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LOCALIZATIONS OF TORSION THEORIES

WILLY BRANDAL AND EROL BARBUT

If R is an /z-Iocal domain, then the hereditary torsion theories of R
are described in terms of the hereditary torsion theories of RM for all
maximal ideals M of R. By means of an example, it is shown that /z-local
is too strong a hypothesis for this localization property. As an applica-
tion, all the hereditary torsion theories of /z-local Priifer domains are
described. Some equivalent conditions for a domain to be /i-local are
generalized to conditions about hereditary torsion theories.

Introduction. R will always denote an integral domain and all /?-mod-
ules are unital modules, spec R will denote the set of all prime ideals of R
and mspeci? will denote the set of all maximal ideals of R. The main
purpose of this paper is to describe the hereditary torsion theories of R in
terms of the hereditary torsion theories of the localizations RM for all
M G mspeci?. We will generally follow the terminology of the text by B.
Stenstrδm [9]. Because of the bijective correspondence between the heredi-
tary torsion theories of R and the Gabriel topologies of R [9, Ch. 6,
Theorem 5.1], it suffices to describe the Gabriel topologies of R. The
results will be described mostly in terms of the Gabriel topologies of R.

We remind the reader of the definition. A Gabriel topology of R is a
non-empty family ^of ideals of R satisfying axioms T1-T4:

Tl. If / G S"and / C / for / an ideal of R, then / G f .
T2. If /, / G f, then // G <9.
T3. If / G S'and r G R, then (/: r) G f.
T4. If / is an ideal of R and / G ̂ with (/: r) G ̂ for all r E / , then

/Gf.
The condition that £F is non-empty is equivalent to requiring Λ E f .

Note that condition T2 has been changed from the condition "if /, / 6 f,
then / Π / G <% " of the Stenstrόm text [9] to the present equivalent form
for commutative rings. It is easily seen that T3 and T4 imply Tl and T2,
and since the rings considered in this paper are all commutative, Tl
implies T3. Thus to show that ^is a Gabriel topology of R it suffices to
verify T3 and T4, or to verify Tl and T4. It follows immediately from T2
that if / G <»9 then Γ G f for all n > 0. Given a Gabriel topology <5 oί R,
the class of torsion i?-modules of the corresponding hereditary torsion
theory consists of all Λ-modules T such that AnnΛ(x) G ̂ for all x G T.
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1. Basic localization results. The following is given for the sake of easy
reference.

LEMMA 1.1. Let S be a multiplicatiυely closed subset of R, I an ideal of
R, J an ideal of Rs, and r G R. Then:

(\)(JΠR)S = J.
(2) ISΠ RD I.

( 3 ) ( / s : r ) D ( J : r ) 5 .
(4) ifis = j 9 then I C / Π R.
( 5 ) ( / Π R:r) = (J: r) Π R.
(6) There exists a bijective order preserving correspondence between the

set of all ideals of Rs and a set of (some) ideals of R given by J -» / Π R for
J an ideal of Rs.

Proof. Well known, omitted.

We introduce some notation. Let S be a multiplicatively closed subset
of R. If ^ i s a Gabriel topology of R, let % denote {Is : / G f } . If g is a
Gabriel topology of Rs, let § Π R denote {1:1 is an ideal of R and

PROPOSITION 1.2. Let S be a multiplicatively closed subset of R and 5 a
Gabriel topology of R. Then ^s is a Gabriel topology of Rs.

Proof. Verify Tl. Let / G % and / ' be an ideal of Rs with / C J'.
Then J = Is for some / G f. By Lemma 1.1(2), / ' Π R D / Π R = Is Π
RD /, and so/' Π i? G fby Tl of f. By Lemma 1.1(1), / ' = (/' Π R)s,
and so / E fs, verifying Tl.

Verify T4. Let / be an ideal of Rs with L e | and (/: y) G % for
all jμ G L. Then L = Is for some / E f . Since I C Is = L, one has
(/: r) G Ŝ  for all r G /. Thus for each r G /, there exists 7r G f such
that (Ir)s = (J: r). By Lemma 1.1(5) and (2), (J Π R: r) = (J: r) Π R

= (/ r ) s Π i ? D / r E Ϊ , and so (/ Π i?: r) G ̂  by Tl of <3\ Therefore
J Π R <Ξ ^by T4 of <%, and so / = (/ Π i?)5 G fs, verifying T4. D

PROPOSITION 1.3. Le/ S be a multiplicatively closed subset of R and g α
Gabriel topology of Rs. Then § Π R is a Gabriel topology of R.

Proof. Verify T3. Let / G g Π R and r G R. Since (/: r) D /, (/: r ) 5

D / s G §, and so (/: r) G g Π JR by Tl of g, verifying T3.
Verify T4. Let / be an ideal of R with / G g Π i? and (/: r) G g Π 7?

for all r G /. By Lemma 1.1(3), (Is: r) D (/: r ) s G g and so (Is: r) G g.
Thus (/ s: JC) G g for all x G Js. By T4 of g, Is G g, and so / G g Π i??

verifying T4 for g Π ί . D
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PROPOSITION 1.4. Let S be a multiplicatiυely closed subset of R, and § a
Gabriel topology of Rs. Then (g Π R)s = §.

Proof. Straightforward, using Lemma 1.1(1).

COROLLARY 1.5. Let S be a multiplicatίυely closed subset of R. Then
there exists a bijective order preserving correspondence between the set of all
Gabriel topologies of Rs and a set of (some) Gabriel topologies of R given by
§ ^ § Π Rfor§ a Gabriel topology of R.

Proof. This is a translation of Proposition 1.4.

EXAMPLE 1.6. Let R — Z, the ring of integers, and let S be the
multiplicatively closed subset S — Z — 2Z — {x G Z:2 does not divide
x). Let f, = {Z} and let % = {YZ: /i = 0,1,2,...}. Then ^ and % are
Gabriel topologies of Z, and (<$x)s = (%)s = {Zs}.

Lemma 1.1(6) gives the well-known bijective correspondence between
the set of all ideals of Rs and a set of (some) ideals of R, and in general
this is not a bijective correspondence onto the set of all ideals of JR. In a
similar manner, Corollary 1.5 gives a bijective correspondence between the
set of all Gabriel topologies of Rs and a set of (some) Gabriel topologies
of i?, and by Example 1.6 this is in general not a bijective correspondence
onto the set of all Gabriel topologies of R.

LEMMA 1.7. Let 0 Φ 9H C mspeci? and for M E 911 let §[M] be a
Gabriel topology of RM. Define %' — [I: I is an ideal of R and IM E §[M]

for all M G (31t}. Then % is a Gabriel topology of R.

Proof. The intersection of a family of Gabriel topologies of R is again
a Gabriel topology of R. Hence this follows from Proposition 1.3.

2. Λ-local domains and the main results. R is h-local if every non-zero
prime ideal of R is a subset of only one maximal ideal of R and every
non-zero element of R is an element of only finitely many maximal ideals
of R. This definition is due to E. Matlis [6] and discussion of Λ-local
domains can be found in [6], [7], [8], [1], [2] and [4]. We briefly mention an
important property of Λ-local domains. For an ideal I of R9 use the
notation mspec(/) for [M E mspeci? : / C M) and for r E i?, use
mspec(r) as an abbreviation of mspec( Rr). In other words, mspec(J) =
V(I) Π mspeci?. Then a domain R is /z-local if and only if for each
torsion Λ-module T one has T = ®M(ΞmspecR T(M) where T(M) = {x E
T: mspec(AnnΛ(x)) C {M}}. Moreover, if R is an Λ-local domain, M E
mspeci?, and T a torsion Λ-module, then T(M) and TM are isomorphic
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both as i?-modules and as i?M-modules [4, proof of Theorem 2.6]. Thus
/z-local domains are exactly the domains whose torsion modules decom-
pose into the direct sum of their "M-adic submodules" for all M E
mspeci?. This generalizes the fact that torsion Abelian groups decompose
into the direct sum of their />-adic subgroups for all prime integers p. It
would seem reasonable that the property of a domain being Λ-local is
related to the torsion theories of the domain. Theorem 2.4 will illustrate
this.

A non-zero Gabriel topology of R is a Gabriel topology ®5 of R with
the property that {0} (jEΦ.In other words, a non-zero Gabriel topology of
R is one which is not the family of all ideals of R. Let %(R) denote the set
of all non-zero Gabriel topologies of R. We will write the elements of
ΠMemspec* %(R M) ™ tuples <g[M]> where §[M) E %{RM) for all M E
mspeci?. Define the function φ : §0(R) -> i I M G m s p e c * %(RM) by φ ( f ) =
( f ) for f e %{R). By Proposition 1.2, <$M is an element of %{RM).

LEMMA 2.1. Let <$ E %{R) and define <$' - {I: / is an ideal of R and
IM E % for all M E mspecΛ}. Then %' E S0(JR), φ(Φ) = φ(&% and
®s C (3r>\ Furthermore, if I E f and I is a subset of only finitely many
maximal ideals of R, then I E $\

By Lemma 1.7, ^ ' E βo(Λ), and clearly ^ C gΓ/. Let M E
mspeci?. To verify that φ(§) = φ ( f ) , it will be shown that S^ = %f

M.
Let / E %, hence / = / M for some / 6 f . Then / E ίP, and J = IM <Ξ
^'M. On the other hand suppose / E S^, hence J — IM for some / E ^P.
Therefore / = IM E <%M by definition of f'. This verifies that φ ( ^ ) =

Suppose / E ^ r and / is a subset of only finitely many maximal ideals
of i?, say Ml9... ,MW. Then IM E f^, and so / M = (/^^ for some Jt E 9Γ.
Since ^ C (/Z)M Π R = IM ri R9 we have IM ΠR G f . Because / M = i? M

for all M E mspec JR - {Af,,... ,Mn}, and / = Π M G m s p e c Λ / M , we have
/ - Π; = j (/^ Π Λ). Hence, by Tl and T2, / E f. D

COROLLARY 2.2. // et ery non-zero ideal of R is a subset of only finitely
many maximal ideals of R, then φ is injective.

Proof. Let % % E §0(i?) and suppose φ(<5x) = φ(%). By Lemma

2.1, % = ψχ and % = %. Also {%)M = (%)M for all M E mspecΛ, and

so <$[ = % τ h u s #i = $2> a n d Φ i s injective. D

LEMMA 2.3. Every non-zero prime ideal of R is a subset of only one
maximal ideal of R if and only if φ is surjectiυe.
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Proof. Assume that every non-zero prime ideal of R is a subset of only
one maximal ideal of R. Let (§[M])E Π M G m s p e c / ? §0(RM) Define φ =
{/: / is an ideal of R and IM E §[M] for all M E mspec R). By Lemma
1.7, Φe§0(R). Let ME mspec R. We must verify that &M = 8[M].
Clearly 3 ^ C §[M]. On the other hand, let / E §[M] and let / = / Π P .
Then / M = / E g[M] by Lemma 1.1(1). Let P E mspecR - {M}. Since
P Π M contains no non-zero prime ideal of i?, we have Jp = Q, the
quotient field of R. Thus Ip = JP Π RP = Q Π RP = RP E §[P]. There-
fore / E <fby definition of 5", and so J = IME <5M.

Conversely, suppose that i? is a domain with a non-zero prime ideal P
such that P C Mλ Π Λf2 with Λfl9 M2 E mspec i? and Af, 7* Af2. Let ̂ b e
the Gabriel topology of R given by 3F= {/: / is an ideal of i? and P Z$ /}.
For M E mspecΛ - {M2}, let §[M] = f^. Let β[M 2] = {/: J is a non-
zero ideal of RMi}. Then (0[M]> E Π A / e m s p c c Λ βo(

ΛΛ/) and we shall show
that ( β[M]) is not in the image of φ.

Suppose % E %{R) and φ(%) = (β[M]>. Then ( ^ ^ = ^ M for all
M E mspec i? - {M2} and (<5X)M = @[M2]. Now P M E §[M 2] and hence
P = PMiΠRE %. Therefore P ^ E ( ^ ) M ] - Q[M\] and P = PM] Π R
E ^ a n d so P z5 P. This contradiction shows that φ is not surjective. D

THEOREM 2.4. //i? w an h-local domain, then φ is a bijection.

Proof. This is a summary of Corollary 2.2 and Lemma 2.3.

THEOREM 2.5. Le/ P 6e α̂ z h-local domain. Then ^is the torsion class of
a hereditary torsion theory of R if and only if either

l.tyis the class of all R-modules or
2. for all M E mspec R there exists a torsion class ($[M]of a hereditary

torsion theory of RM that is not the class of all R^modules, and T E$ if
and only ifTME^ [M] for all M E mspec R.

Proof. This is a translation of Theorem 2.4 to torsion theories.
The above results say that for Λ-local domains, a hereditary torsion

theory of R is determined by its localizations, i.e., by the corresponding
hereditary torsion theory for RM for all M E mspec R. One might suspect
that this localization property characterizes the Λ-local domains. This is
not quite the case as the following example indicates.

EXAMPLE 2.6. There exists a domain R with the property that R is not
Λ-local and φ is a set bijection.
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Proof. We will use the Krull-Kaplansky-Jaffard-Ohm method of
constructing Bezout domains as described in [3]. The example to be given
is due to W. Heinzer and J. Ohm [5] (also in [3]). Let Z be the totally
ordered group of integers, let N be the set of positive integers, let ZN have
the product ordering, and view elements of ZN as sequences (z1 ? z 2,...)
or simply (zn) where zn<ΞZ for all n E N. Let G = {(zn) E ZN: there
exists k E Z such that zn — k for all but finitely many n E N). With the
induced ordering of ZN, G becomes a lattice ordered group. By [3,
Theorem 1.9] there exists a Bezout domain i? whose group of divisibility is
order isomorphic to G. Let Q be the quotient field of R and use an
asterisk* to denote non-zero elements. Then there exists a surjective
function π: £>* -> G so that R = {0} U {x E g* : TΓ(Λ ) > 0). For / E TV,
let Aff = {0} U {r E i?* : if ττ(r) = (zπ>, thenz f >0}, and let M^ = {0}
U {r E i?* : if π(r) = (z r t), then zn > 0 for all but finitely many n E N).
Then mspeci? = {̂ }«GTVU{OO}

 a n c* RM *S a discrete valuation ring (DVR)
for all MEmspeci?. It will be shown that this R has the required
properties.

Every non-zero element of M^ is an element of infinitely many
maximal ideals of R, so R is not λ-local.

Since speci? = mspeci? U {{0}}, every non-zero prime ideal of R is
a subset of only one maximal ideal of R. By Lemma 2.3, φ is a surjec-
tive function. To verify that φ is injective, consider (§[M])G

ΠΛ/emspecΛ %(RM) S i n c e RM i s a D V R f o r a 1 1 M e mspec i?, there are
only two possibilities for S[M], namely {i?M} or (M^}^= 0. Define
91L= {M E mspeci?: S[M] - {M^=o}. Let ^ E go(i?) be such that

We claim that 9H C f. For if M E 6)H, then M M G §[M] so there
exists / E ίFwith / M = MM. But then / C M and so by Tl, M E f. This
verifies the claim 9H C ^ Three cases will be considered.

1. Suppose M^ & 911. We claim that ^ i s the set of all finite
products of the elements of 911 (including R, the empty product). By T2, ®ϊ
contains all finite products of elements of 91L. On the other hand, let
/ E %. Since M^ & 9H, we have IM — RM^. Thus there exists x E / —
MQQ. If π(x) — (zn), then mspec(x) = [Mt E mspeci?: zι > 0}, and so
mspec(x) is a finite set. Let mspec(x) = {Miι9... ,Mln}. Forj = 1,2,.. .,n
there is a positive integer z so that RM x — (M )z^ . Then I Ώ Rx — Mz>\

J ', J ij 1

• Mfr, and so it follows that / is of the required form. This verifies that
^ i s the set of all finite products of elements of GJϊi.

Case 2. Suppose M^ E 9IL and 911 is finite. We claim that ίϊis the set
of all finite products of elements of 91L. As in Case 1, ^contains all finite
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products of elements of 9H. Suppose 9ΐt = {M^, Miχ9... 9Mtn}> Let / G f .
Then there exist non-negative integers k9 kl9...9kn such that J M =

k and I^^iM^ for 7 = 1,2,...,*. Therefore I = M^Af*
/S which verifies the claim that f is the set of all finite products of

elements of 91L.

Case 3. Suppose Af̂  G 9lt and 9H is infinite. Define % = {I: / is an
ideal of i? and IM E §[M ] for all M E mspec 2?}. We claim that 9 = ^ 0 .
Let 70 = Π 911. We first show that Io G f. Let x G Λ(w and consider
(70 : JC). Let {M/ V... ,M, } = {M G 9H: JC £ M} = 91L - mspec(x).
Then (J o : JC) D M ^ Aί̂  E f, and so (7 0 : x) E <5 for all JC E M^
E f. By T4, it follows that l"0 E f. To verify the claim f = ^ 0, we first
consider / G f 0 . There exists a non-negative integer k so that IM^ —
(^OO)M There exists x E / such that RM x — (M M )^ . Suppose 7r(x) —
( z ^ . ' L e t {M,, . . . ,M Z , } - {M, E 9H : zf > fc} = {M E
9H: i?^x £ M ^ } . Then / D I^M^-kM^~k A^^"^ E f, and so / E
3F. Thus ^ C f. Since φ(Φ) = (§[M])9 one has f c ^ 0 . This verifies the
claim that ^ ^ ^ 0 .

In all three cases, there is a description of <$ in terms of the given
( @[M])9 and so only one such ^Fis possible. Thus φ is injective. D

The discussion in this section does not fully answer the question of
when the function φ is a bijection, i.e., when Gabriel topologies are
described locally. When R is an Λ-local domain, then φ is a bijection by
Theorem 2.4, but Λ-local is too strong a hypothesis by Example 2.6. It is
possible that φ is a bijection if and only if every non-zero prime ideal of R
is a subset of only one maximal ideal of R. It is also possible that one
needs an additional condition that is weaker than requiring that every
non-zero element of R is an element of only finitely many maximal ideals
of R.

3. Valuation domains and other examples. We wish to describe all the
Gabriel topologies of valuation domains. Following the B. Stenstrόm text
[9], the following notation will be used. For P E spec R, let f (P) be {/: /
is an ideal of R and / £ P}9 and for <$ C spec R, let Φ(Φ) = ΠP^(P).
Then ^(P) and <3Γ((3)) are Gabriel topologies of R. Moreover, in some
special cases such as if R is a Noetherian ring, then every Gabriel topology
of R is of the form 9(9) for some 9 C speci? [9, Ch. 6. Corollary 6.15].
As shall be seen, the situation is not this simple for valuation domains. We
remark that if P is an idempotent ideal of R, i.e., P2 = P9 then {/: / is an
ideal of R and P C /} is a Gabriel topology of R [9, Ch. 6, Proposition
6.11].
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EXAMPLE 3.1. There exists a valuation domain i? with a Gabriel
topology which is not of the form (5((^) for some ty C specR.

Proof. Let R be a valuation domain whose group of divisibility (i.e.,
value group) is order isomoφhic to the additive group of rationals with
the standard ordering (for example [10, page 101, Example 2—use ra-
tional instead of real exponents] which is the same as [4, Example 12.2]).
If M is the maximal ideal of i?, then M2 = M and spec R = {M, {0}}. Let
<& = (i?, M) = {I: I is an ideal of R and ID M}. Then f i s a Gabriel
topology of R and <$ φ f (<?) for any <3> C spec 7?. •

We present an alternate description of the Gabriel topologies
for ty C spec R where R is a valuation domain, and then describe all the
Gabriel topologies of a valuation domain.

PROPOSITION 3.2. Let R be α valuation domain and ty C spec R. Define
P = U <$. Then P E spec R and there are two possibilities for Sr((3)):

l.IfP EΦithen^iΦ) = Φ(P) = {/: / is an ideal of R and P £ I).
2. If P £ <3\ then &(<$) = φ(P) U {P} = {/: / w απ /έfeα/ o/i? and

P C/}.

1. This follows from the fact that if Pl9 P2 E speci? and
D P ^ t h e n ^ ^ ) C ^(P 2 ) .

2. Since P £ <3\ one has P G Π, «p Φ(J) = Φ(Φ) and so f (9>) D
U {P}. The other inclusion is straightforward since R is a valuation

domain. D

THEOREM 3.3. Let R be a valuation domain. Then *$ is a Gabriel
topology of R if and only if either

1. there exists P E spec R and (5=($(P),or
2. there exists P E speci? with P2 = P and & = f (P) U {P}.

Proof. It has already been noted that the two types of ¥ described are
Gabriel topologies. Conversely, suppose ^ is a Gabriel topology of R.
Define P= U {P' E speci? : P' C ΓW). Then P E speci? and / D P
for all I G ty. Suppose Jo is an ideal of i? and / 0 J P. We claim that

Define Pj = (Ί {Pr E speci?: P r D /0}. Then Px E speci? and P1 D
/ 0 J P. Therefore P, jί Π fand so there exists / E ^with P, jί /. Hence
J £ P{9 and choose JC E P ι - /. Then J ξ Rx and so i?x E <3\ Let
P2 = Π* = 1 i?jc". Then P2 E speci? and Px 5 P2. It follows that P2 $ / 0.
There exists an integer n > 0 with Rxn ^ Io. Since i?x E $", we have
i?jc" E ^by T2. Thus Io E Φ, as claimed.
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T h e r e f o r e ^ m u s t b e Φ(P) o r Φ(P) U {P}. I n t h e l a t t e r c a s e , f G f
i m p l i e s P2 E f b y T 2 , a n d s o P2 = P . D

Consider the Example 3.1 where Λ is a valuation domain with
maximal ideal M and M2 — M and spec R = {Af, {0}}. Then by Theorem
3.3, there are four Gabriel topologies of R, namely ^ = {i?}, ^ =
{/?, Af}, 5^ the set of all non-zero ideals of R, and % the set of all ideals
of R. One can readily describe the corresponding hereditary torsion
theories. For ^F,, the only torsion Λ-module is the zero module. For W29 the
torsion i?-modules are the semi-simple i?-modules. For $3, the torsion
Λ-modules are the "classical torsion modules," i.e., the /{-modules T
where Ann Λ (x) φ {0} for all x E T. For ^ , every Λ-module is torsion.

As a comparison, consider the example R which is a DVR with
maximal ideal M. Then there are three Gabriel topologies of R, namely
^ , $ 3 , and ^ 4 as described in the last paragraph, with the same corre-
sponding torsion theories. Relating these to <3Γ((5)) for £P C spec i?, one has

We briefly comment on another difference of these two Krull dimen-
sion one valuation domains in the last two paragraphs. By [9, Ch. 6,
Proposition 2.1] if ?Γ is the torsion class of some torsion theory, then ?Γis
closed under extensions. Thus, for the R of Example 3.1, one has the fact
that if 0 -* Sx -> S2 -> -S3 -> 0 is a short exact sequence of i?-modules and
Sλ and 5 3 are semi-simple, then S2 is semi-simple, and so the sequence
splits.In other words, Ext^(S^, Sλ) = {0} for all semi-simple i?-modules S3

and Sx. On the other hand, if R is a DVR with maximal ideal M, then if
0 -» R/M -* A -> R/M -> 0 is a short exact sequence of /{-modules, this
does not imply that the sequence splits—one can have it not split with
A = R/M2. In other words, Ext^Λ/M, R/M) 9* (0).

Recall that R is a Prύfer domain if and only if RM is a valuation
domain for all M E mspeci?.

THEOREM 3.4. Let R be an h-local Prύfer domain. Then 9" is the torsion
class of a hereditary torsion theory of R if and only if either

λ.^is the class of all R-modules or
2. ?Γ is the class of all R-modules T satisfying TM G$[M] for all

M E mspec i?, where for each M E mspec R one has ?Γ [M] given by either
(a) there exists P E spec RM and $[M] is the class of all RM-modules

U such that AnnRM(X) J P for all X E U or
(b) there exists P E spec RM with P2 = P φ {0} and ?Γ [M] is the class

of all RM-modules U such that AnnΛ (x) D P for all x G ί / .

Proof. This is a combination of Theorem 2.5 and Theorem 3.3.
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4. More on A-local domains. For % a Gabriel topology of i?, the
corresponding class of torsion i?-modules will be called ^-torsion i?-mod-
ules. Thus T is an ̂ -torsion i?-module if and only if AnnΛ(>) E f for all
x E T.

THEOREM 4.1. Let ^ C mspeci? and consider <$ = ^({{0}} U
(mspeci? — 9)). The following statements are equivalent:

1. For all x E R — {0} with mspec(x) C 9 one has mspec(x) is finite
and for all P E speci? — {{0}} with mspec(P) C 9 one has P is a subset
of only one maximal ideal of R.

2. Γ = θ Λ / e m s p e c Λ T(M)for every ̂ -torsion R-module T.
3. T = ®MζΞq T(M) for every ̂ -torsion R-module T.
4. T - 0 M G m s p e c RT{M) for every cyclic ̂ -torsion R-module T.
5. T ~ ΦΛ/G«5p T(M) for every cyclic ^-torsion R-module T.

Proof, Let T be an ̂ -torsion i?-module. We claim that T(M) = {0}
for all M E mspeci? - <3\ One has AnnΛ(jc) E <$ for all x E T. Then
V(ArmR{x)) Π ({{0}} U (mspecT? - 9)) = 0 , and so AnnΛ(x) φ {0}
and AnnΛ(x) jί M for all M E mspeci? - 9. Hence Γ(M) = {0} for all
M E mspec i? — ίP, as claimed.

2 <H> 3. Follows from the above paragraph.
4 <H> 5. Follows from the above paragraph.
1 -> 3. Let T be an ^-torsion i?-module and let x E T. Then

mspec(AnnΛ(x)) C ? by the first paragraph. By Condition 1,
mspec(AnnΛ(x)) is finite. By [4, Lemma 2.4] i?x s iί/Ann^ίx) is a finite
direct sum of indecomposable submodules, i.e., Rx — @":=ιRxr Then
(mspec(AnnΛ(x/))}"=1 is a partition of mspec(Ann^(x)) which is a subset
of (3>. By [4, Proposition 2.5] and the second half of Condition 1, it must
be the case that mspec(AnnΛ(χ.)) has at most one element for each
i = 1,2,...,Λ. Thus RxtC T(M) for some MGΦ. This implies that
x E ΣMG<$ T{M), i.e., Γ = ΣM(Ξ<$ T(M). It is straightforward to show that
the sum is direct.

3 ^ 5 . Trivial.
5 -» 1. Let x E i? - {0} with mspec(x) C 9. Consider T = i?/i?;c.

Then AnnΛ(Γ) ^ {0} and AnnR(T) £ M for all M E mspeci? - <3\ and
so Γ is a cyclic ^-torsion i?-module. By Condition 5, T- ®M^T{M).
Since T is a cyclic i?-module, T must be a finite direct sum, and so
mspec(x) is finite. Let P E speci? — {{0}} with mspec(P) C 9. Con-
sider U — R/P. As above, U is a cyclic ^-torsion i?-module. By Condition
5, U — θMG<5p U(M). But since P E spec i?, it must be the case that U is
indecomposable. Thus P is a subset of only one maximal ideal of i?. D
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COROLLARY 4.2. [E. Maths], The following statements are equivalent.
1. Ris an h-local domain.
2. T = ΘMGmspecR T(M) for every torsion R-module.

p

3. T = ®A/Gms ec/? ̂ ( ^ 0 / o r ^^O 7 ςyc/ic torsion R-module.

Proof. This is the special case of Theorem 4.1 with P̂ = mspeci?.

Since Corollary 4.2 is a special case of Theorem 4.1, one can view the
five conditions of this theorem as generalizations of the definition of
Λ-local domains. Each instance of the generalization comes from a Gabriel
topology ^ o f the type given in the hypothesis of Theorem 4.1.

The authors thank the referee for several suggestions that improved
the organization of this paper.
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