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INTEGRAL INVARIANTS OF FUNCTIONS
AND Lp ISOMETRIES ON GROUPS

CLYDE D. HARDIN, JR. AND LOREN D. PITT

For p G (0, oo) and not an even integer it is proved that every
isometric multiplier on an invariant subspace of LP(G) is a translation
operator.

1. Introduction. Let / and g be real-valued measurable functions on
R which satisfy

for arbitrary finite sets of real numbers {«,} and {tj}. In [3], M. Kanter
showed that if p E (0, oo) is not an even integer then for some ε = ± 1
and some t0 E R, g(x) — εf(tQ + x) a.e. When rephrased in the language
of multipliers, Kanter's theorem becomes: let F be the closed linear span
in LP(R) of the translates of/. Suppose/? E (0, oo) is not an even integer
and that R: F -> LP(R) is an isometry which commutes with translations.
Then for some ε = ± 1 and some ί 0 G R

Rf(x) = εf(to + x).

A related theorem was proved by R. S. Strichartz [8] in the case of a
locally compact group. Namely, Strichartz showed that if p E [1, oo) and
p φ 2 then each invertible isometric multiplier on LP{G) is a translation
operator. Since the space F in Kanter's theorem need not equal LP(R) it is
clear that Kanter's theorem does not follow from that of Strichartz. Also
since Strichartz's theorem only requires that p Φ2 and Strichartz's group
is arbitrary it is clear that his results do not follow from those of Kanter.

The main result in this paper is an extension of Kanter's theorem to
an arbitrary locally compact group G. The restriction that/? is not an even
integer is still needed but we will see that the proof also contains new
information for p φ 2.

Concerning the restriction on p, Strichartz's result is known to be
false if p = 2. Katznelson [4] showed that Kanter's theorem fails if p is an
even integer. Precisely what does happen for p = In > 4 is not yet
understood but is related to the work of R. L. Adler and A. G. Konheim
on higher order autocorrelation functions on abelian groups [1]. In §5 we
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give a modest extension of the Adler-Konheim results to nonabelian
groups.

Our results are also complemented by the work [6, 7] of D. M.
Oberlin on non-isometric multipliers on subspaces of LP(G) when G is
compact and abelian. For EGG, he studies multipliers on the space
L§ C LP(G) of functions whose Fourier transforms vanish off E. He
shows that when G is infinite and 1 </?<2or/? = 2w>:4 that there are
sets E for which not every multiplier on L | extends to a multiplier on

2. Statement of results. Let G be a locally compact Hausdorff
group with left invariant Haar measure dm defined on the Borel σ-field %
of G. Δ(JC) will denote the modular function on G which is defined by
Δ(x)m(Bx) = m(B) for each fiGl For 0 < p < oo, LP(G) =
LP(G,%, m) will denote either the real or the complex Lp space with the
norm \\f\\p = JG\f(x)\pdm(x). The left and right translation operators
will be denoted as λgf(x) =f(gx) and ρgf(x) =f(xg). A linear space F
of functions on G is called left-invariant (resp. right-invariant) if λgF = F
(resp. pgF = F) for each g G G. If F is both left-invariant and right-in-
variant, it is bi-invariant. If F Q LP{G) is left-invariant (resp. right-in-
variant) and R: F -> LP(G) is a bounded operator it is called a right
multiplier (resp. left multiplier) provided R commutes with each left (resp.
right) translation operator. If F is bi-invariant and R commutes with both
left and right translations, R is called a central multiplier.

We now state our main results.

THEOREM 1. Supposep G (0, oo) is not an even integer.
(a) // F c LP(G) is left-invariant and R: F -> LP(G) is an isometric

right multiplier then R has the form

for some c with \ c \ = 1 and some h G G.
(b) If F C LP(G) is right-invariant and R is an isometric left multiplier

then R has the form

Rf=cλhf

for some c with I c I = 1 and some h G G.
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THEOREM 2. Ifp E (0, oo) is not an even integer, then R: F -> LP(G) is

an isometric central multiplier iffR has the form

for some c with \c\— \ and some k E G satisfying

(2.1) f(gkx) = f(kgx) a.e.

for each f E F and each g E G.

THEOREM 3. {See Kanter [3].) Supposep E (0, oo) is not an even integer

and that f\9f2 £ LP{G) are real {resp. complex) valued. If the identity

(2.2)

holds for all finite sets {tλ,...,tn} C G and {α,,.. . ,α Λ } C R (resp. C)

there is a c with \ c \ — 1 and an h E G with

f2(x) — c[Δ(/z""1)] phf\(x) a.e. [m].

In case/? — 2k these results fail but something remains. The computa-

tion of the norms ||Σ a.j\t f \\ \k

k is equivalent to computing the functions

k k

(2.3) rk9k(f){tl9...9tk9 s l 9 . . . 9 s k ) =JG Π fax) Π f(sjX)dx.

(Here / denotes complex conjugation.)

It follows from the examples of Katznelson [4] that rk k(f) does not

in general determine /. On the other hand, Adler and Konheim [1] have

shown that if / E L\G) is real-valued and G is abelian then the sequence

of so-called kth order autocorrelation functions

determine / up to a translation. Our modest result here is

THEOREM 4. Le/ /„ /2 E LP(G), 1 < p < oo. ΓΛe/? /or A: >jr?/2

integrals defining the functions

converge a.e. Moreover, for each integer N > p/2, //

(2.4) rjNJN{fx) - r y w > y J V(/ 2) a.e. for all j = 1,2,...
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then for some c with \ c | = 1 and some / I E G ,

f2(x) = cphfx{x) a.e.

3. Proofs of Theorems 2 and 3. Theorems 2 and 3 are elementary

corollaries of Theorem 1.

Proof of Theorem 2. By part (b) of Theorem 1 we know that R has the

form cλk for some c with | c | = 1 and some k EL G. Each such operator is

a left multiplier. The condition that λ^ commutes with each λ g on F is

condition (2.1).

Incidentally, the set of elements k G G satisfying (2.1) is a closed

normal subgroup of G. Thus if G is simple there are no bi-invariant

subspaces F Q LP(G) with dim F> 2 which admit non-trivial isometric

central multipliers.

Proof of Theorem 3. Let F be the linear span of the translates {λtfλ'.

ί G G) of/,. Define the operator R: F -> LP{G) by

From (2.2) we see R is an isometry. From the definition of R, R is a right

multiplier and hence by Theorem 1, R — c[Δ(h~])]ι/pph and hence

The same proof and Theorem 2 immediately give a two-sided version

of Theorem 3 which we state as a

COROLLARY 2.1. Suppose p E (0, oo) is not an even integer and that /1?

f2 E Lp(G) satisfy

)f dm(x) - f^ajφjxs^ dm(x) < oo

for all ( α , , . . . , « „ } a m / {tl9sl9...9tn9 sn} C G . Then for some c with \ c \ = 1

a/7 d S6>me A: satisfying

fι(gkx) = fx(kgx) fora.a.g.x

we have

f2(χ) = cfλ(kx).

4. Proof of Theorem 1. The proof will be given first in the σ-finite

case. At the end this condition will be removed. The proof breaks into

several steps which we outline here.
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(a) The general results of Hardin [2] are applied to extend R to an

isometric right multiplier Λ on a (possibly) larger subspace F D F of

LP{G), which is explicitly described.

(b) Group theoretic arguments are then given to establish the ex-

istence of a compact subgroup K Q G and of a fuctiony(x) with \j(x) \ = 1

a.e. which satisfy

(4.1) F=j(x) LP(G/K)QL'(G).

(c) Arguments analogous to those of Strichartz in [8] are applied to

characterize isometric multipliers on spaces F of the form (4.1). The

results are then lifted to LP(G).

Part (a) Preliminary results [2].

Let (X9 ®, m) denote a σ-finite measure space and suppose/? E (0, oo)

is not an even integer. If ^ C ® is a sub-σ-field we write 9L($ r) =

9ΐt( X9

 ($9 m) for the algebra of all (equivalence classes of) ^-measurable

functions. If F is a space of functions on X we write 9It(SΓ) F for the

minimal vector space containing F and closed under multiplication by

functions in yi(φ). 9H(f) .Fis an 91t($>module.

If Φ: 9lt($Γ

1) <-> 911 ($2) is an algebra isomorphism there is a unique

non-singular σ-field isomorphism φ: ^ -» ($2 with Φ\E(x) — lφ(E)(x).

Here 1^ denotes the indicator function of the set E. The restriction of Φ is

an isometry of L°°( X9^xm) onto L°°( X, %9m).

We denote by l(y) a measure preserving automorphism of (X, <$9 m)

and let Lf(x) = f(l(x)) be the associated function transformation.

Let i7! be a closed subspace of LP(X,%, m) and let R: Fλ ->

Lp(X,%,m) be a linear isometry. The range F2 — RFX of R is a closed

subspace of LP(X, ©, m). We say that L commutes with R if JLFJ = ^

and Li? — RL. Note that if L and i? commute then LF2 — F2.

A function/ E i<) is said to have full support in Ft Ίί m{x: ft(x) = 0

and g(x) Φ 0} = 0 for each g E Fr The "ratio" σ-field generated by

ratios gi(x)/fi(x) of functions with full support in Ft is written as ^

The following proposition summarizes in a convenient form the

results from [2] which we require.

PROPOSITION 4.1. {Hardin [2].) Let R. Fx-^ F2be an isometry.

(i) Functions with full support are dense in Fi and if f(x) E Fλ has full

support in Fx then g(x) — Rf(x) has full support in F2.

(ii) // m{x: f(x) — 0} = 0 for each function of full support then there

exists an algebra isomorphism
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such that the operator defined by

(4.2) R(m f)(x) =Φm(x)-Rf(x)

is an Lp isometry of

Fx = [

onto

F2 =[G)\i{%)'F2] Π Lp(X9 $ , m).

(iii) Moreover, if Lf(x) = f(l(x)) and the operator L commutes with R

then

or equivalently,

L{WL{9()) =<>%,{%),

and L commutes with both R and Φ.

Note. It follows from (4.2) that for m G <ΰl(9ι) and / e <Ul(9ι) Fι

we have

(4.3)

Part (b) Identification o/

Applying the results above to the case of a group G for which m is

σ-finite, a closed left-invariant space F φ {0} of LP{G, ®, m) and L — \ g

we observe that/ E F h a s full support iff f(x) Φ 0 a.e. The ratio σ-field of

the Borel field and is left-invariant in that

(4.4) E G f and g G G implies g£ G <3\

The next proposition characterizes sub-σ-fields of % which satisfy

(4.4). If K c G is a closed subgroup of G we will write G/K for the coset

space with elements [g] — gK. G/K inherits a topology, a Borel field %κ

and, if K is compact, an invariant measure dmκ. The Borel sets of G/K

can be identified with those Borel sets A of G for which 4̂ K — A and for

such A, m(A) = mκ(A). The Borel (resp. continuous) functions on G/AΓ

can be identified with the Borel (resp. continuous) functions on G which

are constant on cosets.

PROPOSITION 4.2. For each *% C % satisfying (4.4) there is a unique

closed subgroup K C G with
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The proof of Proposition 4.2 rests on two lemmas. If K C G is a
closed subgroup we write C(G/K) for the algebra of continuous functions
on G/K and C0(G/K) for those vanishing at infinity if G/K is not
compact.

LEMMA 4.3. Let {0} Φ&Q C(G) be an algebra satisfying λβ = &for
each g, and closed under complex conjugation in the complex case. The set

K= {kG G: pkf = f for each f<E&)

is a closed subgroup of G. & can be identified with a subalgebra of C(G/K),
and in the topology of uniform convergence on compact sets & is dense in
C(G/K).

If&Q C0(G), K is compact and & is uniformly dense in C0(G/K).
An analogous statement holds if & is right-invariant, and if & is

bi-invariant, then K is normal.

Proof. F o r / E &, Kf^ {k G G: ρkf — /} is a closed subgroup and
thus K — Π{Kf: f G &} is a closed subgroup. Each / E & is constant on
the cosets of K and thus we can identify & C C(G/K).

I f / E & Π C0(G) and f(x0) = c^O then x0K C B = {x: | / ( J C ) | >

I c I). Since B is compact, K C x$ιB is compact.
The density of & in C(G/K) (or in C0(G/K) if & C C0(G)) follows

from the Stone-Weierstrass theorem.

If & is bi-invariant then for / E 6B, g £ G and k E K, pgkg-\f —

Pg(Pk(Pg-]f)) ~ PgPg-'f-f which shows iΠs normal.

LEMMA 4.4. Lei ^ C ® Λ#«#> (4.4) ύwd /*?/ $ be the subalgebra of
) consisting of all continuous ^-measurable functions. Let 0 < g(x) E

L\G, ©, m) tfftd feί dμ be the restriction of the finite measure g(x)dm(x) to
the o-field ^. Then in the topology of convergence in μ-measure, & is dense in

Proof. Let / E L°°(G, 9% μ) and let h(x) be a continuous function
with compact support in G. We claim h * f(x) = / h(t)f(t~ιx) dm(t) is
in L°°(G? $% μ). To see this note that the map / -* λtf(x) is continuous as
a function from G into LX(G^, μ). Riemann sums can thus be found
which approximate h * f(x) in L\G, φ, μ). Thus h * /(*) E 911(5"). But
h * / is bounded and continuous so Λ * / E ^. Letting A vary over an
approximate identity we can find a sequence hn so that /*„ * / - > / in
^-measure as « -» oc. Thus / is in the closure of 6£. Since L°°(G, ξF, μ) is
dense in ^ ( ί F ) the result follows.
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Combining the two lemmas with the observation that for any finite
Borel measure β on G/K the continuous functions C(G/K) are dense (in
the topology of convergence in μ-measure) among the Borel functions on
G/K, Proposition 4.2 follows.

The next lemma uses the fact that F QLp{G,%,m) with 0 <p < oc
to deduce that the group K is compact.

LEMMA 4.5. Let {0} φ F C LP(G, φ, m) be closed and left invariant
and let ̂ be the ratio o-field. Then the group K in Proposition 4.2 is compact
and for each f E F, \f(x) | E 91t(f).

Proof. Let fEF have full support and set rt(x) = \f(tx)/f(x)\p.
Then rt(x) is jointly measurable and for t fixed rt E

 (51l(SΓ). Thus for
k G K rt(x) = rt(xk) for a.a. x. Now

\f{x)\"jrt{x)dm{t)=j\f{tx)\"dm{t).

But

/|/(ίx) p c/m(0 = Δ(x)/|/(0 r Jm(0 = cΔ(x),

with c = / | / ( 0 p" Λn(0 Setting r(x) = (/ r,(x) dm(t)Γι gives

(4.5) |/(x) |̂  = cΔ(x)f(x), for a.a. x.

But r(x) = f(xA:) for a.a. x if k E ΛΓ so

(4.6) \f(xk) f = cΔ(x^)f(xA:) = cΔ(x)Δ(*)f(x)

= | /(x)^(fc) for a.a. x.

A" is now seen to be compact because if this were not the case (4.6)
would contradict the integrability of |/(x) \p. From Δ(&/) = Δ(A;)Δ(/) and
the compactness of K it now follows that Δ(&) = 1 on K and hence

\f(xk)f=\f(x)\p for a.a. x if k E K.

By Proposition 4.2, |/(x) |G 9IL(ίF) whenever / has full support in F.
Since such/are dense in F we see that \f | E 9IL(f) for all/ E F.

The space ^Jt(f) F can now be completely described. Let/ E JF have
full support. Define j{x) = /(x)/ |/(x) | . Then <3H(f) F agrees with the
space of functions of the formy(x) r(x) with r{x) E 9H(f). Since
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we see that

(4.7) F = [9IL(f )-F] Π L'(G, ®, m) ̂ j(x) LP(G/K, %K, mκ).

One further note is that for each t G GJ(tx)/j{x) G 911 (^) and thus

j(txk)/j(xk)=j(tx)/j(x) for a.a. x if λ; G #. Thus j(txk)/j(tx) =

j(xk)/j(x) for a.a. Λ: which shows that the function x -* j(xk)/j(x) is

essentially equal to some constant w(&). A little algebra shows that

I w(k) | = 1 and w(kxk2) — w{kx)w{k2). Thus w(k) is a measurable char-

acter of K. Further the equation j(xk) — j(x)w(k) shows that

(4.8) F = { / G ^ ( G , ®, m): for*; G A\/(JC) = f{xk)w{k) for a.a. *}.

Thus each space F is indexed by a compact group K QG and a character

woϊK.

Part (c) Identification of isometric multipliers onj LP(G/K).

Parts (a) and (b) show that when p is not an even integer each

isometric left multiplier R: F{ -* F2 in LP(G) extends to an isometric left

multiplier

v onto

R:j\-LP(G/Kι)-*j2 L"(G/K2),

of the special form

(4.9) R(jrr)(x) = q(XyΦr(x).

Here j) — fj \ f \ where ft G Ft has full support, Φ is an algebra isomor-

phism of m,{G/Kx) onto ^L(G/K2\ and q = Rfλ Φ( l/ | / , |) (q = Λ/i if

m is finite).

Now we can drop the assumptions on p since for p φ 2 the Banach-

Lamperti result [5] on Lp isometries implies that each isometry from

j\ LP{G/KX) ontoj2 LP(G/K2) has this form and both the function q{x)

and the isomorphism Φ are unique.

Our result here is

PROPOSITION 4.6. Suppose p ^ 2 is fixed and that Kx and K2 are

compact subgroups of G and j\(x) and j2(x) are two measurable functions

with \j\(x) | = \j2(x) \— 1 a.e. for which the spaces Fλ — j\ LP{G/Kλ) and

F2 — j2 - LP(G/K2) are left-invariant. Then each isometric multiplier

R.

has the form
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where | c \ = 1 and h E G satisfies

(4.10) h~]K2h = Kx.

REMARK. Before starting the proof we note that Proposition 4.6 will
complete the proof of Theorem 1, part (a). The proof of part (b) is
completely analogous with the only difference being that the term Δ(h~ι)
is missing because dm is left-invariant.

Proof of Proposition 4.6. First we need the observation that Φ must
commute with each λg. This follows from (4.9), for if m E L°°(G/KX) and
/ E Lp(G/Kx) has full support, then (4.9) gives

R(j\mf) = qΦ(mf) = qΦ(f)Φ(m) = R(jJ)Φ(m)

and so

λgΦ(m) - XgR(jxmf)/λgR(jxf) = Rλg(jxmf)/Rλg(jxf) = Φλg(m).

Thus the isomorphisms λgΦ and Φλg are equal.
The next lemma is basic.

LEMMA 4.7. The map Φ when restricted to CO(G/KX) is an algebra
isomorphism of CO(G/KX) onto C0(G/K2).

Proof. Let φ: %κ «-> %κ be the σ-field isomorphism corresponding to
Φ and let mi denote the G-invariant measure on G/Kr For A E %κ with
finite measure we set B — φ~\A) and note

\q(x)\PlA(x) dm2(x) = f |iI(x)l5(x)Γ dmx{x)
2

 JG/K,G/K2

= mλ{B) = mx{g-χB)

JG/K2

This shows that j G / κ \q(x)\p\A(x) dm2(x) is an invariant measure on
G/K2 and by the uniqueness of Haar measure the function | q(x) \ is
constant.

Thus Φ defines an invertible bounded transformation of L\G/KX)
onto L\G/K2). Since λgΦ = Φλg we have

(4.11) Φ(/*A) = / * Φ ( Λ ) ,
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for each/ G L\G) and h G L\G/KX). If, in addition/, h G C0(G), (4.11)
shows that Φ ( / * h) is uniformly continuous. Since it is also in I) it must
be in C0(G/K2). Now let {/α} be an approximate identity. Then/α * h -> h
uniformly. Since Φ is an L00 isometry Φ(/α * h) -» Φ(/z) uniformly and
Φ(A) G Q ( G / # 2 ) . Since CO(G/KX) Π L\G/KX) is dense in C0(G/K{)
we see that

Φ:

Similarly, Φ" 1 : C0(G/K2) -> CoίG/^!) and the result follows.
Each algebra isomorphism of CQ(G/K{) onto C 0(G/^ 2) has the form

Φf(x)—f(4/(χ)) where ψ: G/K2-> G/Kλ is a homeomorphism onto
. From λgΦ = Φλg, it follows that

gφ(x) = ψ(gx).

Let /:2 G K2 and consider the coset K2. Then

() for some h <ΞG.

But

Λ2AAΊ = k2ψ(K2)

and

(4.12) A'^A Cί,.

Now let k! G^.Then

ψ{h~ιK2) = #, = A:,

Since ψ is one-to-one,

and

(4.13) Aϋ^/r1 C ί 2 .

Together (4.12) and (4.13) give the desired

h-]K2h = Kx.

Hence

and Φ is the restriction of ph to ®lt(G/K2) C
It follows that
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is an isometric multiplier of Fx — jx LP(G/KX) ontoy'ί LP(G/KX) where

But Sjx(x)f(x) =j{(x)f(x)J<Ξ Lp{G/Kλ). Sincej\ andj[ are both Borel
measurable on G/Kx and \j\(x) | = 1 it follows from the fact that S is an
isometry that \j[(x) | = 1. S commutes with λ g so j[(x)/jx(x) is equal to
a.e. to a constant c with | c \ — 1 and

The proof is complete.

Part (d) The non σ-finite case.
We observe that if E = {/l9. ..,/„} C F is a finite subset of i 7 which

contains a non-zero element then the set AE consisting of all pairs (c, g)
with I c I = 1 and g G G for which

(4.14) */.(*) = c t Δ ί g ) ] - 1 ^ . ^ ) , /. G £,

is compact. As in the proof that K is compact in Lemma 4.5, this follows
from the integrability of \ft{x) \p.

Now for E fixed there is a σ-finite closed subgroup Go C G such that
the function Σ | / (x) | + | i?/(x)| vanishes a.e. on G — Go. Letting Fo be
the closed linear span in LP(GQ, ©0, m0) of the functions λ g / with/ G £
and g G Go we see that the restriction of R to i^ defines an isometric
multiplier on Fo to LP(GO, ©0, m0). Applying the result for σ-finite groups
gives the existence of a pair (c, g) satisfying (4.14) Thus AE is non-empty.
Since Λ^ is also compact A — Π {̂ 4£: £ C i7} is non-empty. If (c, g) G 4̂
we have

and the proof of Theorem 1 is complete.

5. Proof of Theorem 4 The machinery used in proving Theorem 1
applies here also.

We first show that rkk(f) is defined a.e. for 2k >p. Let φz and ψy be
continuous functions with compact support. Then for/G Lp with 1 <p
< oo the functions φi * f(x) — f φi(t)f(t~λx) dm(t) and ψ̂  * f(x) are in
U if p < r < oo and C0(G).
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If the φj's and ψy's are non-negative and if 2k >p we have by
Holder's inequality that

Thus the integrals defining the functions rkk(f) converge absolutely a.e.
Now let / E Lp and N>p/2 be fixed and bring in the space

9H(N, /) spanned by all functions of the form

nN _

(5.1) ΠΦy*/(*H */W> π = l , 2 , . . . .

For / s 0, 9It(7V, /) is a left-invariant non-trivial subalgebra of C0(G). By
Lemma 4.3, 91t(iV, /) is uniformly dense in C0(G/K) for some compact
subgroup K.

Suppose that (2.4) holds and consider the map Φ: 9lt(iV,/j)-*
9IL(iV, /2) which is given on the generators (5.1) by

nN _ nN _

* Π Φj * fi(χ)$j * fa) = Π Φy • ΛW Ψ * Λ(^)»
1 1

and then extended by linearity.
Observe that Φ is well-defined since by (2.4) it is an ZΛisometry.

Moreover, Φ is an algebra isomorphism of 91L(iV, /,) onto 9H(JV, f2)
commuting with left translations. As such it is continuous in the sup norm
and extends to an isometric isomorphism of CO(G/KX) onto CQ(G/K2)
which commutes with left translations. As in the proof of Proposition 4.6
this implies Φ is the restriction of ρh to CO(G/KX) for some h with

h~ιKoh = K}.

In particular
N

>y*/2(*) ψ, */2(*) ΠΦ/ /rΨ/*7
1

N

( * )

< fλ(xh) ψj * fλ(xh).
1

Choosing φy. — ̂ k — Φ gives

i /• ι2

l/ΦίOΛί'"1**)^')! \
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for all x and φ. Thus

(5.2) fφ(t)f2(t)dm(ή = jφ{t)fx{th)dm{t)

holds for any φ in Lq, (l/p + l/q— 1). The annihilators in Lq of the two

functions f2 and ph fx thus agree and hence f2 — cρh fλ for some c. That

I c I = 1 follows from the fact that (5.2) implies || f2 \\p = || pΛ/j ||^.
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