math. Z., **172** (1980), 131-141.

Received March 5, 1982 and in revised form April 12, 1982. The author gratefully acknowledges the support of the S.E.R.C. (Grant No. GR/B 60514).

UNIVERSITY OF TEXAS AUSTIN, TX 78712

AND

UNIVERSITY OF READING U. K.