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ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS II

JOHN BRILLHART, PAUL ERDOS AND PATRICK MORTON

Let {a(n)} be the Rudin-Shapiro sequence, and let s(n) =
Σ£=o a(k) and t(n) = I"k=0(-\)ka(k). In this paper we show that the
sequences {s{n)/ Jn) and {t{n)/ Jn) do not have cumulative distribu-
tion functions, but do have logarithmic distribution functions (given by a
specific Lebesgue integral) at each point of the respective intervals [γ/3/5,
yfβ] and [0, V^] The functions a(x) and s(x) sore also defined for real
x > 0, and the function [s(x) — a(x)]/ }/x is shown to have a Fourier
expansion whose coefficients are related to the poles of the Dirichlet
series Σ~=, a(n)/n\ where Re τ > {.

1. Introduction. In this paper we are concerned with the Rudin-

Shapiro sums

(1.1) s(x)= Σa(k),
k = 0

(1.2) t(x)= 2 (~l)ka(k),
k = 0

where the numbers a(k) are defined recursively by

(1.3) a(2k) = a(k)9 a(2k + 1) = (-l)ka(k), k>0,a(0) = l.

An explicit formula for a(k) is given by

(1.4) β ( * ) = (-!)«<*>,

where e(k) = Σ*Zo e, ε/ + 1 and k = 2s

i=0 z{Σ\ ε,. = 0 or 1. (See [1], Satz 1.)

The properties of these sums have been developed in [1], where it is

shown that

0.5)

(1.6) 0 < / 3 ,

for n > 1, and that the sequences {s(n)/ fit] and {t{n)/ Jn) are dense in

the intervals [{f/5 ,y/6] and [0,

39
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Here we study the quotients s(n)/ fit and t(n)/yfn further by
introducing the limit functions

λ(x) — hm ,
k -oo ^kχ

ί \ vμ(x) = hm
J4k

which are defined for x > 0. We show that λ(x) and μ(x) are continuous
functions of x9 but are non-differentiable almost everywhere. Since λ and
μ satisfy the functional equations

(1.7) λ(4x)=λ(jc), μ(4x) = μ(x),

the curves {(x9 λ(x)); 1 < x < 4} and {(x9 μ(x)); 1 < x < 4} represent
the limiting behavior of the quotients s(n)/ Jn and t(n)/y/n on the
intervals [4*, 4/c+1 — 1], as fc -> oo. (See Figure 1 in §4.)

Equation (1.7) implies also that λ( c) has a Fourier series expansion of
the form

(1.8) λ(jc)= 1 v-«iog*/iog2?

where cn E C. This series is (C, 1) summable to λ(x) for all x > 0, and is
convergent in the usual sense for almost all x > 0. In fact, we are able to
give an explicit set on which (1.8) is convergent, the set of x > 0 which are
simply normal to the base 4. (See §4, 5, and [6].) This allows us to say, for
example, that (1.8) converges when x = m + ^ , where m is a non-nega-
tive integer.

Formula (1.8) then leads to an explicit formula for s(x) of the form
00

(1.9) s(x) = Jx 2 cHx""/u*2 + a(x), x>0,
Π — -CC

where a(x) is an extension of the function a(n), defined for real argu-
ments x > 0. The function a(x) is bounded, and has an explicit represen-
tation in terms of the digits of x to the base 4. Formula (1.9) accounts for
the roughly "periodic" behavior of the sequence {s{n)/ y/n}.

We show further that the Fourier coefficients cn are related to the
poles of the function τj(τ) defined by the Dirichlet series

n= 1
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This function has a meromorphic continuation to the whole complex

plane, and its only poles in the half-plane Re r > 0 occur among the

points yn — 1/2 + τrm/log2, « 6 Z . We prove that yncn is equal to the

residue of τj(τ) at τ — yn, and use this fact to show that infinitely many of

the points yn are poles of η(τ). This is seen to be a consequence of the fact

that λ(x) is not everywhere differentiable.

Finally, we use λ(x) to prove the non-existence of the cumulative (or

natural) distribution function of the sequence {s(n)/ }fn} on the interval

(/3/5,\/6^). By this we mean the limit l i m ^ ^ x ' ^ ^ α ) , where a E

(\/3/5,}/6),and D(x, α) is the number of timess(n) < αyfn for 1 < n < x.

In the positive direction, we prove that the logarithmic distribution

function for {s(n)/ yjn), defined to be

1 v. i = L ( α )
r

does exist for all α G [/3/5 , ̂ 6"]. We show that

v } Iog4 JEα x

where the integral is a Lebesgue integral and Eα is the set Eα — {x:

1 < x < 4 and λ(x) < α}. In other words, L(α) is simply the (multiplica-

tive) Haar measure of the set Eα. There are similar results for {t(n)/ ]fn).

We would like to thank Igor Mikolic-Torreira for carrying out the

computations in Table 1 (§6), and Richard Blecksmith for providing us

with the graphs in Figure 1 (§4). We are also grateful to A. J. E. M.

Janssen for his remarks concering several of our proofs.

2. The functions λ(x) and μ(x). We first prove the existence of the

limit

(2.1) λ(x)= lim

where s(x) is defined in (1.1). We will require the following formulas from

[1] (see Satz 3), all of which hold for integers n > 0:

(2 2) \ S ^ n )

\s(4n + l) = 2s(n), s(4n + 3) = 2s(n).
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We set p{d) — χ(l — d), where χ is the nontrivial character (mod 4), so

that

(2.3) p(d) = j - 1 , if d = 2 (mod 4),

0, if d is odd.

Then, using (1.3), the relations in (2.2) can be written as the single formula

(2.4) s(4n + d) = 2s(n) - p(d)a(4n + d), n > 0, 0 < d < 3.

We will also need the 4-adic expansion of a non-negative real number

JC, namely

00

(2.5) x = 2 d,Λ-r

9

where the dr are integers, 0 < dr < 3 for r > 1, and infinitely many dr are

not equal to 3. We set

(2.6) bk=[4"x]= Σdr4
k~r

and note that

(2.7) bk = 4bk^+dk9 for fc>l .

THEOREM 1. The limit in (2.1) exists for all x > 0, and is given by the

formula

(2.8) \(χ) = &X - -L 1 p(Jr)α(^)2-r.

Proo/. We have from (2.6), (2.7), and (2.4) that

s(4"x) = s([4kx]) = s(bk) = s(4bk^ + dk)

= 2s(bk.ι)-p(dk)a(bk)

for k >: 1. Continuing this reduction gives

k

(2.9) s(4kx) = 2ks(x) - Σ p(dr)a(br)2k-\ for A: > 1.

Hence

V4^JC yx yx r=ι
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Equation (2.8) now follows by letting k -> oo, since the series on the right

side of (2.8) converges absolutely.

COROLLARY. Ifn is a positive integer, then

(2.10) λ(n)=^Ά.

Proof. In the notation of (2.5) and (2.6) we have that x — d0 = n,

dr — Qίoτr>\, and bk = 4kn. Thus the infinite sum in (2.8) becomes

(2.11)

and so

r=\ r= 1

\jn
D

Equation (2.11) suggests the following extension of the function a(n).

DEFINITION. For x > 0, set x = Σ^0dr4'r as in (2.5), and define

00

(2.12) a(x) = 2 P(dr)a(br)2-r

9

where br — [4rx] and p(d) is given by (2.3).

Using (2.12), we may now write (2.8) in the form

(2.13) λ(x) = {s(x) - a(x)}χ-]/\ x>0.

We also note the functional equation

(2.14) X(4JC) = λ( c), x > 0 ,

which is an immediate consequence of (2.1).

LEMMA 1. For k > 0 and x > 0 we have the estimate

(2.15) λ(x)-
s(4kx)

4kx

Proof. It is clear from (2.12) that | a{x) | < l.Thus, (2.13) implies

\(x)-
s(x)

<x -1/2
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The lemma now follows on replacing JC by 4kx and using (2.14).

LEMMA 2. (a) If x > 0, then λ(x) E [/3A/6].
(b) The set {λ(x): x > 0} is dense in []ff/5 9 \/6 ].

Proof. For each xx > 1, equation (1.5) implies the inequalities

/NTT

and

Now take xλ = 4kx, where k is chosen large enough so that xx > 1. Then
the above estimates give

and letting k -> oo proves (a).
We also note from (2.10) that λ(n) = s{n)/yfn + o(\). Thus (b)

follows from the fact that the set {s(ή)/ y/n: n > 1} is dense in [/3/5 , \/6 ].

EXAMPLE. Let x = (3« + 2)/3, where π is an integer >: 0. Then we
have the expansion

2 °° 2
x = n + - = n+ 2 T7>

so J o = π, dr = 2 and 6Λ = 4*Λ 4- 2^=o 2 4 r in the notation of (2.5) and
(2.6). Using (1.4) it is easy to see that a(bk) = (~l)"a(n) for all k > 1.
Thus (2.12) and (2.3) imply that

A*— 1

so from (2.13),
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In particular,

(2.16) x ( § ) = 2 / § = / 6 and λ(f) = (2 - l)/f = / f .

We now investigate the limit

(2.17) μ(x)= lim ί ^ l , * > 0,

where t(x) is defined in (1.2). For this we recall the elementary formula

(2.18) t(n)=s(2n+l)-s(n), n > 0,

from [1] (Satz 2).

THEOREM 2. ΓΛe limit in (2.17) exists for all x > 0. We have

(2.19) μ(x) =/2λ(2x) - λ(x),

(2.20) μ(4x)=μ(x).

Proof. From (2.18) it follows easily that

(2.21) \t(χ) - s(2x) + s(x)\ < 1 for x > 0.

Hence for any x > 0,

, v t. /(4ΛJC) v j(2 4kx) - s(4kx) + 0(1)
μ(x) = lim - y = r - = lim — — — Λ - — 1-z-

= /2λ(2x) -λ(jc).

Equation (2.20) follows immediately from (2.17).

COROLLARY 1. For x>0,

Proof. Equations (2.19) and (2.14) imply that

μ(2x) = /2λ(x) - λ ( 2 x ) .

Multiplying through by ]/2 and adding to (2.19) yields the result.

COROLLARY l.Ifn is a positive integer, μ(n) — t(n — X)/ Jn .

Proof. Immediate from (2.19), (2.10), and (2.18).
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By virtue of (2.19), the function μ(x) inherits its properties from λ(x).
In particular, we have

(2.22)

LEMMA 3. For k > 0 and x > 0,

t{4kx)
μ(x) -

4kx

Proof. We see from (2.19), (2.21) and Lemma 1 (with k = 0) that

t{x) ,

λ { x ) _

<3x~ι/2.

The assertion (2.22) is therefore a consequence of this estimate and (2.20).

Just as in Lemma 2, one may use (2.17), (1.6), and Corollary 2 of
Theorem 2 to prove

LEMMA 4. (a) If x > 0, then μ(x) E [0, /3"].
(b) 77ze .wtf {/I(A ) : Λ: > 0} is dense in [0,

EXAMPLE. If x = (3/? + l)/3, then the expansion

J r=\ *

implies by (2.3) and (2.12) that a(x) = 0. Hence

It follows from this and equations (2.19), (2.16) that

The examples of this section suggest that y/xλ(x) is a rational number
whenever x is. This is indeed true, as we shall now show.

THEOREM 3. / / x > 0 andx G Q, then Jx\{x) G Q.
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Proof. By (2.13) it suffices to show that a(x) E Q if x E Q, since
s(x) E Z. If x is rational, the 4-adic expansion of x must be ultimately
periodic:

00
x ~ Σ ^r4~r where rfΛ+/, = dk,k> k0,

r=0

for some period length /? and some k0 >: 1. To prove that α(x) E Q it is
enough to prove that

(2.23) P{dk+2p)a(bk+2p) = p ( ^ ) « ( ^ ) , * > * 0 ,

by formula (2.12). Clearly p(dk+2p) — p(dk), k > k0, and so we consider
the term a{bk+2p).

From (2.6) we have

(2.24) bk+p = Apbk + 2 dk+r4"'r = 4"bk + b'k.

We first compute a(bk+p) using (1.4), in which e(n) is the number of pairs
of consecutive ones in the binary representation of n. Now the binary
representation of bk+p is pieced together from the binary representations
of bk and bk, by (2.24). Moreover, a 1 occurs simultaneously in the last
binary digit of bk and the first binary digit of bk if and only if 2 \ dk and
dk+1 = 2 or 3. Thus we have

a(bk+p) = a(bk)a(b^k)(-

= a(bk)εk, for k>k0,

where εk = ± 1 . Since fe^+/7 = 6^, εΛ+/, = ε̂  for k >: A:o; we deduce that

and this proves (2.23). D

COROLLARY. Ifx>0 and J C G Q , then Jxμ(x) E Q.

Proof. This is clear from (2.19).

As a further example of Theorem 3 we note that

65297 17-23-167

65408 27 7 73 '

where the value
1 \ 111 3-37

a\ 73 / 65408 27 7 73
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is readily obtained from 4-adic expansion

1
— = .000320013.

We remark that the converse of Theorem 3 is certainly false, since

there are irrational numbers x — Σ%0dr4~r for which dr is always odd; for

these x we have a(x) = 0 from (2.3), so yβcλ(x) = s(x) E Z.

3. The continuity of λ(x) and μ(x). In this section we show that

λ(x) and μ(x) are actually continuous functions of x, for x > 0. Equation

(2.19) shows that it is enough to prove this for λ(.x).

We first consider the function a(x).

THEOREM 4. Let x0 > 0. Then a(x) is continuous at x0 if and only if x0

is not a natural number. Ifx0 is a natural number, then

(3.1) lim a(x) = 0 and lima(x) = a(x0) = ±1.

Proof. We prove the theorem in three parts:

(i) a(x) is continuous from the right at any x0 > 0;

(ii) a(x) is continuous from the left at x0 & N;

(iii) \iπvx_x- a(x) = 0, if x0 E N.

Here N denotes the set of natural numbers.

(i) Assume x0 = Σ%0dr4~r as in (2.5), and define xn by 4nxn - [4nx0]

+ 1 = bn + 1, for n > 1, so that JCΠ > x0 and JCΠ -* x0 as w -> oo. If

x0 < x* < xn9 then x* = Σ~ = 0 ^*4" r with d? = J r for 0 < r < Λ. Hence,

by (2.6), fe* = [4rx*] = [4rx0] = Z?r for 0 < r < /i, and by (2.12) we have

that

|*(jc0) - έi(jc*)| = f p(rfΓ)fl(6Γ)2"r ~ Σ p(d?)a(b?)2-r

r=\ r=\
OO 00

r^Λ+l r=w+l

This clearly implies (i).

(ii) Here there are two cases:

(a) If x0 — Σ%0dr4~r, where infinitely many dr are nonzero, then we

set xn — Σ " = o dr4~\ so that xn < x0 and xn -> x 0 as « -> oo. If x* satisfies

xw < x* < JC0, then clearly x* = Σ™=od*4~r with J * = dr for 0 < r < «,

and as in (i) we find that | a(xQ) - a(x*) | < 2 1 "".
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(b) In the second case, x0 = Σs

r=0 dr4~\ where s > 1 and ds Φ 0. Let
n > s + 1 and define

xn = x0-4-"= °2 dr4-'+ ^-± + 2 3-4-'.

For any c* in the interval xrt < x* < JC0, we then have x* = Σ%0d*4~r

9

with

frfΓ, forO < r < 5 - 1,

d? = \ds- 1, forr = j ,

[3, for 5 + 1 < r < π .

Thus, we see from (2.12) that

α(x*) = 2 p(d*ya(b*)2-r 1
r=\ r=n+\

s— 1 oo

= Σ P(dr)a(br)2-r + p(ds - \)a(b*)2-s + 2 p{d*)a{b*)2-r

r=\ r=n+\

- \)a{bs - 1)2- + 0(2-),
/ = 1

since 6* = 4£>*_, + df ^ 4bs_ι + ds - I = bs-\. On the other hand,

M*V)2-'+ Σ
r = l

r = l

= Σ P(dr)a(br)2- + p(ds)a(bs)2-s + a(bs)2'\
r=\

and subtracting the expressions for a(x*) and a(x0) gives

a(x*) - a(x0)

= [p(ds - \)a(bs - 1) - p(dMbs) - <*(b,)p-s + 0(2'").

We now claim that the expression Es inside the brackets is zero. To
show this we must consider the three possibilities: ds = 1,2, or 3 (note
ds φ 0 by assumption). Recall that bs — 4bs_x + ds.

Ifds= 1, then

Es = p(O)a(bs - 1) - a(bs) = ̂ ( 4 ^ ^ ) -

= β ( V 1 ) - β ( U = 0, by(1.3).



50 JOHN BRILLHART, PAUL ERDOS AND PATRICK MORTON

If ds = 2, then Es = -p(2)a(bs) - a(bs) = 0.
If ds = 3, then Es = p(2)a(bs - 1) - *(£,) = -α(4ft,_i + 2) -

a(4bs_ι + 3) = -a(2bs_] + 1) + α(2ft,_i + 1) = 0, again by (1.3).
Thus, we have that | a(x*) — a(x0) | = 0(2~"), when JCΠ < x* < JC0,

for any n > s + 1, and this shows that α(x) is continuous from the left at
x0.

(iii) Assume now that JC0 G N, and define

** = *o " 4 " " = *o - ! + Σ 3 4 ' r

? n > l .

As in (ii) we have for any x* in the interval xn< x* < x0 that x* =
Σ ^ M-'', where

3, forl<r<π.

Hence, fl(jc*) = Σn

r=} p(3)a(b?)2-r + O(2~n) = 0(2""), since p(3) = 0.
But this implies a(x*) -> 0 as x* -> x0 from below. D

REMARK. The same proof shows that the complex valued function

(3.2) aτ(x) = 1 p{dr)a(br)2-τr,
r=\

defined for complex numbers r with positive real part, is continuous at JC0

whenever x0 ^ N, and that

lim aτ(x) — 0, \imaΎ(x) — aτ(x0), if x0 E N.

THEOREM 5. λ(x) is continuous for x > 0.

Proof. Let x0 > 0. If JC0 £ N, then it follows from Theorem 4,
equation (2.13), and the fact that s(x) is a step-function that λ(x) is
continuous at x0. If x0 E N, the same considerations show that λ(x) is
continuous from the right at JC0. Furthermore, by (2.13), (3.1), and (2.10)
we have that

lim_λ(jc ) = lim [s(x0 - 1) - a(x*)](x*)~

Therefore λ(x) is continuous at JC0. D
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COROLLARY 1. The function λ(x) maps both intervals (0, oo) and [1,4]
continuously onto [/3/5 ,

Proof. This is immediate from Theorem 5, (2.14) and Lemma 2.

Alternatively, one may deduce Corollary 1 from the intermediate value

theorem and the values λ(5/3) = y[T/5, λ(8/3) = \/6 .

COROLLARY 2. The function μ(x) maps (0, oo) and [1,4] continuously

onto [

We remark that the continuity of λ(x) for x > 0 also follows from the

fact that the functions fk(x) = s(4kx)(4kx)~ι/2 converge uniformly to

λ( c) on any interval [a, b] with 0 < a < b, by (2.15). The functions fk(x)

are step functions with jump discontinuities of order 2~kx']/2 at the

points x for which 4kx E N. The continuity of λ( c) may then be deduced

from the following general result, whose proof we leave to the reader.

THEOREM. Let J be an interval, and let {fk(x)} be a sequence of

functions converging uniformly tof(x) on J. Assume for every x0 in J that

dk(xo) = limsup \fk(x) -fk(x0)\ -> 0, as k-» oo.

Then f(x) is continuous on J.

4. The non-differentiability of λ(x). Although λ(x) is a continuous

function, it is differentiable almost nowhere. To prove this we first recall

the following definition. (See [6], Ch. 8.)

DEFINITION. A real number x0 > 0 is normal (to the base 4) if and

only if the numbers JC0, 4x0, 42x0,... ,4"JC0,. .. are uniformly distributed

modulo 1.

An equivalent definition is the following. Let k > 1, and let Bk be a

block of k digits to the base 4. Also let x0 = Σ%0dr4~r, and denote by

N(m9 Bk) the number of occurrences of the block Bk in the initial block

. d]d2...dm of x0 - d0. (For example, if x0 = .1121121102 and B5 = 11211,

we have iV(10, B5) = 2.) Then x0 is normal if and only if

(4.1) lim —N(m,Bk) = 4-k,
m->oo rn

for all k > 1 and all blocks Bk of length k.
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It is well-known [6] that almost all positive real numbers are normal.

In particular, almost all positive real numbers x0 — Σ%0dr4~r have the

property that dn — dn+λ = 0 for infinitely many n. This is the essential

fact we use in proving

THEOREM 6. If xo>O is normal (to the base 4), then λ(x) is not

dίfferentiable at JC0. Thus, λ(x) is non-differentiable almost everywhere.

Proof. Since ]/xλ(x) = s(x) — a(x), it is enough to prove that

(4.2) l{a(xo + h)-a(xo)}

is unbounded as h -» 0 + . The theorem then follows from the fact that the

step function s(x) has right derivative 0 for all x0 > 0.

So let x0 = Σ%0dr4~r, choose an n > 1 for which dn — dn+λ — 0, and

set h = 4~n. Then the 4-adic expansion of x0 + h is

x0 + h = Σ d£~r + 4~n+ 2 d£~r

r=0 r=n+\

Putting b'r = [4 r(x0 + 4"")], we have b'r = br for r < n - 1, while ^ =

4δB_, + 1 = δπ + 1 and * ; + , = 4 ^ = 6 n + 1 + 4. Thus (1.3) implies a{b'n)

= a{bn_x) = a(όn) and fl(^+I) = a{b'H) = a(bn) = a(bn+ι). Furthermore,

using (1.4) and considering the binary expansions of b'm and bm, we see

that a(b'm) = a{bm), for m > n + 2. Hence

a{xo + 4 ")- a(xo)= 2 ^7 + 1
r=\ r=«+l

and so

(4.3) 4"{a(x0 + 4-) - a(x0)} = -a{bn)2" = ±2".

Since there are infinitely many n for which dn — dn+λ — 0, this proves

that the expression (4.2) is indeed unbounded as h -> 0 + . D

We remark that the same proof shows λ(x) is not differentiable at

any positive rational x0 whose denominator is a power of 2.

The proof of Theorem 6 can also be modified to show that for a

normal number x0, the quotient (4.2) takes on all real values infinitely

often as h -> 0 + . For one can choose a sequence nk with dHk — dnk+λ = 0 ,
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fc > 1, such that a(bnk) changes sign infinitely often. (For example, the
block 00300 occurs infinitely often among the digits of x0. If the block
starts at the index n, and nk ~ n, nk+x = n + 3, then a{bHk+λ) — -a(bnk).)

It follows from (4.3) that the quotient (4.2), which is continuous in h for
small h, takes on arbitrarily large positive and negative values as h -> 0 + .
The intermediate value theorem then shows the truth of the claim above.
This remark is due to A. J. E. M. Janssen (private communication).

1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0 3 2 3 4 3 . 6 3 . 8 4 _ 0

FELIS ELECTRICA

FIGURE 1. Polygonal approximations to λ(x) and μ(x), (λ(x) > /X(JC).)

The upper graph in Figure 1 is the polygonal curve joining the points

1 + -745

n s(4s + n - 1)
, « = 0,l,...,3 45.

The lower graph is the same with the function s replaced by the function /,
and λ replaced by μ.
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5. The Fourier series of λ( c). It follows from the continuity of
λ(x) and (2.14) that the function

(5.1) f(x)

is continuous for all x and has period 2π. Thus /has a Fourier series

/(*)= Σ V'"*, cn=±-ί2wf(θ)e-»<>dθ,

which is (C, 1) summable to /(x) for all x. (See [3], p. 62) Using
λ(x) =/(ττlog x/log2), this easily yields the following result for λ(x).

THEOREM 7. The function λ(x) has the logarithmic Fourier series
expansion

00

(5.2) λ(x) = 2 cne
πi"lo*x/loz2, x>0,

where

λ(x)

where the infinite series converges in the (C, 1) sense for all x > 0, z.e.

β - p j ( σ o + σ i + ••• + σ J >
« = -oo fc-»oo

with

k

σ = V c e*in\o%x/\og2^

COROLLARY. For x > Owe have

(* Λ\ c( γ\ — V v l / 2 + 9r/i//log2 _ι ^^v'j

W — - 0 0

vvΛere /Ae jeπβ? w (C, 1) summable for all x > 0, α«<i crt w defined by (5.3).

Proof. This is immediate from (5.2) and (2.13).

We note that the series in (5.2) and (5.4) are convergent in the usual
sense for almost all x > 0, by the deep theorem of Carleson [2]. However,
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it is possible to give a direct proof of this fact. We first prove

LEMMA 5.Ifxo>0is normal (to the base 4), then

(5.5) |fl(jc0 + h) - α(x o) | = θ(|Λ|1 / 4), ash -> 0,

where the implied constant depends only on x0.

Proof. Let x0 = 2%0dr4~r, and assume 4"""1 < h < 4"", n > 1, so
that

00

Then

n oo

r=0 r=w+l

Since dr and Λr are digits, not all equal to 3 past some point, we have that

00 00

2 (dr + hr)4~r < 2 6 4~Γ = 2 4~Λ,

so
w oo

(5.6) x0 + h = 2L ̂  + ZJ ^ 4 >

where the h'r are digits and hr

n = 0 or 1. If Λr

n = 1, then there is a carry
into the nth place in (5.6). However the carrying will stop as soon as some
dr Φ 3, r < n.

In order to estimate how long the carrying continues, we apply (4.1)
to the number x0 and the block Bx — 3. By that equation we may choose
an nQ so that

N{m,Bx)<^, for m>n0.

Therefore, if n > n09 the number of digits dr equal to 3 between n/2 and Λ
is at most 3/i/8 < Λ/2. Hence there is an r0 > n/2 for which dro Φ 3, and
this implies that

ιy V* i A-r i V* 1/ Λ-r

where the J^ are digits.
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Now apply (2.12) with b'r = [4rx0 + 4rh], br = [4rx0], to give

\a(xQ + h) - a(xo)\ = 'r)a{K)l-'- Σ

for n > n0. Thus

\a(x0 + h)-a(x0)\ = O(h1/4), as/*-0+.

A similar discussion shows that

|α(;c0 - h) ~ a(xo)\ = O(h]/4), as h -> 0 + ,

and this completes the proof of the lemma.

THEOREM 8. If xo> 0 is a normal number (to the base 4), then the

Fourier series (5.2) ofλ(x) converges at x0. Thus, (5.2) and (5.4) converge

for almost all positive real numbers x.

Proof. Since x0 is not an integer, s(x0 + h) — s(x0) for small h, and

so (2.13) gives that

\/xo + h
I

\jx0

a(x0) 1 + — - 1

Now (x0 + h)-χ/1 is bounded as h -* 0, and (1 + h/xoy
/2 = 1 + Λ/2x0

+ O(Λ2) = 1 + O(| Λ | 1 / 4 ) , as Λ -» 0. Therefore, Lemma 5 implies that

|λ(x0 + h) - λ(x o ) | = 0( | h | ' / 4 ) , as h - 0.

We setj = 1 + A/Λ0, and use.the fact that h — x0log _y as h -» 0 to write

the last estimate in the form
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If z0 = π log x0/\og 2, then this gives the following estimate for the
function/(z) = λ(4z / 2 7 r):

( 1 / 4 ) , as/2-0.

But this condition implies the convergence of the Fourier series of / at z0

(see [3], p. 41), and therefore the convergence of (5.2) at x0. D

REMARK. If we define a simply normal number to be a number x0

which satisfies the condition (4.1) just for k = 1, i.e. for blocks of length
one, then it is clear that the conclusions of Lemma 5 and Theorem 8 hold
for the larger set of simply normal numbers. Thus both (5.2) and (5.4)
converge for example at the point

where m is a non-negative integer. Similarly, (5.2) and (5.4) converge at
any point x0 = Σ%0dr4~r which has the property that dr φ 0 or 3 for
large r, e.g. the point x0 = .1212 4 = 2/5.

Our results for λ(x) and s(x) are easily extended to the functions
μ(x) and t(x) using (2.18) and (2.19). For example, μ(x) has the logarith-
mic Fourier series

00

/*(*)= Σ cn{{-\)"{2 -

which is (C, 1) summable to μ(x) for all x > 0, and which is actually
convergent in case x is normal to the base 4 (for then 2x is also normal).
Moreover, (2.18) implies easily that

t(x) = s(2x) - s(x) + U\ + {-l)[dι/2])(-l)d°a(b0)

= (xμ(x) + b(x)

00

— V r l( λ\n,ίϊ — 1 \ v l /2 + τr«//log2 i u( v \
^ j « | V / V i ι Λ î  I /^Λ;^,

where

6(*) = α(2x)-α(x)+^(l + (-
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and x is given by (2.5). The function b(x) has properties analogous to
those of a(x). For instance, b(n) = (-\)na(n), for n > 0; b(x) is continu-
ous at x0 if x0 7̂  N; and

lim b(x) = 0, lim ό(x) = &(xo)> ^ x o ^ N.
X-*XQ X—* XQ

6. The Fourier coefficients cn. Concerning the coefficients cn9 we
first prove

THEOREM 9. Infinitely many of the coefficients cn are nonzero; in fact
cn φ O(| n \~2~δ), as n -> ± oc, for any δ > 0.

Proof. Assume that cn = O{\ n \~2~~δ) for some δ > 0. Then the series
in (5.2) converges to λ(x) for all x > 0, and the differentiated series

00

= Δ(x)

converges uniformly for x >: 1. Therefore λ'(x) = Δ(x) for all x > 1,
which contradicts Theorem 6. Hence cn = 0(| « |"2~δ) is false. D

We shall now relate the cn to the behavior of the function η(τ)
defined by the Dirichlet series

(6.D
n=\

By virtue of (1.5), this series converges in the half-plane Re T > 1/2, and
absolutely for R e τ > 1. (See [5], p. 123.) Using partial summation to
express η(τ) as an integral gives

, , S s(n)-s(n- 1) S . Λ 1
(r)= Σ ~r = - 1 + Σs(n)\ —

1
Σ r 1 + Σs(n)\

»=i " »=i I" (« + 1)

' forReτ>-
ιM x

We substitute s(x) = ^ λ ( x ) + α(x), and find
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Now rearrange the first integral using (2.14):

(6.3)

x, Re T > ^ .

Similarly, the second integral may be written in the form

(6.4)

0 0 M π(άk\

To evaluate the integrand, we need the following result.

LEMMA 6. In the notation of (2.5) and (2.6) we have that

k

(6.5) a(4kx) = 2ka(x) - Σ (>(dr)a{br)2k-\ forx>0,k>\.

Proof. From (2.14) we have λ(4^) = λ(x), so from (2.13) we find
that

s(4kx) - 2ks(x) = a(4kx) - 2ka(x).

Equation (6.5) is now immediate from (2.9).

With (6.5) we can write the infinite sum in (6.4) as follows:

=0 Z k=\ r=\

r=\ k=r

where βτ(x) is defined by (3.2).
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Putting the results of (6.6), (6.4), and (6.3) into (6.2) gives finally that

(6.7) ( 1 - 2 -

= 2 - - 1 + rf - ^ * + rf a{x)-+

a

χ

M

dx,
J\ X ' J\ X

initially for Re T > 1/2. But the integrals in this formula define analytic

functions of r for Re r > 0. (In fact the first integral is entire.) Thus (6.7)

defines the analytic continuation of τj(τ) to the half-plane Re T > 0, and η

has at most simple poles at the points T for which 21 ~ 2 τ = 1, i.e. the points

yn = 1/2 + τrm/log2, n E Z. This proves

THEOREM 10. The function η(τ) defined by (6.1) has a meromorphic

continuation to the half-plane Re T > 0, with at most simple poles at the

points yn — 1/2 + πni/\og2, « E Z .

In fact, the function η(τ) has a meromorphic continuation to the

whole complex plane, but we shall not give the proof of this fact here.

Rather, we point out the following connection between cn and the behav-

ior of τ](τ) at the point r = γw.

THEOREM 11. The nth Fourier coefficient cn of λ(x) is related to the

residue Rnofη(τ) at ynby the formula

(6.8) cn = Rn/yn

Proof, Since 22Ύn = 2, we have aly(x) — a(x) for all n E Z and x > 0.

Putting T = yn in (6.7) gives therefore that

Equation (6.8) is immediate from this and the fact that ηo(yn) = log4 Rn.

COROLLARY 1. Infinitely many of the points yn are simple poles ofη(τ).

In fact, Rn φ O(\n I" 1 " 5 ), as n ->±cc,for any 8 > 0.
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Proof. Immediate from (6.8) and Theorem 9.
Equation (6.8) can also be used to estimate the size of cn. To do this

we note the Dirichlet series expansion for η o ( τ ) :

(6.9) %(τ) = (1 - 2—),(,)= I °-ψ-2Ϊ ^
«=i n «=i (4«)

_ S α (n)

" h ~-
where

6.10 a*(n) = { V / \ \ '
{-a{n), if 4 | Λ .

If we set
[x]

s*(x) = Σ °*(k),
k = 0

in analogy to (LI), then it is easy to see that

s*(x) = s(x) - 2s(x/4) = a(x) - 2a(x/4)

= O(l), as c -> oo.

Hence (6.9) converges for Re r > 0. This implies the following corollary to
Theorem 11.

COROLLARY 2. For any δ > 0 we have cn - O(\ n | " 1 / 2 + δ ) .

Proof. We use Satz 33 of Landau [5], p. 784 (with a = 0, τ = 1,
δ < 1/2, σ = 1/2) to deduce that

δ) fora l lδ>0.

The corollary is then clear from (6.8).

We conclude this section with a short table of the coefficients cn.

TABLE 1

n Recn lmcn \cn\

0
1
2
3
4

1.5053
-.0663
-.0927
.0018
.0352

0
.0911

-.1331
-.0031
.0116

1.5053
.1126
.1622
.0035
.0370
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The values were computed using the first 1,500,000 terms of (6.9) and
the formula

γλ2 log4 cAΪ= Σ —y- + γ j - — γ d x ,
k=\ k (N + l)n JN+\ xΊn

where N — 1.5 X 106. The total error, due to roundoff and to the integral
in this formula, is at most .002 in absolute value, and so cn φ 0 for
0 < n < 4.

7. The cumulative distribution. In this section we use the function
λ(x) to show that the sequence {s(n)/ Jn) has no cumulative distribution
function on the interval (/3/5 , ̂ 6"). Recall the following general defini-
tion.

DEFINITION. Let {un} be a sequence of real numbers contained in an
interval /, and let a E /. If D(x, a) denotes the number of n < x for
which un < α, and if the limit \imx_>o0x']D(x, a) — D(a) exists, then the
sequence {un} is said to have the distribution D(a) at α. D(a) is called the
cumulative distribution function of {un}.

THEOREM 12. The cumulative distribution function of {s(n)/ ]/n} does
not exist at any point of (/3/5 , \/6̂ )

Proof. Let a E (/3/5 ,yfβ), and assume D{a) exists for the sequence
un — s{n)/ y/n in the above definition.

(a) We first show that D(a) must equal one. By Corollary 1 to
Theorem 5 we may choose an x, E [1,4] for which λ(x}) < a. Let ε be
such that 0 < ε < 1 and

λ(jc) < a when |JC — JCJ ^ ε,

and set M = maxμ_Xij<ελ(x). Then M < a. Set 8 — a — M, and choose
k0 so large that 2~k°(xι — ε)" 1 / 2 < δ. From (2.15) we have for any x
satisfying | JC - xλ | < ε and for any k > k0 that | λ(x) - s(4kx)/ /
2~kχ-χ/2 < 2"/c°(x1 - ε)" ι / 2 < δ, so

s(4kx)

|<

4kx
< λ(χ) + δ < M + (α - M) = α.

It follows that s(r)/ y[r < a for every integer r of the interval 4/c(x1 — ε)
< r < 4/C(JC1 + ε). But the number of integers in this interval is

4k(x] + ε) - 4k{xλ - ε) + 0(1) = 2ε4* + 0(1).
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Thus if we put xl = 4k(x} — ε) and x^ — 4k(xx + ε), we have

D(x+ , a) = Z)(x*, α) + 2ε4* + 0(1).

Dividing both sides by x£ = (JCJ + eyx^/ί-Xj — ε) and letting &

gives that

63

oo then

which implies D(a) — 1, as claimed.

(b) We now show that D{ά) = 0; this will contradict (a) and prove

the theorem. We choose an xx E [1,4] with λ(x,) > α, and an ε for which

0 < ε < 1 and λ(x) > a when \x — xx\ < ε.

We also pick k0 so that 2~k°(xλ — ε ) " 1 / 2 < δ, where this time 8 — m — a

and m — rwcί^x_x^ε \(x). As before, we have for any x with | x — xλ \ < ε

and any k> kQ that

whence

s(4kx)
> λ(x) — δ > m — (m — a) = a.

Thus s{r)/ {r > a for all the integers r in the interval

4*(x, - ε) < r < Ak{x, + e),

and

Z)(x+,α) = Z>fea),

where x̂ " = 4A(JC, + ε) and Λ;̂  = 4*(JC, — ε). Therefore

XΛ

and letting A: -» oo shows that

i.e. that D(a) = 0.

=X»(α)
JC, + ε '

D
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For the sequence un = t(n)/' {n we have the analogous

THEOREM 13. The cumulative distribution function of the sequence
[t{n)/ yfn) does not exist at any point αG(0,/3) . However it does exist
when a = 0, and D(0) = 0.

Proof. The proof that D{a) does not exist for a in (0, y/3) follows,
mutatis mutandis, the proof of Theorem 6. Thus assume that a — 0. To
show D(ΰ) = 0we proceed as follows. Let nv be the *>th integer for which
t(n) = 0. Clearly

I / ) ( Λ , 0 ) < ^ 2 ) ( Λ F > 0 ) = ^

ifnv<n <np+u and so it suffices to show that

v/nv -> 0 as P -> oo.

However, by the Vorbemerkung in Satz 13 of [1], if

k

is the binary representation of p, then

«,= Σ e , 2 2 r + 1 - 1 .

Thus / i ι r > 2 2 Λ + 1 - 1 > i^ 2 - 1, and so v/nv<2v/(v2 - 2)-* 0 as
v -^ oo. D

As the above proofs show, the nonexistence of the cumulative distri-
bution functions is attributable to the fact that the sequences s(n)/ Jn
and t(n)/ yfn behave very "sluggishly".

8. The logarithmic distribution. It is possible to show that a mod-
ified distribution function does exist for the sequences {s(n)/yfn} and
{t{n)/ yfn). The type of distribution we consider is defined as follows.

DEFINITION. Let {un} be a real sequence contained in an interval /,
and let a E /. If

L(x,a)= 2 ->
Xϊtn

1<laC
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and if the limit

lim z L(x,
jt-oo lOgX

exists, then the sequence {un} is said to have the logarithmic distribution
L(a) at a. L(ά) is called the logarithmic distribution function of the
sequence.

We shall prove that both sequences {s(n)/ Jn) and {t(n)/ y/n) have
logarithmic distribution functions which are defined everywhere in the
respective intervals [/3/5 , ̂ 6"] and [0, ̂ 3"]. We need a lemma.

LEMMA 7. Let a E [\/3/5 , \/(Γ] be fixed and let Sa denote the set
Sa — {x: 1 < x < 4 and λ(x) = a}. Then Sa has measure zero.

Proof. Let x0 = Σ%0dr4~r be an element of Sa which is normal to the
base 4. Choose an n >: 1 for which djf = 0 for « <y < n + 3, and set

Xn = *o + 4 " " ? Λ = *o + 4-" + 4-""3 = x0 + hn.

As in the proof of Theorem 6 we have that | a(x0) — a(xn) \ = 2~n. Now if
x* satisfies xn < x* < yw, it is easy to see that x* = Σ^L0^*4"r, with

Thus

2.

- p(d?)a(b?)

and it follows that

\a(x0) - a(x*)\ =\a(x0) - a{xn) + a{xn) - a(x*)\

> ^-n Λ-M—1 ^ *y-n—1

Furthermore, equation (5.7) implies

\λ(x0) - λ(x*)\ = a{X*]-°M

 + O(\X* - xo\)

> κ o 2 " " - κ,4"" > κ 2 2 " " , f o r « > n 0 ,
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where κ0, K,, K2 are positive constants and n0 is sufficiently large.

Therefore, for n > π 0 satisfying dn — dn+λ = dn+2 = rfrt+3 — 0, we have

λ(x*) 7̂  α: for xπ < JC* < xn + 4~"~3.

If m denotes Lebesgue measure, we deduce

1 / xx 4~Λ 64
/g |\ _ m ( g π (JC x + Λ )) < — — —— < 1

n n

for an infinite sequence of An's tending to zero.

On the other hand, if χa denotes the characteristic function of the set

Sa9 then

ί8 2) - m ί ^ Π (x x -

yL jiΛl 7 A . α V 0 / ' '

* 0

for almost all x 0 (see [4], p. 173). Equation (8.1) shows therefore that all

normal numbers x0 in Sa lie in the null set of exceptional numbers for

which (8.2) does not hold, since for these x0, χa(x0) — 1. But this implies

m(Sa) = 0. D

The argument in the above lemma is due to A. J. E. M. Janssen

(private communication).

We can now prove

THEOREM 14. IfaE. [/3/5 ,\/6~], then the logarithmic distribution func-

tion of the sequence {s(n)/ Jή} exists at α, and has the value

(8.3) L(a) = γ^-r ί -dx,

where Ea is the set

(8.4) Ea = {x: 1 <

Proof. Let Ik denote the set of integers r contained in the interval

4* < r < 4/c+1, k > 0, and consider the sum

σ (a) - y - = y

λ(r)<α
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where ωa is the characteristic function of the set Ea. Note that σk(a) is just

a Riemann sum for the function ωa(x)/x on the interval [1,4], since

,Γ4* r/Ak

Now λ is a continuous function, so it is clear from (8.4) that the

discontinuities of ωa are contained in the set Sa = {x: 1 < x < 4 and

Λ(Λ ) = α}. By Lemma 7, 5α has measure zero, and therefore ωa is

Riemann integrable. (See [4], p. 64.) Consequently,

/

4 0) (jc) Γ 1

- 2 — - < & = / -dx.

Note also that h(a) is a continuous function of α, since the set Ea+ε tends

to the set Ea as ε -> 0 + , and since £'α_ ε tends to £ α — Sa as ε -> 0 + ,

which differs from Ea by the null set Sa.

This fact implies easily that

(8.6) lim σk{a - 2~k) = lim σk(a + 2~k) = A(α).
Λ-» oo k-*oo

For instance, if Λo is fixed and k > A:o, we have

σk(α - 2"* ) < σΛ(α - 2"*) < σk(a + 2~k) < σ t (α + 2"*»).

Thus by (8.5),

But for large k09 both sides of this inequality can be made arbitrarily close

to Λ(α), and this proves (8.6).

We now show that the limit of

*() Σ

as k -* oo, is h(a). From (2.15) we have

1
λ ( r ) - ^ -
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and so

^β<a implies λ(» <a + 2~k,

λ(r) < a - 2~k implies -ήJ- < a,
P

for these r. It follows that

σ , ( α - 2 - * ) < σ A ( α ) < σ j f e ( α + 2-*).

Letting k -* oo and using (8.6) then gives

lim σk(a) = h(a).
k—> oo

Thus we have also

-i ra— 1

(8.7) lim - 2 σA(α) = A(α),

since the (C, 1) method is regular.
Finally, suppose that « > 1 is arbitrary and m is chosen so that

4m < π < 4 m + 1 . Then m = [log /i/log4], and

logΛ m k^0°
k ~ log« ^ r ~ log« m + 1 ^ 0

\o%AJEx

Hence by (8.7),

lim y. — = -—τΛ(«) Λ T

Λ-*oo logw r^j r log4 \o%Aa
s(r)<(X}/F

and this proves (8.3). D

THEOREM 15. If a G [0,/J], then the logarithmic distribution function
of the sequence {t(n)/ ]fn] exists at α, and has the value

L*(a) = γ^-r ί -dx9v J \og4JE* x

where E* = {x: 1 < x < 4 α«J μ(x) < α}.

Proof. The theorem is proved by exactly the same argument used to
prove Theorem 14, the crucial point being that the set 5* = [x: 1 < x < 4
and /X(Λ ) = α} has measure zero. We omit the details.
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