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EXPECTATIONS IN SEMIFINITE ALGEBRAS

S. K. BERBERIAN

Every semifinite von Neumann algebra A possesses an expectation
fc|: A -> W9 where W is a commutative von Neumann subalgebra of A
containing the center of A, and where \ extends the trace of a "large"
finite subalgebra of A. An A W*-algebraic proof yields applications to the
embedding of semifinite A W*-algebras in algebras of type I.

1. Uniform algebras. An algebra of type I may be studied by
decomposing it into homogeneous algebras. In an analogous way, we
propose to study semifinite algebras via their decompositions into uniform
algebras.

DEFINITION [2, p. 242, Exer. 5]. An A JF*-algebra is said to be uniform
if it contains an orthogonal family of equivalent finite projections with
supremum 1. (The definition of homogeneous algebra is obtained by
replacing "finite" by "abelian".)

LEMMA 1. Every semifinite AW*-algebra is the C*-sum of a family of
uniform algebras.

Proof. Since finite algebras are trivially uniform, one can suppose the
given algebra A to be properly infinite. Let {e^^j be a maximal orthogo-
nal family of pairwise equivalent finite projections; since A is infinite, one
can suppose the index set / to be infinite. Then there exist a nonzero
central projection h of A and an orthogonal family of projections ( / . ) i e ί

such that h — sup /. and /. ~ hei for all / E / [1, p. 102, Prop. 2]. This
shows that the algebra hA is uniform, and an exhaustion by Zorn's lemma
completes the proof. D

2. Matrix units. A uniform von Neumann algebra A may be re-
garded as a tensor product A = D ® L(H) with D finite and L(H) the
algebra of all bounded operators on a Hubert space H [2, p. 25, Prop. 5].
There is no analogous theory of tensor product for A W* -algebras, but an
effective substitute is to pursue the discussion of "matrix units" in [4, §5].

Let A be an A W*-algebra, with center Z, containing an orthogonal
family {et)i&1 of pairwise equivalent projections with sup et — 1. As in [4,
§5] construct a family of elements etj E etAej (i9j E /) such that eu — en

**j = *„> eijejk = tik and eιJemk = 0 for j Φ m. In particular, etJe* = e,
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and e*er = ej9 thus ei} is a partial isometry effecting the equivalence
*,.-*/Let

S={eiJ:ijel}, Γ={6,.:/e/}

and let

be the commutant and bicommutant, respectively, of these sets in A; D
and W are A W*-subalgebras of A with D = £>", W = FF" [1, p. 23, Prop.
8]. Since T is a commutative set, W is a commutative algebra; from
W C W we see that W has center W, thus the et are orthogonal central
projections in W with supremum 1, consequently W = θ ^ ί f ' [1, p. 53,
Prop. 2]. If xt G e,.^' for all i G / and supllxjl < oo, we write θ xf for
the unique element x E W such that .̂jt = JC, for all /'. Since T C 5, one
has

thus Z O f c D ' . The center of D is D Π D' = Z [4, Lemma 14].

For each i G /, the mapping d κ-> rfe,. is a *-isomorphism D -> e ^ ^ [4,
Lemma 12], consequently ||<fe,|| = \\dII for all d G D and i G / [3, 1.3.8
and 1.8.1]. Moreover [4, Lemma 13],

the mapping d h^ de^ is an isomorphism of Banach spaces D
since

In particular, for each element a E A there exists a unique family (atJ) of
elements of D determined by the relations

(i) eiaej = aijeij 0 " J e / ) ;

one calls (aiJ) the "matrix" of « relative to the matrix units e/y. One has

(2) Wa^W^WaW ( U E / )

because | |α / 7 || = Ilαl7el7ll = I k ^ l l .

From D C W we see that e,./) C e fW = ̂ •ίF'e, C eiAei = ezD, thus
e ^ ' = e,D; therefore PFr =
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LEMMA 2. With the preceding notations,

(3) D'={aEA: eiaej E Zeuforallij}9

(4) W = 0 e W = 0 e,Z) = 0 e^e,

= {a E A: eiaej — 0 whenever i ¥=j),

(5) JF=0e,Z,

(6) w= D' Π W\

(7) Z = D Π W.

77ze algebra D' is homogeneous, with center Z.

Proof. Let a E A and write e,αey = a^e^ as in (1).

(3) If d E Z) = S" then d commutes with every eij9 therefore

e£ad - da)ej - (a(Jd - daij)eij.

This expression is 0 if and only if aiJd — datj = 0; thus a E D' if and
only if atj E D Π Df = Z for all /,y.

(4) The formulas ^ = θ e , F = ©*?,/>= θ ^ ^ ^ are noted above.
For all i,j, k one has

eί(aek - eka)ej = Sjkaιkeik - 8ikakJekj

which is 0 whenever i = y. One has a G F = f if and only if this
expression is 0 for all /, j, k. If a E W and / φj then ^ i y = 0 (take
k =j); on the other hand if atj = 0 whenever / = ŷ, then the expression is
0 for all ij9 k, so a E fFr. Thus W = {a E A: etaej = 0 for / ̂ =7}.

(5), (6) From (3) we have e,Z = e,./)'*,.; since ^ E fFC/) ' , this
shows that etZ is an ^ ίF*-algebra, and Z C W yields φe,Z C Θ^JF =
W. Obviously ^ C ΰ r n r . I f α G ΰ ' Π ^ r then a = θ^.fl by (4), and
0,0 = e έie,- = eiaii with α/z E Z by (3), thus a E ®etZ. Summarizing, we
have ®etZ CW C D' Π W C Θ^Z, whence equality throughout.

(7) Citing (6), D Π W r = Z > n D / Π r = Z Π r = Z.

Finally, e/7 E S C S" = D' for all /,7; this shows that the projections
et are equivalent in Z>'. By (3), eiD

fei — Ze{ is commutative, so the et are
abelian projections in D'. Thus D' is homogeneous, with center D' Π /)"=
/)' Π D = Z. D
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3. Semifinite algebras. The foregoing results on matrix units yield
a structure theorem for semifinite algebras; we first review some defini-
tions needed for its statement.

Let A be an A fP '-algebra, Ap its projection lattice, Ah the ordered
linear space of hermitian elements of A with the set of elements x*x as
positive cone; A is said to be normal [15] if Ap is monotonely embedded in
Ah, that is, whenever (fa) is an increasingly directed family of projections
with supremum / in Ap9 then / is also the supremum of the family in Ah

(briefly, fa T/ in Ap implies fa T/ in Ah). Every finite A W*-algebra is
normal [15, Th. 4], as is every A W^-algebra that acts faithfully on a
separable Hubert space [16, Cor. 3.4]. (It is not known if there exists a
non-normal A W^-algebra.) Every von Neumann algebra is normal, hence
so is every W*-algebra. A positive linear mapping φ: A -» B between
A W*-algebras is said to be normal if aa T a in Ah implies φ(aa) T φ(a) in
Bh, and completely additive on projections (CAP) if fa T/ in Ap implies
ψ(fa) ΐ ψ(f)ιn Eh- If A is a normal algebra and φ is a normal mapping,
then φ is CAP.

LEMMA 3 [10]. If A is a normal AW*-algebra, then for every element
x E A the positive linear mapping a H> xax* on A is CAP.

Proof. Suppose fa t / in Ap and xfax* < b Ei Ah for all a; we are to
show that xfx* < b. Let ε > 0 and let c = (b + ε)~ 1 / 2 . Then

cxfax*c < c*c =

thus (cxfa)(cxfa)* < 1; this means that WcxfJ < 1, so (cxfa)*(cxfa) < 1,
whence /α(l — x*c2x)fa > 0 for all α. It follows from normality that
/(I - x*c2x)f> 0 [10, Lemma 3], whence fx*c2xf<f< 1, Hcx/H < 1,
cxfx*c < 1, x/x* < c~2 = έ + ε. Thus x/x* - 6 < ε for all ε > 0, there-
fore xfx* - b < 0. D

THEOREM 1. Let A be a semifinite AW*-algebra with center Z. There
exist AW*-subalgebras D and W of A with the following properties'.

(ϊ)D = D" andW= Win A;
(ii) D is finite, its center is Z, and D' is of type I with center Z; D is

*-isomorphic to eAe, with e a faithful finite projection of A;
(iii) W is commutative, W = D' Π W and Z = D Π PF;
(iv) /Λere w α mapping %\ A -* W* that is left and right Wf-linear,

positive, faithful, and leaves fixed the elements of W'; when A is a normal
algebra, the mapping % is CAP.

(v) If Z is a W*-algebra then so are D' and W; if D is a W*-algebra,
then so is W.

(vi) If A is normal and D is a W*-algebra, then A is a W*-algebra.
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Proof. By Lemma 1 we are reduced to the case that A is uniform; we
adopt the notations of Lemma 2, with the et finite projections of A. In
particular, D is *-isomorphic to etAei9 hence is finite; the rest of (i)-(iii) is
clear from Lemma 2.

(v) The formula W - D' Π W means that W coincides with its
commutant in D' (thus is a maximal abelian subalgebra of D'); if Z is a
JF*-algebra (that is, *-isomorphic to a von Neumann algebra) then so is
the type I algebra D' with center Z [4, Th. 2], hence so is W. On the other
hand, if D is a W*-algebra, then so are the isomorphic algebras e(D, hence
so is Wf by formula (4) of Lemma 2; in this case, the center Z of D is also
a W*-algebra, hence so are D' and W.

(iv), (vi) If a E 4̂ then H^ έieJI ^ IIall for all z, so by (4) of Lemma 2
we can define cfi = ®eiaei E JF'. It is clear that α H> a* is a positive
linear mapping A -» W, leaving fixed the elements of W hence having
range W. If a > 0 and a* = 0, then (e | .α 1 / 2 )(e J .α 1 / 2 )* = ^αe,. = 0 for all
i, whence α = 0; thus # is faithful.

If c G if' = Γ and a E A, then c commutes with every ei9 thus
= (e^e^ie^e^ for all /; therefore {caψ = c*α# = cα#, similarly

Finally, suppose A is a normal algebra and/α ϊfinAp. By Lemma 3,
for each i one has eifaei t e/ef. in Ah, hence in (^7^4^ )Λ; therefore @eifaeι t
Θe/e z in (φef.i4β,.)Λ, that is, /α

# t / # in (PΓ0Λ. Thus # is CAP. If, in
addition, D is a W^-algebra, then by (v) so is W\ therefore W has a
separating family of normal positive linear forms; since % is CAP, it
follows that A has a separating family of positive linear forms that are
CAP, therefore^ is a W*-algebra by a theorem of G. K. Pedersen [7]. D

4. Trace and expectations. Our next objective is to show that, in
the notations of Theorem 1, a center-valued trace fc|: D -> Z on the finite
algebra D is extendible to a trace-like mapping %; A -* W(more precisely,
in the terminology of [6], an expectation of A onto W). If, in addition, the
algebra A is normal, then the resulting expectation of A is a normal
mapping. All of these hypotheses are fulfilled when A is a semifinite
W*-algebra. First, we review a result implicit in [12]:

LEMMA 4. Let A be a finite A W*-algebra with center Z, possessing a
trace t|: A -> Z. Then A is monotone complete and the mapping \\ is normal.

Proof. The hypothesis is that t) is a positive Z-linear mapping such
that 1* = 1 and (ab)k = {baf for all α, b in A. It follows that z* = z for
all z ^ Z. Moreover, t| is faithful: if a > 0 and ^ = 0 then a = 0 (because
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every nonzero positive element of A majorizes a positive scalar multiple of
a simple projection [1, §26]).

Let D: Ap -> Z be the dimension function A [1, p. 181, Th. 1]. By the
uniqueness of Z), e* = D(e) for all projections e\ since D is completely
additive, fc| is CAP [1, p. 184, Exer. 4]. It follows that for every x G A, the
Z-linear mapping a ι-» (xax*)* is also CAP (cf. the Appendix), thus fc| is
continuous in the sense of [12, p. 316]. Since fc| is faithful, it follows that
there exists an A W*-algebra B of type I, with center Z, such that A is an
A W*-subalgebra of B [12, Th. 3.1], indeed A = A" in B [12, Th. 4.4]. Since
B is monotone complete [12, Lemma 1.4] and A — A" in B, it follows that
A is monotone complete. (An 4̂ ίΓ*-algebra A is said to be monotone
complete if every increasingly directed family in Ah, majorized by an
element of Ah9 has a supremum in Ah.)

Suppose aa T a in Ah; we are to show that a\ ΐ ^ in Zh. Passing to a
cofinal set of indices, we can suppose that \\aa\\ is bounded. Viewing B as
the algebra of bounded operators on an A W*-module over Z [5, Th. 8], aa

is strongly convergent to a [12, Lemma 1.4], therefore a* = liminf a\ in Zh

[12, Lemma 4.3]; since the family (a\) is increasing, liminf a\ — sup a\,
thus a*a t tf4 in ZΛ. D

In Theorem 2 it will be assumed that the finite algebra D of Theorem
1 has a trace, equivalently, that the isomorphic algebra eAe has a trace;
the next two lemmas free this hypothesis from its reference to a particular
faithful finite projection e.

LEMMA 5. // the finite AW*-algebra A has a trace, then so does every
corner eAe of A and every matrix algebra Mn(A) over A.

Proof. If t|: A -> Z is the trace of A ( Z the center of A) and if r is the
relative inverse of e* in the regular ring of A [1, p. 235], then the trace
eAe -» eZ of eAe is given by the formula x H> erx*. Identifying the center
of Mn(A) with Z, the trace of a matrix is defined to be the average of the
traces of its diagonal elements. D

LEMMA 6. Let A be a semifinite A W*-algebra containing a faithful finite
projection f such that fAf has a trace. Then for every finite projection e of A,
eAe has a trace.

Proof. The first step of the proof is to find a nonzero central
projection h of A such that (he)A(he) = heAe has a trace. We can
suppose e ψ 0; then eAf=£ 0 (because/is faithful), so there exist nonzero
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subprojections ex < e,fx </wi th ex ~ fx. Passing to a subprojection of el9

we can suppose that ex is a simple projection in eAe [1, §26]. The central
cover of ex in eAe has the form he with h a central projection of A [1, p.
37, Prop. 4], thus heAe = M ^ e ^ β j ) for a suitable integer H (the "order"
of ex in eAe). Since/>!/has a trace, so does its corner fλAfx (Lemma 5),
hence so does the isomorphic algebra exAex, hence so does the matrix
algebra heAe (Lemma 5).

Let (ha) be a maximal orthogonal family of nonzero central projec-
tions of A such that every haeAe has a trace. Necessarily sup/*α = 1
(otherwise the preceding argument could be used to contradict maximal-
ity); thus eAe — @haeAe, eZ — ®haeZ ( Z the center of A), and the
traces of the haeAe may be combined to give a trace for eAe. D

THEOREM 2. Let A be a semifinite AW*-algebra with center Z, and
adopt the notations of Theorem 1. Suppose, in addition, that the finite
algebra D has a trace fc|: D -> Z (as is the case when A is a W*-algebra).
Then the trace ofD is extendible to a positive linear mapping \\: A -> Wwith
the following properties:

(i) w* = w for all w E W;
(ii) (wa)* = wa* = a*w = (aw)* for all a E A, w G W;

(iii) α > 0 #72<i ̂  = 0 ϊ/wp/y α = 0;

(iv) (ad)^ = (da)* for all a EL A,d E. D; equiυalently, (uau*)* — a* for
all a E A and all unitary u E D\

(v) if A is a normal algebra, then the mapping tj: A -> Ŵ  ώ normal and
there exists a type I 4̂ W*-algebra B with center Z such that A = A" in B.

Proof. By Lemma 6 and the proof of Theorem 1, we can suppose A to
be uniform; we adopt the notations of Lemma 2, with the et finite
projections, and we write %\ A -* Wf for the mapping defined in the proof
of Theorem 1.

Suppose, more generally, that φ: D -» Z is any positive linear map-
ping. For each / E I let φt: eiAei -> e{Z be the unique (positive, linear)
mapping such that <?,(£,.*/) = e^(d) (recall that dv+e^d is a *-isomor-
phism D -> etAe^)\ then

I*,*/II,

so Hφ ll < Hφll for all i. Define a mapping φ: W -* W as follows. By (4)
of Lemma 2, every x E W has the form x— Θx z with jcy E eιAei and
It -x71| bounded; then | |φ f (x f ) | | is bounded and we can define

by (5) of Lemma 2. (So to speak, φ = Θ φ r )
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Composing the positive linear mappings J: A -> W and φ: W -» JV9

we obtain a positive Unear mapping Φ: A -> W, where Φ(#) = Θ 9,(^0^)
for a E 4 ; thus if e^βj = fl/y e ί 7 as in (1), we have

(8) »(β)=θw(4

Φ extends φ. {Proof: If a E JO then ezαez = αez shows that αj7 = a for
all /, whence Φ(a) — θ e , φ ( α ) = φ(a).}

If φ is faithful then so is Φ. {Proof: If φ is faithful then so is every φ,,
therefore so is φ; since # is also faithful, so is Φ = φ © #.}

If φ is Z-linear, then each of the mappings a h-> φ(α l 7) is Z-linear and
Φ is both left and right W-linear. {Proof: Clearly every <p, is e,. Z-linear,
therefore <p is both left and right Θe/Z-linear, that is, W-linear. If z E Z
then zα has matrix (zatJ), whence the Z-linearity of the mappings a h-»

If φ is normal then so is φ; if, moreover, A is a normal algebra, then
the mappings Φ and a H> φ(au) on A are CAP. {Proof: If <p is normal then
so is every <p/5 hence so is φ — Θφ, . Suppose in addition that A is normal.
If fa if in Ap9 then /α

# T/# in (W)h by (iv) of Theorem 1, therefore
ψ(fa) t φ ( / # ) in HTA, that is, Φ(/ β ) T Φ ( / ) ; thus Φ is CAP. Also, for each
i the mapping a h* eiaei = eiaii is CAP (Lemma 3); by virtue of the
•-isomorphism e^D -» D and the normality of φ, it follows that the
mapping a h* φ(au) is also CAP.}

Assume now that there exists a trace t|: D -> Z and let t| play the role
of φ. By the foregoing remarks, the mapping k|: A -* W defined by the
formula

«* = Θ erf,
is left and right W-linear, positive, faithful, and extends the trace of D\
thus the properties (ii), (iii) are verified, hence so is (i) (because Ϋ* = 1). If
a E A has matrix (au) and if u E D is unitary, then uau* has matrix
(Mfliy.M*), therefore

(uαii y ^ Θ «,(«*„«•)* = Θ tta\ = a\

This is equivalent to the identity (ad)* = (da)* since every d E D is a
linear combination of unitary elements of D [2, p. 4, Prop. 3].

The trace of D is normal (Lemma 4); if, moreover, A is a normal
algebra, the above remarks show that the mappings \\: A -> Wand a ι-» a)t

on yί are CAP; in particular, A has a family of Z-linear mappings A -» Z
that are CAP and separating (for, if α > 0 and a)t = 0 for all /, then



EXPECTATIONS IN SEMIFINITE ALGEBRAS 41

a* — 0, therefore a — 0). It then follows from K. Saito's embedding
theorem [9, Th. 2] that there exists a type I ^4PF*-algebra B with center Z,
such that A — A" in B. By the arguments in the proof of Lemma 4, A is
monotone complete and the above-mentioned Z-linear mappings A -> Z
are normal, therefore so is the mapping ϊ\: A -* W. D

The following corollary is due in essence to H. Widom [11, Th. 6.3]:

COROLLARY 1. If A is a normal, semifinite AW*-algebra containing a
faithful finite projection f such that fAf has a trace, then A may be embedded
as a bicommutant in a type I algebra with the same center.

Proof. With notation as in Theorem 1, it follows from Lemma 6 that
eAe has a trace, hence so does the isomorphic algebra D; thus all of the
hypotheses of Theorem 2 are fulfilled. •

(We remark that the result in [11, Th. 6.3] is stated without assuming
normality, but normality figures in the proof [11, p. 55, line 4] via an
appeal to the property in Lemma 3 above. The countability hypothesis in
[11, Th. 6.3] can be omitted by virtue of Saito's embedding theory [9, Th.

COROLLARY 2. //, under the hypotheses of Corollary 1, the center of A is
a W*-algebra, then A is also a W*-algebra.

Proof. The type I algebra given by Corollary 1 is also W* [4, Th. 2],
hence so is its subalgebra A. D

It is an open question whether every AW*-factor of type II ι has a
trace; if the answer is yes, then Corollary 2 would imply that every normal
A W*-Ϊ2ictoϊ of type 11^ is a W*-algebra.

COROLLARY 3 [13, p. 445, Cor.]. Let A be a normal, semifinite
A W* -algebra whose center Z is a W*-algebra. If A has a faithful positive
linear form then it is a W*-algebra.

Proof. With notations as in Theorem 1, the finite algebra D also has
center Z and has a faithful positive linear form, hence is a WΓ*-algebra [14,
p. 437, Cor. 7]; therefore D has a trace and Corollary 2 applies. D

5. Appendix. The following proposition (stated without proof in
[8]) is implicit in the proof of Saito's embedding theorem [9, Th. 2]; the
brief proof given here was communicated to me by Professor Saitό.
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PROPOSITION [8, 1.1.2]. If A is an AW*-algebra, B is a commutative
A W*-algebra, and φ: A -> B is a positive linear mapping that is CAP, then
for every x E A the mapping a κ-> φ(;cαx*) is also CAP.

Proof, Assuming fa jO in Ap9 it will suffice to show that φ(xfax*)l0 in
Bh. This is clear if x is unitary, for then xfax*l0 in Ap. In general, x is a
linear combination of four unitaries, say x = Σf=1 λ w . Then

'.7

Writing | 61 = (b*b)x/2 for ί G ΰ , the Cauchy-Schwarz inequality [cf. 5, p.
840] yields

writing M = max \λiλj\ , we thus have

φ(xfax*) < 4Mφ(l) 1 / 2 2 <p(ujfauj)l/2,
7 = 1

where <p(ujfau*)l/2 iθ in 5Λ for eachy, therefore also φ(Λ/αx*)l0. D

We remark that for the CAP mappings occurring in Lemmas 3 and 4
(hence in Theorems 1 and 2), the conclusion of the Proposition can be
seen directly: in the case of Lemma 3, one notes that y(xfax*)y* =
(yx)Uyx)*; in the case of Lemma 4, (xfax*)* = (fax*xfa)* < lUII2/^.

PROBLEMS. 1. Is every semifinite A fF*-algebra normal?
2. In the notations of Lemma 2, does every ^-automorphism of D

extend to a *-automorphism of AΊ
3. If A is an Λ fF*-algebra containing a faithful projection e such that
is a W*-algebra, does it follow that A is a ίF*-algebra? (The answer is

yes if A is normal.)
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