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NONSMOOTH ANALYSIS ON PARTIALLY ORDERED
VECTOR SPACES: PART 1 — CONVEX CASE

NIKOLAOS S. PAPAGEORGIOU

Convex analysis provides the tools to extend results of differential
calculus to nonsmooth real valued functions. The purpose of this article
is to study those extensions for convex vector valued mappings. We
study their continuity properties, develop a subdifferential calculus and a
duality theory, similar to the one existing for real valued functions. We
conclude with some useful deconvexification results.

1. Introduction. During the last two decades, many essential con-
tributions to the theory of extremal problems were made. Beginning with
the development of convex analysis by Brensted [1], Rockafellar [29], [31],
[32], [33] and Moreau [20], [21], we have the first important generalizations
in optimization theory. By substituting the smoothness assumption with
the convexity one and using the rich functional analytic theory of convex
sets (see [5]), they were able to obtain a complete, interesting in its own
sake, theory, which is known today as "Convex Analysis". Its usage in
optimization turned out to be extremely fruitful and produced a harmoni-
ous duality theory for convex problems. These achievements are exem-
plified by the work of BrΘnsted [1], Ekeland-Temam [6], Ioffe-Levin [11],
Ioffe-Tichomirov [12], [13], Pshenichnyi [26], Rockafellar [29], [30], [33],
[34], Valadier [37], [38] and others. All this work on the one hand
extended the range of treatable problems and, on the other hand, intro-
duced new concepts and techniques, useful in solving old problems also.

The next natural step in this program was to try to get rid of the
convexity assumption too. The first important contribution in that direc-
tion was the work of Clarke [2], [3]. Following Clarke, Hiriart-Urruty [9],
[10], Ioffe-Tichomirov [13], Lebourg [17] and Penot [23] have significantly
contributed to this or neighboring areas.

In the last few years, there has been a growing interest in vector
optimization problems (see [7], [14], [15], [16], [19], [27], [28], [38], [39],
[40], [41], and [42]). For those problems, although we have a Hahn-Banach
type theorem due to L. Kantorovich, we do not have any functional
separability results. So the arguments that led to the development of the
analytic foundations in the scalar valued case, break down. So we have to
find new ways to approach the problem.
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In this work, we undertake this task. In the present paper, which is
the first in a series of two papers, we deal with the convex case. Having as
our starting point the paper of Valadier [38], we generalize several of its
results and also obtain new ones. So we develop a duality theory for
convex operators, a subdifferential calculus and even go further and
introduce some deconvexification methods, like quasidifferentiability and
quasiconvexity and obtain new results there, too.

In the second paper [22], which is a continuation of this one, we pass
to the nonconvex theory and we develop an analog of Clarke's calculus of
generalized gradients for vector valued mappings.

In both papers, our approach is topological, as opposed to that of
Kutatelazde [14], [15], [16], which is completely algebraic in nature.

We hope that this work will be helpful in developing a unified
approach to necessary conditions of vector valued and multiobjective
optimization problems. In fact, this is the topic of a forthcoming paper by
the author.

For the necessary background from the theory of ordered vector
spaces, we refer the reader to [24], [35], and [36].

Finally we constantly assume that all mappings involved are proper,
i.e. they do not take the value -oo.

2. Preliminary material. In this section, which is preparatory in
nature, we present the necessary definitions and notational conventions
that we will be using in the sequence and also prove some general facts
about ordered topological vector spaces for future reference.

In what follows, X and Y will be, in general, Hausdorff locally convex
vector spaces and Kγ will be a convex cone of positive elements that
makes Y a partially ordered topological vector space. We adjoin to Y a
greatest element + oo and extend the vector space operations in the
natural way. Therefore we have automatically adjoined also a smallest
element -oo. We will denote the augmented space Y U {± oo) by Y. We
will always assume that Y is order complete. By that we mean that every
nonempty subset of Y that is majorized in Y has a supremum. This is, in
fact, equivalent to saying that every minorized subset of Y has an
infimum.

If C C Y then the full hull [C] of C is defined to be the set

[C] = { z 6 r : x < z < ) ; { o r j c j G C }

If c — [C] then C is said to be full (or order convex).
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We say that Y or (Kγ ) is normal for the topology τ y if there is a local
basis of the origin consisting of full sets. In the sequence, we will often
assume that Y is normal, since normality is one of the most fruitful, but
also natural, topological restrictions on the order structure of an ordered
topological vector space. For further characterization of normality, see
[24] and [35].

If Y is an o.t.v.s., we say that a sequence {xn}nGN of elements order
converges (^-converges) to x if and only if there are sequences {pn}n(ΞN

and {qn}nGN such that (α) />„<*„< qn and (β) pn t x and qnlx, where
by pn ΐ x we mean that V nζΞNpn = x and by qn ix that Λ nGNqn = x.
This, in vector lattice, is equivalent to saying that there is a sequence yn

decreasing to zero such that \xn — x\<yn. In the LP(Ώ,Σ,Y) spaces
(1 </? < oo) o-convergence is equivalent to μ-a.e. convergence.

There are some other notions of convergence that we will be using.
We mention them briefly. For further details, we refer the reader to [24]
and [35].

(1) A sequence {xn}nζΞN o*-converges to x if and only if from any
subsequence {xnk)k^N we can extract another subsequence {xnk }l(ΞN which
converges to x.

(2) A sequence {xn}n(ΞN converges relatively uniformly to JC, denoted by

if and only if there is an element z E Kγ such that | xn — x \ < λnz, where
λn G i?+ and λM | 0 . Similarly we can have relative uniform ^-convergence.

It is easy to see from the above definitions that xn -»x implies that

xn -» JC. The converse, however, is true only in a special class of linear

lattices.
A vector lattice is said to have the diagonal property if whenever

{*„*},,«€* £ Fand

(1) xnm^xn
 v " ^ N and

(2) xn^x

then there is a diagonal subsequence {xnmr)nym^N which order converges
to*.

An obvious example are the LP(Ω, Σ, Y) (1 <p < oo) spaces.
Now in an order complete vector lattice with the diagonal property

order convergence and relative uniform convergence are equivalent (see
[24]).
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An element e of an ordered vector space Y is said to be an order unit

if and only if for each x G Y there is a λ > 0 s.t. x < λe.

Also in an ordered vector space, the order topology τ0 is the finest

locally convex topology for which every order bounded set is bounded.

Finally a Banach lattice is an ordered Banach space in which the

following monotonicity relation holds: | x | < | < y | - » | | x | | < | | i y | | .

In the sequence, we give some easy results that we will need on several

occasions in the next sections.

First, it is very easy to see that if Y is as above, then we have that

yn °->y and;/ °-*y' imply thatyn Vy'n °->y V / .

Also the following fact is useful:

LEMMA 2.1. IfKγ is closed then ifyn < y'n VH G N and

then y < y'.

Proof. Since by hypothesis, yn < y'n Vn G TV, we have that y'n — yn G

Kγ VΛ G TV. Also

v* — v —> vr — v

and since K\ is closed, we conclude that y < y'. D

Finally, we have the following result.

LEMMA 2.2. // Y is a Banach lattice and xn-*x then xn -> x.

Proof. Since by hypothesis xn ->x, we have that | xn — x | < \nz for

some z G Kγ and for λw | 0 , λn G i? + . Fix n G N. Then xn - x G

[-λrtz, λ π z]. Since 7 is normal, the order interval [-λnz, λ r tz] is bounded.

So there is μ > 0 such that [-λnz/μ, λ n z/μ] G U where U is the unit ball

in Y. Hence, for ε > 0, we have [-ελ^z/μ, ελ nz/μ] G £/. Since λw 4,0, we

know that there is m 0 E JV such that for λ m with m > m0 we have

— Λ: G εί7 for m > m 0

•
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We close this section with a notational clarification. By L(X, Y) we
denote all linear operators from X to Y and by S,(X9 Y) we denote all
continuous linear operators from X to Y.

3. Convex mappings; continuity and subdifferentiality.

DEFINITION 3.1. We call a mapping/: X -* Y midconυex if and only if
f{\x + \z) < \f{x) + i/(z) for all x9 z e X. We call a mapping /:
X -> Y convex if and only if f(λx + (1 - λ)z) < λ/(x) + (1 - λ)/(z)
forallλe[0,l]jc,z E X

Its effective domain, denoted by dom / = {x E. X: f(x) < +oo}.

LEMMA 3.1. ///; X -» Y is midconυex and finite and there is x0 E X
majorized in a neighborhood of x0 then f is locally o-bounded.

Proof. By hypothesis there is a neighborhood U(x0) — x0 + U of x0

(U = neighborhood of the origin in X) such that /(z') <y for all z' E

ϋ(*o) = ^o + ^
By considering if necessary the mapping /(z) =/(z /) = / ( J C 0 + 2) we

can assume without loss of generality that x0 — 0. Let ί/ be a symmetric
and convex neighborhood of the origin. Then if z E ί/ -> -z E CΛ So by
midconvexity, we have that

This is true for any z E ί/. So we conclude that / is also minorized in U
and therefore it is order bounded in U. Now let x be any point of X.

Let w = 2x and consider the neighborhood F = | {/ of 0. Then x + K
is a neighborhood of x and x + F ^ ^ w + ^ t /

/(iw + \z) < |/(w) + i/(z) < i/(w) + ^ Vz E t/.

So/is majorized in x + F. Repeating the initial argument, we see that/is
also minorized in x + F. So it is o-bounded in that neighborhood of x.
Since JC was an arbitrary point, the Lemma follows. G

COROLLARY 1. ///: X -> Y is convex and majorized in a neighborhood
of x0 then f is locally o-bounded at every point of int dom /.

COROLLARY 2. //, in addition, Y is normal then f is ΊγΊocally bounded
(τγ = the topology of Y).
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Proof. By the normality of Y every other bounded set is rebounded
(see [24] and [35]). D

We will use the above material to obtain some continuity results
about convex mappings. The first of these appears also in Valadier [38]
and we include it here for completion and because we added a second part
to it. Furthermore, our proof is more transparent with the use of the
previous results.

THEOREM 3Λ.IfYis normal andf: X -> Y is convex then the following
two statements are equivalent

(\)fis majorized in a neighborhood UofxEϊX
(2) Y has an order bounded neighborhood of the origin int dom f=£0

and f is continuous there.

Proof. (1) -> (2). Statement (1) implies that there is a neighborhood Uf

of x -> Xsuch that for all z E Uf(z) < y .
By considering if necessary U — x and f(x + x) — f(x) instead of U

and / respectively, we see that we can assume without loss of generality
that x = 0 and/(Jc) = /(0) = 0.

By Lemma 3.1, we know that/is also minorized in £/, i.e. there is a
-y' E:Y such that -y' <f(z) for all z Gl/. Now consider the order
interval [-y\ y] and let V be any neighborhood of the origin in Y. Let
1 >: ε >: 0 such that ε[-y\ y] — [-εy\ εy] C V. This is possible since Y is
assumed to be normal and so every ^-bounded set is bounded (see [24]).

Let Uε — εU and take z' G ί/E. Then we have from the convexity of/
that

(1) /(*') =f(εz) =f(ez + (1 - ε)0) < εf(z) + (1 - e)/(0) = εf(z)

Also since /(0) = 0 by the convexity of /, we have

f(z')>-f(-z')>εf(-z)>-εy'

since -z E U by symmetry. So we have

(2) f{z')>-εy' for all z ' E Uε.

From (1) and (2) above we conclude that

f(εU) C [-εy\ εy] C V -̂  /is continuous at x.
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Since by Lemma 3.1 we know that / is locally 0-bounded on every
x G inf dom /we deduce that/ | i n t d o m / i s continuous.

(2) -> (1). Let / be continuous at x. Let V be the order bounded
neighborhood of the origin in Y. Then V C[-y'9 y] where y = sup V and
-y' = inf V.

Now/( Jc) + Fis a neighborhood of /(x).
By continuity there is a neighborhood U of x such that

-> /is locally bounded at Jc

-»/ is locally bounded at every point of int dom /. D

Before stating the next theorem, we will introduce a new class of
mappings that will play a central role in the second part of this work
which deals with the nonconvex case (see [22]). Assume now that X is a
Banach space and Y a Banach lattice.

DEFINITION 3.2./: X -» Y is said to be locally o-Lipschitz if and only if
for every bounded open set U of X there is &y G Kγ such that

\f(x)-f(z)\*y\\x-z\\ Vx,zGU.

THEOREM 3.2. // /: X -> Y is a convex mapping majorized in a
neighborhood of x0 G int dom / then f is locally o-Lipschitz in int dom /.

Proof. By Lemma 3.1, we know that / is locally bounded on the
interior of its domain.

So let ε > 0 be such that for z G Ue(xQ) = {x: \\x - xo\\ < ε] we
have that | /(z) | < j>. We will show that in Uε/2(x0) we have | /(z) - f(x) \
< j ' | | z — JC || wherey' — 4y/ε.

Suppose that there are zx,z2 G Uε/2(x0) such that /(z2) —/(z,) ^
y'\\z2-zλ\\.

Let zli — z2

Jr λ(z 2 — z,) for λ > 0. Since z2, zx G Uε/2(x0)9 it is
possible to pick λ > 0 such that z3 G Uε(x0) and || z3 — z21| = λ || z 2 — zx ||
= β/2.

Letφ(λ) = /(z2 + λ(z2 - z,)).
Then we have that φ(λ) = /(z3), φ(0) = /(z2), φ(-l) = /(z,) and it is

easy to see that φ is a convex mapping defined on R. Using the properties
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of such mappings we have that

φ(0) - φ(-l) < ψ(λ) - φ(0)
1 ~ λ

φ(0) - φ(-l) < φ(λ) - φ(0)
"" | | z 2 -z , | | ~ λ | | z 2 -z , | |

φ(0) - φ(-l) < φ(λ) - φ(0)
"* Ilz 2-z, | | Ilz3-z.ll

Since by hypothesis /(z2) — /(z,):φjΊ|z2 — z,|| then we have

11 z 3-z 211 ^ J

But recall that z3 was chosen so that || z3 — z21| = ε/2. Hence we get that

(1) f(z3)-f(z2)$2y.

But by hypothesis, z3, z2 E ί/ε(x0) ->/(z3) <}> and

(2) -/(22)-j-/(z3)-/(z2)<2j.

From (1) and (2) above, we get a contradiction. So there do not exist

z3, z2 E ί/ε/2(*o) s u c h ^ a t

/(z 2 )-/(* ! ) ^ / l l ^ - z j l .

Now suppose that there exist z[9 z2 E Uε/2(x0) such that

/(^)-/(^ί)Φ-/IU2-^ίll.
But then f(z[) - f(z'2) ^y'\\z'2 - z[\\ contradicts the first part of the
proof.

So we conclude that for all z, x E Uε/2(x0) we have

-y'Wz -χ\\ </(z) -f(x) <y'\\z -χ\\

^\f{z)-f{x)\</\\z-χ\\

-> / is locally 0-Lipschitz as claimed. D

REMARK. We will have a more detailed study of locally o-Lipschitz
mappings in the second paper. At this point, we just mention that
local-0-Lipschitzness implies local-norm Lipschitzness. This is very easy to
see. For JC, z E U \ f(x) - f(z) |< y\\x - z\\ -, | |/(χ) - /(z)| | <

U — zll/is locally-norm Lipschitz.

Now we will introduce the notion of the subdifferential for convex
mappings and we will have a straightforward generalization of Valadier's
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Theorem 6 (see [38]), which nevertheless will turn out to be very useful in
the sequence.

DEFINITION 3.3. Let /: X -» Y be a convex mapping. We call the
algebraic subdifferential of fat x0 to be the set

d*f(x0) = {AE L(X9 Y):A(x - x0) </(*) - f(x0) Vx G dom/}.

Similarly we call the (topological) subdifferential off at x0 to be the set

df(x0) ={AG t{X> Y): A(x - χ0) </(*) - f(x0) Vx G dom /} .

The elements daf(x0)
 a n d 9/(*o) are called the algebraic subgradients and

the subgradients off at x0 respectively.

The next result is an easy generalization of Theorem 6 of Valadier
[38].

LEMMA 3.2. If Y is normal and f is continuous at x G dom / then
daf(x) = df(x) for all x G X.

Proof. It is clear that in general daf(x) D df(x) and for all x G
intdom/3a/(x) φ 0 (by Valadier's Proposition 4 (see [38]) and the
Hahn-Banach-Kantorovich (see [24], [35])).

Now let A G d"f(x). We will show that A is continuous at x and then
by linearity A G £( X, 7), which will give us the desired equality.

For that, we pick a neighborhood V of the origin in Y such that F is
symmetric and full. Since 7 is a topological vector space there is a
neighborhood Vx of the origin such that Vλ + Vx C V and Vλ is absorbing.
This implies that there is no λ > 0 such that λ[^(JC) - f(x)\ G Vx -> A(x)
-f(x)EV]/λ.

Also for V[ — Vλ + /(x) there is 1/ a neighborhood of 0 such that for
U' = [/ + Jc we have from the continuity of /at x that/([/') C F'/λ.

Now let z be any point in U'. We have

i4(jc) =A(z + χ-x) =A{x) +A(z-χ) <A(x) + f(z) -/(JC)

But [ ί̂(x) ~f(x)] G K,/λ and/(z) G (Vλ + f(*))/λ = F(/λ. So

(1) ^(z) <U(x) ~/(x)] +/(z) G I[Fί + Fl +/(*)]

Q {[V + f(x)] = ^V\
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Also since U' is symmetric -y' G U\ Then

A(-z) =A(-z + x- x) =A(x) + A(-z - x) < A(x) + f(-z) -fix)

But since [A(x) — f(x)] G F,/λ, by the symmetry of F, we have that
~[A(x) - f(x)] G F,/λ and similarly -/(-z) G F(/λ.

So

(2) -U(χ) -fix)] -f(-z) G I F , + ± F , + ^/(x)

From (1) and (2) above we deduce that

Λ(z) G[-U(x) -f{x)] -M,Aix) -fix) +fiz)].
Since the two end points of the above order interval are in F'/λ and V is
full by the normality assumption on Y, we get that A(z) E V'/λ -> ̂ (t/')
C F'/λ -> ̂ (λJ7') C F ^ i i s continuous at x -> ̂  G £( ̂ , 7) -> 3α/(x)
= 9/(x) V J C G I D

REMARK. From this result, we also conclude that 3/(JC) φ 0 for all
x E int dom /.

We will conclude this section with some results concerning the
0-directional derivative of integral operators. The results that we obtain
here will be used in the second paper to get a formula for the generalized
gradient of an integral operator (see [22]). Similar results in the real valued
case were obtained by Ioffe-Levin [11]. Although with a small additional
effort the results hold for nonseparable Banach spaces too, in order to
avoid unnecessary technical complications, we will constantly assume that
our spaces are separable. For the definition and properties of the Bochner
integral, that we will use in the sequence, the reader can refer to Hille-
Phillips [8].

So let (Ω, Σ, μ) be a positive measure space, X a separable Banach
space and Y SL separable Banach lattice. As is always the case in this paper
Y is order complete and we adjoin to it the elements {± oo}

Let/: Ω X X -> Ybe a mapping satisfying
(i) fω axe convex and proper for μ-almost all ω E Ω

(ii) /( , x) are weakly (Pettis) measurable for every x E X.
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Notice that since Y is separable then (ii) implies that /( , x) is
strongly (Bochner) measurable for every x E X.

Now let U be an open subset of X and let Λ:0 E U. Assume that
ω -» I fω(x) I is an L,(Ω; Y) mapping for every x E U and y*(fω(x)) E
Lj(Ω, R) for every x E U. Define

/(*) = / / „ ( * ) dμ(«)
Ω

We start with some auxiliary general results.

LEMMA 3.3. Ifgι, g2 G L,(Ω, V), g, > g2 μ-α.e. andy*(g,) G L,(Ω, Λ),
i = l,2Vj* G y*ίΛe«

Proo/. Consider

^gi(ω) dμ(ω) - f g2(ω) dμ(ω) = J [gx(ω) - g2(ω)] dμ(ω).

Lety* E (K$ )*. Then we have

y*\ ί(gM - gii")) dμ(ω)\ = ίy*(gx(ω) - g2(ω)) rfμ(ω).
LyΩ J y Ω

But since by hypothesis g{ > g2 μ-a.e., we have that7*(g!(ω) — g2(ω)) >: 0
μ-a.e. and because μ is a positive measure we get that

g 2 ( ) ) * ( ) ! ^ 0.
J

Since this is true for every j * E K* we get that

/(gi(«) " &(«)) ^ ( ω ) ^ 0 ^ Jf g l(,ι) rf/ι(ω)

>fg2(ω)dμ(ω). D

Now we can prove the following proposition which is also interesting
in its own sake. (For the definition of f'(xQ; h), see §4 and [38].)

PROPOSITION 3Λ.f'(x0; h) = JQf^(x0; h) dμ(ω).
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Proof. First let us check that the integral /Ω/'( x0; h) dμ(ω) is well
defined.

By the convexity of fω( ),

for λER+ and

fω(x0,

So by Valadier's Lemma 8 (see [38]) we conclude that

λ|0 Λ

-> f^(x0; h) is strongly measurable.

Now assume without loss of generality that xo± h E: U. Then

/„(*<>) -L(xo ~ h) ^f:(x0; h) </ω(x0 + h) -f:(x0)

-+\f:(xo\ Λ)l = / ^ o ; h) V (-/^(χo; A))

^ (Uxo + Λ) -/ω(^o)) V(/ω(x0 - h) -fu(xo))

But

0 - A) -/ ω Uo))

(using the properties of | | (see [36]))

o ~ h)\ +|/ω(x0)l

Since Y is a Banach lattice we conclude that

1̂11 /.(*o + A) III +111 /Λ*o - *) III +111 /-(
is integrable.
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This, together with the fact that it is measurable, imply that/^(x0; h) is
jB-integrable. So the integral is indeed well defined.

Then we have for/( )

r(x . h) - i n f Λxo + M)-Λ*o) _ . „_ Λxo + λA) ~ f(x0)

λMl0

Using our initial observations and Valadier's Lemma 8 (see [38]) we
deduce that

f'(x ' h) = Ί

So for every y* E 7*, we have

Now if 7* E (ΛΓy )* by the monotone convergence theorem, we have that

(i) (f'ixoih),y) = JMmίUχ°+ λf - f M , y

But since by hypotehsis Kγ is normal, (Kγ )* is generating, i.e. (AΓy )* =
7* (Krein's Theorem, see [35]). So for any y* E 7*, there are yf9 y% E
(/Γy )* such that j>* = y* — y*- Using that in (1), we conclude that

(f'(x0; h), y*) = (jf/jUo; h) dμ(ω), yή Vy* G Γ*

f'(xo ,h)=f&(xo;h)dμ(ω). D
JΩ

REMARK. Clearly the result of Proposition 3.1 holds for any x E U.
Now define the operators Φ, F: X -» L,(Ω, Γ) by the formulas

[Φ(h)](ω)=&(xo;h)andF(xo)=f(-,xo).
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Make the following additional assumptions

"/ω( ) is continuous at x0 E U for μ-almost all ω E Ω ".

Then we have the following result about this operator.

PROPOSITION 3.2. F\x\ h)-Φ(h) and Φ is demicontinuous at 0.

Proof. In L^Ω, Y) we consider the ordering induced by Y i.e. φ > ψ if
and only if φ(ω) > ψ(ω) μ-a.e. on Y.

Then by the definition of the directional derivative, we have

Fixo, h) = tat F(Xo + Xh)FUo)
λ>0 Λ

. f( ,xo + λh)-f( ;xo)
— m j ^

λ>0 λ

= /'(•, xo;h) = Φ(h).

So we deduce that Φ is a sublinear operator.
Let ΛM -»0 in X. Then for every ω E Ω, we have

/„(*<>) -/„(*<> - Λ») ^/»(*oί A) ^/ ω (^o + Λ J - / U o ) .

But

Hm (/^(xo; ΛJ, J*) ^ Urn (/ω(x0) - / ω ( χ 0 - hn), y*)

for

(1) y* G (#+ )• -> Urn (%(χo hn), y*) > 0.

Similarly again fory* E (Kγ )* we get that

(2)

From inequalities (1) and (2) above we get that

lim(£(xo;h),y*) = 0 Vj* e (*+ )*.

From Krein's Theorem, (Kγ )* is generating. Therefore we get that

£ ( * o ; hn) -Oμ-a.e. - Φ(Λj - 0 = Φ(0) for any hn - 0.

So indeed Φ is demicontinuous as claimed. D



NONSMOOTH ANALYSIS 1: CONVEX CASE 417

Now if fω(x) < φ(ω) μ-a.e. for all x in a neighborhood of x0 and
φ G L^Ω, Y), then it is easy to see from the continuity of /ω( ) at x0 and
the Lebesgue dominated convergence theorem for Bochner integrals, that
F( ) is also continuous at JC0.

So we have that daF(x0) = dF(x0) (by Valadier's Theorem 6) and
d«F(x0) = 3Φ(0) (by Valadier's Lemma 4).

Therefore we conclude that dF(x0) = 3Φ(0).
Hence, the following result is true for Z = L,(Ω, 7).

PROPOSITION 3.3. //Λ e L(-Y, Z) w swcA /Aaί Λ(Λ) < Φ(A) VA G
yl G 9Φ(0) i.e. i4 E £( Jf, Z).

Proo/. The fact that A(h) < Φ(A) VA G X implies that i E 3αF(x0)
= 3αΦ(0) = 3Φ(0). So^ί G £(X, Z). D

Finally, using Valadier's Theorem 6 and Corollary 7 (see [38]), to-
gether with our previous observations and results, we get the following
Proposition.

PROPOSITION 3.4. dF(x0) = 3Φ(0) is equicontinuons, convex and com-
pact subset o/£( X, Z) with the weak operator topology. Also

F'(x0; A) = Φ(A) = max{i?(A): R G dF(x0) = 3Φ(0)}.

4. The subdifferential calculus. First we recall some useful notions
from Geometric Functional Analysis.

DEFINITION 4.1. Let D be a subset of a vector space Y. The algebraic
interior of Z), denoted by Dai

9 is the set of points x0 such that for each
x G X there is a λ 0 > 0 such that for λ G [-λ0, λ0] λx + (1 - λ)x0 G D
or which is equivalent that D — x0 is an absorbing set.

Intuitively this means that we can move from x0 towards any point in
X along a ray by staying in the beginning for a while in the set D.

The relative algebraic interior of D denoted by Drai is the algebraic
interior of D relative to aff D.

If /: X -> Y is a convex mapping, then for every x0 G (dom f)aι the
0-directional derivative exists in every direction and is given by
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(see [38]). Again, we point out that this doesn't imply convergence in the
topology of Y since in general order convergence and topological conver-
gence are disjoint notions. For more details about this issue, we refer to
[24], [35], and [38].

In the sequence, we will generalize several formulas of the subdif-
ferential calculus. Results in this direction were obtained by Kutatelazde
[14], [15] and [16], but from a purely algebraic point of view. Our
emphasis however is topological and so our approach relies more on the
work of Valadier [38].

We start with a generalization of the Moreau-Rockafellar formula.

THEOREM 4.1. // Y is normal fl9 f2: X -» Y are convex mappings with fx

continuous at x0 E dom f2 then

Proof. It is easy to see, directly from the definitions, that in general
we have 3(/, + /2) D 3/,(x) + df2(x) for every x E X. Let A E
9(/i +ΛX*) Then A(h) </,(x + h) + /2(x + h) - / , ( * ) - f2(x). De-
fine q{h) =fi(x + h) - fx(x) and p(h) = A(h) - f2(x + h) - f2(x).
Clearly by their definitions, q is convex and/? is concave. Since

(dom / , ) " ' Π dom f2 D {x}0 φ 0 -»(domq)ai Π dom p φ 0

-^Oε (dom<7 — dom/?)0".

So by applying Zowe's sandwich theorem (see [42]), we know that there is
Aλ GL(X,Y) such that

->A(h) -f2(x + h) -f2{x)<Aλ{h) </,(* + h) -Mx).

So Ax G 3"/,(x) = 3/,(x) and setting A(h) - Aλ(h) - A2(h), we have
that A2(h) <fz(x + h) - f2(x) VΛ G X. So A2 E 9α/2(x), while A E

Hence finally A E θ( /, + f2)(x) and ̂ 42 E 3/2(x) and so we have that
+ ΛK*) = 3/,(x) + 3/2(x) Vx E X. D
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Now we will get formulas for the subdifferential of composite map-
pings.

The first concerns the composition of a convex mapping with an
affine continuous operator.

The second is about the composition of two convex mappings.
For that purpose let Z be an o-complete ordered topological vector

space.
Let A E £( X, Y) such that lm A — Y (surjective) and for somey E Y

consider the affine continuous mapping of a(x) = Ax + y.
Let /: Y -> Z be a convex mapping and consider the mapping / ° α:

X^Z.
Then the following result is a generalization of Goldstein's formula

for real valued functions.

T H E O R E M 4.2. If f and a are as above then

d(f°a)(x)= U RoA VxGX.
R<Ξdf(a(x))

Proof. Following the definitions, it is easy to see that, in general, we
have that 9(/° α)(x) D UΛeθ/(α(Jc))Λ ° ^ So we need to show inclusion
in the opposite direction. For that purpose, let B E 3(/° a)(x). Then by
definition we have that

B(h) < ( / o a)(x + h)~ ( / o a)(x) VA E X

- B(h) <f(A(x + h)+y) -f(Ax+y).

Now if h E ker A9 we deduce that

B(h)<f{Ax+y) -f(Ax+y) = 0

and since -h E ker A similarly we get that B(-h) < 0 -> B(h) > 0. So
B(h) — 0 and therefore we conclude that kerB D ker^l. So we have
^ G £ ( I , 7), 5 E £(X, Z), ker5 D ker,4 and by hypothesis lm(^l) = Y.
By the factorization theorem, we know that there exists Φ E £(7, Z) such
that Φ ° A= B.

We claim that in fact Φ E df(a(x)). If we show this, then clearly we
are finished with the proof of the theorem.

Let w E Y. Then there is h E X such that Ah — w.
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Hence Φ(w) = Φ(Ah). Since B = Φ o A Gd(f<> a)(x), we get that

A(h) = Φ(Ah) < (/o a)(x + h)~ (/o a)(x)

+ h)+y)-f(Ax+y)

= f(Ax + w + y) - f(Ax + y).

Because this is true VwG Y, we deduce that

Φ G df(Ax +y)^Φ (Ξ 3/(α(jc)).

So the theorem follows. D

Before going on to our next subdifferential formula for the composi-
tion of two mappings, we need some auxiliary material.

Suppose that Z is an order complete locally convex o.t.v.s. and both Y
and Z are weakly sequentially complete with Kγ and K? closed.

Let /: X -> Y be a convex mapping and g: Y -> Z be a convex
increasing mapping with g(±oo) = ±00.

It is a trivial exercise to check that g o /is in fact convex.
We start with a chain rule for directional derivatives.

LEMMA 4.1. // x G (dom/)α ' and g(f(x) + hλ) - g(f(x) + h2) <

p(hx — h2) where p: Y'-* Z is sublinear and continuous at 0 then

(g ° /) '(*) = g'(/(*)) ° /'(*)•

By definition we have that

)'(*; *) = rfm
Λ j,0

o . U m
λlO λ

Because of our assumptions on the spaces Y and Z, we have that

λ|0 A

But by the definition of the directional derivative we have that

f(x + λh) =f(x) + λf'{x; h) + O(λ)
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where O(λ)/λ 10 as λ 10 -» O(λ)/λ ^ 0 as λ 10. Hence we have that

λio A

) + λf'jx; h) + O(λ)) - g(f(x)
λ|0 λ

But from our hypothesis about g, we have that the first quotient tends to
zero while the second one tends to g'(/(x); f\x\ h)). So the chain rule
follows. D

We will also need the following result.

LEMMA 4.2. If g: Y -* Z as before then g'(x ) is an increasing
sublinear operator.

Proof. We have to show that if yλ, y2 E Y and yx ^y2, then we have
g'(x; yj > g'(z; y2).

But x + λyλ > x + λy2 and from the monotonicity of g we get that
g(x + λyι)>g(x + λy2).

Hence

g(x+Azi) _ ik) >M£±A^1 _ ik) f o r a l l λ > 0
λ Λ Λ λ

o-lim
λ|0

λio A

g'(χm> y\) ^ g'(χm> y2)

which is what we wanted.

In the sequence we will need the Mazur-Orlicz Theorem, which for
completeness we state here. For a proof of it, look in the original paper
[18] or in Peressini [24].
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THEOREM (Mazur-Orlicz). Letp: X -> Ybe a sublinear operator.
Let φ and u be mappings defined on an arbitrary set S with values in X

and Y respectively. In order to exist A E L(X, Y) such that

A(x)<p(x) and A{φ(s)) > u(s).

It is necessary and sufficient that for any {sk}
n

k=λ{Xk}
n

k=λ > 0 we have the
inequality

k=\ \k=\

Now we are ready to state and prove the second subdifferential
formula about composite mappings which can be considered as a kind of
chain rule for the subdifferential calculus.

For that purpose, let I b e a Banach space and Y an order complete
Banach lattice.

THEOREM 4.3. // /, g are as before and for an x0 E (dom f)ai f is
continuous at x0 andg is completely continuous atf(x0) then

Kg ° /)(*) = U d(A - /)(*) Vx e (dom /)"'.

Proof. First let Γ G U^G3g(/(;c))3(^4 o f)(x). Then by definition we
have that there is A E 3g(/(x)) such that

T(z) - T(x) <A(f(z)) - A(f(x)) Vz E dom/.

Also, since A E 3g(/(%)), we have

A{w) - A(f(x)) < g(w) - g(f(x)) Vw E dom g

- A(f(x)) < g(/(z)) - g(/(x))

)) - g(f(χ)) Vz E dom/

So we conclude that, in general, we have that

9 ( g o / ) ( x ) D U d(Aof)(χ).
Λ<Ξdg(f(x))

In the sequence, we will try to show that opposite inclusion also holds.
So let R E 3(g°/)(*). By Valadier's Proposition 4 (see [38]), we

know that for x E (dom f)ai

R(h)<{gof)>(X;h) VΛGI.
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But by Lemma 4.1, we know that

(g°f)'(x;h)=g'(f(x);f'(χ;h)).

So R(h) < g'(f(x); f\x; A)) VΛ E X.

The problem now is to find a linear operator A from X to Y such that

(1) A(d)<g'(f(x);d) VdGY

and

(2) R(z)-R(x)<A{f(x)-f{x)) VzGl
At this point, we employ the Mazur-Orlicz Theorem. According to that,
such an operator exists, if and only if, V{zk}

n

k=ι C dom / and V{λk}
n

k=ι

C i?+ we have

(
k=\ \ k=\

But

*( Σ M** - o) ̂ g'(A*);/'(*; Σ

(by Lemma 4.2)
k=\

n

A : = 1

(the last inequality comes from Lemma 4.2 and the definition of/').
This is what we wanted.
So there is an A G L(7, Z). By (1) we see that A G dga(f(x)) and

Therefore we conclude that RG U^G8g(/(;c))3(^4 o/)(x) for x G
(dom / ) * ' and so the claim of the Theorem follows. D

The next formula will be for the subdifferential of the supremum of
two convex mappings.

So again let X be a Banach space and let Y be a weakly sequentially
complete Banach lattice. This means that Y is a (Aΐ?)-space (the terminol-
ogy is due to Vulikh (see [34])) i.e. Y is an order ideal of its bidual.

DEFINITION 4.1. By A(Y) we denote the following set of operators

Λ(y) = {m E L

These are called multiplier operators.
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DEFINITION 4.2. A linear operator A: Y -* Y is said to be o-continu-
ous if and only if

yn -»y implies that Ayn -> Ay.

We have the following easy result characterizing the multiplier opera-
tors.

LEMMA 4.3. Multipliers are o-continuous operators.

Proof. Let C be an order bounded subset of Y. Then it is easy to see
that for any m G Λ(7), we have

m(sup C) > sup m(C).

Similarly, since 0 < m < Id y and so (Idy — m) G Λ(7), we also have that
(Idy — m)(sup C) > sup(Idy — w)(C). Furthermore

sup C = m(sup C) + (Idy — m)(sup C)

> sup(m(C)) + sup(Idy - m){C) = sup C.

Hence we conclude that sup m(C) = m(sup C).

Now let yn -*y. By the definition of ^-convergence, there are {qn}nGN

{Pn)n*N C γ s u c h t h a t ^riGN pn <yn < ί f l and pn ϊy, qniy. Since

m E L + (F), we have m(pn) < m( j r t) < m(qn). From the first part of the

proof, m(/?J Ty and m(^ n ) l7 Hence m(^n) -+m(y) and so m is o-con-

tinuous. D

LEMMA 4.4. Iff: X -> 7/5 continuous or o-continuous at x then for any
m G Λ(Y) m ° / w αfao continuous at x.

Proof. First assume that / is continuous at x. Then if xn -»x, we have

that/(jcn) ->/(x). But in a JCB space 5 (= strong) and 0* convergence are

equivalent. So f{xn) -*f(x) which means that for some subsequence of

{χn)neN w e ^ a v e ^ a t f(xn) ~~*f(χ)- BY Lemma 4.3, we get that

m{f(xn)) °-U{χ)) - m(f(xn)) iifi(/(x)).
Now let/be o-continuous at x. Then if xn -* JC, we have that

/ ( x j ^f(x) - m(/(x j ) - m ( / ( x ) ) (by Lemma 4.3)

π)) -»/W(/(JC)) -> m ° /is continuous. D
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LEMMA 4.5. If f: X -> Y is convex and continuous at x; f2: X -> Y is
convex and o-continuous at x then

is convex and continuous at x.

s s

Proof. Let xn -+JC. Then by the continuity of fv fx(xn) ->f\(x) and by

the o-continuity of f2j2(xn) -V2(x).
s o*

Now if fι(xn) -+f\(x) -*f\(xn) ~*fi(x) (since Y is a XB-space) and so

there is {xnk)^N C {^ff}fieiV s.t./^x^) -^/j(x). By the o-continuity of the

lattice operations, we have that

So by passing from the beginning, if this is necessary, to a subsequence of
xΛ, we conclude that/is continuous at x. Finally, it is trivial to check the
convexity of fλ V f2. D

Now we are in the position to formulate and prove the following
Theorem about the subdifferential of the supremum of two convex
mappings.

THEOREM 4.4. Iff and f2 are as in the previous Lemma with dom/j
and dom f2 in general position then

3(/,V/2)(:)= U {(8(mo/1)(z) + 3((Idκ-m)o/2(z)))}
mεΛ(η

Vz e x

Proof. By Kutatelazde's result (see [15]), we have

3β(/,v/2)= U {r(m o fj + a-({uy - m) o f2)}.
m<ΞA(Y)

Combining Lemmas 3.2, 4.4 and 4.5, we can see that
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and

3β((Idy - m) o /2(z) - 3(ldy - m) ° /2)(z) Vz E X

So the formula of the Theorem follows. D

Also based on another result of Kutatelazde (see [15]), we obtain the
next Theorem.

THEOREM 4.5. Iffx andf2 are as above with x E (dom f 2 ) a i then

3(/ ,V/ 2 ) (z)= U {m

for every z E (dom fx Π dom f 2 ) m .

Proo/. Again this follows by a corresponding algebraic result of
Kutatelazde (see [15]) and Lemmas 3.2, 4.4 and 4.5. D

We will continue our study of the subdifferential calculus of vector
valued convex mappings by relating the subdifferential with the usual
Gateaux differential when the latter exists. In the process of doing that,
we get a result which is the natural completion of Valadier's Theorem 6
(see [38]).

So we have for x E (dom f)aι

: λ > 0 | = {

Now since 0 = f'(x; 0) = f'(x; h - h) </'(x; h) + f'(x; -h) we have
that for every A e l -f'(x; -h) </'(x; A).

Next let A G 9/(x). Then we know that

A{h)<f'{x;h) Vh&X

*+A(-h)<f'(x;-h)

**-A(-h)>-f'(x;-h)

So for x G (dom/)"' we have that A e θ/(x) ^yl(A) > -f'(x; -h).
The next proposition is the natural completion of Valadier's Theorem 6
(see [38]).
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PROPOSITION 4.1. // Y is normal and f: X -> Y is convex and continu-

ous at x then -f'{x\ -h) — min{yl(Λ); A G df(x)}.

Proof. By Valadier's Theorem 6, we know that

/'(JC; ft) = max{4(A>: ,4 G 3/(JC)}

->/'(*;-ft) = max{A(-h):A G df(x)}

-> -f(x -h) = -max{Λ(^ft):Λ G 3/(x)}

e3/(x)}. D

This observation will help us in achieving our next goal which is to

relate the subdifferential and the (/-differential.

First we have to introduce some auxiliary material.

Assume that Y is normal and Kγ is closed.

Recall if (τy)-limλ^o[(/(* + λλ) - f(x))/λ] exists for all h G X and

belongs to t(X9 Y), then/is said to be Gateaux differentiable at x and

the limit is called the Gateaux or (/-differential and it is denoted by

We already know that

pn = f(x + Kh)-f(x) f o r χ ; < Q i n c r e a s e s a s λ ; τ 0

n

and

^ = f(x + Kh)-f(x) f o r λ̂ , >

Combine {λ'n}neN and {K)nBN in one sequence {λn}neN and let

_ f(x + λnh)-f(x)

K
By repeating terms, when this is necessary, we have

(1) Pn^rH<qn VnEN.

Since/is a G-differentiable we know thsdpn -+f'_ — f'G and q'n ->/+ = f'G.

But by Peressini's Corollary 3.2 (see [24], p. 91), we have that

(2)' PnUc and qnl%.
o

Relations (1) and (2) above imply that rn -*f'G.

So we have proved the following result.
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PROPOSITION 4.2. ///, X,Y as before then

fG(x, h) - o - h m χ

In the next result we achieve what we wanted. For a similar result, but
under more restrictive assumptions, see Zowe [39].

In the sequence, let Y be a normal and weakly sequentially complete
Banach lattice.

Then the following result is true.

THEOREM 4.6. // /: X -> Y is convex and continuous at x then f is
G-differentiable if and only if df(x) is a singleton.

Proof. Let f be G-differentiable at x.
Then we deduce that

A (*; h) =fl(x; h) -»/'(*; h) = - / ' ( * ; -h)

(again by the result of Peressini (see [24], p. 91))

-> max{ A(h): A G df(x)} =min{^ί(Λ):^ G df(x)} V A G I

-» 3/(x) is indeed a singleton.

Now let df(x) be a singleton.
Then

VΛ G

From the assumptions on Y, we deduce that this is a AB space. So we
have

f ( ; 1
λτo

= ( τ y )

λlO

and

-/'(x; Λ) = o-hm

, . . . f(x + λh)-f(x) ... . v
= (τy)-hm ^ ^ M ' =fl(x; h).

λto λ

Therefore/; (x; h) = fl(x; h) \fh G X,/is G-differentiable. D
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Finally, we close our study of the subdifferential calculus with a brief
look at the subdifferential of the composition of a multiplier and a convex
mapping. In the light of Theorems 4.4 and 4.5, this is a very useful result
to have. So let X be a t.v.s. and Y an order complete o.t.v.s.

T H E O R E M 4.7. // a E Λ ( 7 ) Π t(Y) and f:X-*Ϋ is convex then

a © 3/(x) Q d(a ° f)(x) and if a is inυertible equality holds.

Proof. First observe that since a is linear monotone and / is convex,
then α o /is convex.

Now let A E df(x). By definition we have

A(z-x)<f(z)-f(x) VzGdom/

-> α(^4(z — x) < «(/(z) —/(*)) (since α is monotonic)

-> (α o Λ)(z - x) < (α o f)(z) -(a o /)(χ)

Vz E d o m / = dom(α © / ) .

So we get the first part of the Theorem, namely that

) C 3 ( α o / ) ( j c ) .

Vz G d o m /

Now assume, in addition, that a is invertible.
Let ί G 3(α o /)(x). Then we have

(since α"1 is monotone, too. See Kutatelazde [15]).

So α 1 ° 5 E 9/(x) -> 5 E a © 3/(x). Hence we conclude that α ©
3/(i)-3(αo/)(4 •

In the hypothesis of Theorem 4.7, we had that a E t(Y). So it would
be nice to have conditions under which this is in fact true. The next
Proposition answers this question. First we need a definition.

DEFINITION 4.3. An o.t.v.s. which is a vector lattice is a topological
vector lattice if there is a neighborhood basis of solid sets. If it is locally
convex, then it is called a locally convex lattice.
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PROPOSITION 4.3. If a E A(Y) and Y is a topological vector lattice then

a E £{Y).

Proof. Let V be a solid neighborhood of the origin in Y. Then for

x E F, we have that α(x) < x since α < Id y . But

α(x) < x and α(-x) < -x -> α(x) V a(-x) < x V (-x)

^ α(x) V (-α(x)) < x V (-x)

->|α(jc)|<|jc|->α(x) E F Vx E F.

Soα(F) QV^a e£(X,Y). D

As an epilog to this section, we include a result which is not directly

connected to the subdifferential calculus but which nevertheless gives us a

better understanding of the multiplier operators which, as we saw, play a

key role in obtaining subdifferential formulas.

First, another definition.

DEFINITION 4.4. If X, Y are o.t.v.s. which are lattices and A: I - ^ Γ a

linear operator which preserves the lattice operations, then A is called a

Lattice or Riesz homomorphism.

PROPOSITION 4.4. If A GL+(X,Y) is bijective then A is a lattice

isomorphism if and only if A~x is positive.

Proof. Necessity: Obvious. Sufficiency: Suppose that A~λ >: 0. We

know that since A > 0,

(1) A(x V z) >A{x) and^(x V z) >A(z)

->A(χV z)>A(x)VA(z).

Also A(x) VA(x) >A(x) and A(x) V A(z) >A(z). Using the fact that

A~λ > 0, we get

( 2 ) Λ-U Λί \ W Aί \\ > A

A (A(x) V A(z)) >z\

-+A(x) VA(z) >A(xV z).

From (1) and (2) above, we deduce that

A(χV z)=A(x)VA(z).

So indeed A is a lattice isomorphism.
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COROLLARY. If a EL A(Y) is bijectiυe then a is a lattice isomorphism.

This concludes the fourth section. In the next section, we will develop
a duality theory for convex mappings.

5. Lower semicontίnuity and duality theory of convex mappings. In

this section, we will extend the Young-Fenchel theory of conjugate convex
functions to convex operators.

Let X be a just countable locally convex t.v.s. Let Y be a locally
convex lattice which is normal. Assume that int(Kγ ) = (Kγ ) Φ 0.
Then we know (see [24]) that Y is normable. As in the previous sections,
adjoin to Y a greatest element + oo and a smallest element — oo and
denote the augmented space by Y. For Y an open set will be of the form
£/ U { + 00} or U U {-00} where ί/is open in Y. Clearly with the induced
topology Y C Y is the initial o.t.v.s.

We will denote the topology of X by τx and that of Y by τ y .

DEFINITION 5.5. Let/: X -> Ybe a mapping.
If / is finite at x E X, then it is said to be lower semicontinuous at x

(abbreviated by l.s.c.) if and only if for every y E(Kγ) there is a
neighborhood U of x0 in X such that for every z E U9f(z) + y — f(x0) E
(Kγ). Since our mapping is allowed to take also the value + 00 we
complete the definition by saying that/is l.s.c. at x (£ dom /if and only if
for every y E (Kγ ) there is a neighborhood U of x such that for all
z E. U9 f(z) — y E (Kγ ) (this actually is equivalent to saying that dom /
is closed in X). Finally if f(x0) — -00, then/is l.s.c. at x0.

In the sequence we will study in more detail this new class of
mappings.

We start with the following characterization of l.s.c. mappings.

LEMMA 5.1. If f is l.s.c. at xQ E X then lim X o/(xπ) >/(x 0 ).

Proof. If /(JC0) = +00 this is obvious from Definition 5.1. So let
f(x0) < + 00 i.e. x0 E dom /. Let xn -» x0 and λπ | 0 so that λny = yn 40
for y E (Kγ ) by the Definition 5.1 there is a neighborhood U of x such
that for all z E U f(x0) <f(z) + ynλ. Also for n > w2, xn E U since
xn -> x0 and so/(x0) <f(xn) +yίoτn> n2.
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Using the definition of the superior limit, we have

/(*„)= V Λf(Xn)
n>n2

( χ o ) - Λ l = V /(Xo)-Λi =/(*o)

So indeed hmx^xJ(xn) >/(x0). °

Now assume that for any y G 7 the order intervals that contain j> in
their interior form a local basis of neighborhoods of y9 and for y E (Kγ )
the order intervals [.y, + oo] form a filter of neighborhoods of "infinity"
(in the extended topology).

Using this assumption, which in the sequence we will call assumption
H, we have the following partial converse of Lemma 5.1.

LEMMA 5.2. If Kγ is complete and Y satisfies assumption H above then
\m\χ^xJ(xn) >/(x 0) Vχn -* *o implies that f is l.s.c. at x0.

Proof.First consider the case/(.x0) = + oo. Then limχ ^Xof(xn) >f(x0)
= +oo means that ]imn^O0f(xn) = +oo. Now suppose that / was not
l.s.c. at x0. Then there is y E (Kγ ) such that for every U G Φ(x0) (filter
of neighborhoods of JC0) there i s x G ί / such that/(x) φ ^. So we form a
sequence {*„}„<=# s u c h ^at xn -> x0. By hypothesis then limtι^o0f(xn) >
/(JC0) while /(JCΠ) φ j V« G TV. Observe that by hypothesis //, the set {x:
f(x) >y) — [y, oo]c is closed in the extended topology. Now let βn =
Λn>>nf(xn>) >y. Then βn = hm^^fixj and since, from our assump-
tions on F, τy = τ0 = order topology, then by a result in [24] (see p. 160),
βn ->Ty=τ°limπ_>00/(xII) -> by the closedness of the set {x: f(x) φ y) we
conclude that lim^^^/ίx^) belongs to that set which is a contradiction
since limn^O0f(xn) — + oo. So/is l.s.c. at xQ.

Now let/(x0) < + oo i.e. JC0 G dom /. Again we proceed to prove the
Lemma by contradiction.

So suppose that the claim of the Lemma is not true. Then there is a
y £(Kγ) such that for every U G ̂ (x 0 ) there is x G U such that
/(*) + y φ /(x0). So we can form a sequence { n̂}nGΛΓ such that xn -» x0.

By hypothesis then

lim f(xn) + y > f(xo) ΐory
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Let yn = f(xn) + y - f(xo) We have that Vn E Nyn & (K$ ) and
limn^QOyn >y wherey E (Kγ ). This, with the help of our hypothesis, will
give us the desired contradiction. Let βn — Λ n>>nyn. Then βn T ίimn_^O0yn

= y0. If y0 — +00 then, since βn ->limlf^00<yII, by hypothesis H there will
be an n0 such that, for n > n0, βn E (K$ ). If y0 < + oo then y0 E (K$ ).
But then (βn,2y0) form a local basis of y0. So for some π 0 , we will have
for n>n0 that βnE(Kγ). Hence in any case βn E (Kγ ) for w-large
enough. Therefore, since /?n <yn — f{xn) + y — f(x0) we get that yn E
(Kγ ) for π large enough -* f(xn) + y — f(x0) E (Kγ ) foτ n large enough
which is a contradiction.

So/isl.s.c. at JC0. D

We can have the same result with a different set of hypotheses. So
again we assume that for y E (Kγ ), the order intervals [j>, + oo] form a
filler of neighborhoods (in the extended topology) of "infinity". Call this
assumption H^.

LEMMA 5.2'. If H^ holds, Y has the diagonal property and Kγ is closed
then lim^^^/ίx^) >f(x0) for every xn -» x0 implies that f is l.s.c. at x0.

Proof. First consider the case f(x0) = +00. Again we continue by
contradiction. We form xn -» x0 such that/(jcj φ y for some y E (Kγ ).
Let ft, be as before. Then βn </(*„) and & t l i m ^ ^ / ί x j - +π ->

/?n-^lim/(xJ (by the diagonal property) -> βn -*Kmn^O0f(xn) (by the
normality of Y which we assumed once and for all in the beginning of this
section). So by H^ there is an nQ such that, for n > w0, Ŝπ E (y, 00] ->
/(JCW) E (y, 00] for all « > n09 a contradiction.

So/isl.s.c. atx 0 .
Now consider the case where f(x0) < + 00 i.e. x0 E dom /. Again the

proof is by contradiction. So suppose that the claim of the Lemma is not
true. Then there is ay E (Kγ ) such that for every U E f (x 0 ) there is an
x E U for which f(x) + y — f(x0) & (Kγ ). So we form a sequence
ixn}n<ΞN s u c ^ ̂ a t xn -* xQ. By hypothesis then we have that

/(*0) < Km /(xj
n —>oo

-»/(x0) < Km /(*„) + ^ forj G
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Call yn=f(xn)+y-f(x0). So we have yn$(K$) Vn E N? but

lim^ooΛ e (*+ ).
If lim;i_>00<yΛ = +00 it is easy to see, using H^, that we get a

contradiction. If l i m ^ ^ < +00 then let βn — /^n>>nyn^yn. We see
that βn t l im^^ j^ which by the diagonal property of Y implies that

Γϊt — — ^

βn ->Kmn^O0yn and since Y is normal, βn ^ l i m ^ ^ . So for n > n0, we

have that βn E (Kγ ) -> j π E (i^y ) for « >: «0, a contradiction.
So/is l.s.c. at x0. D

Now we will introduce some notions that we will be using in the
sequence.

DEFINITION 5.2. We call the set ULy = {x: f(x) - y e (0, + 00]} the
upper level set off at y.

Similarly, we call the set Ly = {x: f(x) < y] the lower level set of fat

y

DEFINITION 5.3. We call the set hg/= {[*, y] E XX Ϋf(x) - y E
(0, 00]} the hypograph off.

Similarly, we call the set epi/= {[x, J ] G I X 7 : f(x) - y ) the
epigraph of f.

Then we have the following complete characterization of the lower
semicontinuous mappings.

THEOREM 5.1. The following are equivalent
(1)/: *-> Ϋis l.s.c.
(2) υhy is open Vy E Y.

If in addition Y satisfies the assumptions of Lemma 5.2 or of Lemma 5.2',
then (1) tf«d (2) are equivalent to (3) below and they all iimply (4) and (5).

(3)hg/wopenmXX F.
(4) Ly is closed in X for every y G Y.
(5) epi/ is closed in XX Y.

Proof. (1) -* (2). Let ULy = {x: f(x) - y E (0, 00]} and take x0 E
ULjp. If f(x0) = +00 then for every jμ E (ity ), there is a neighborhood
[/ of x0 such that, for x E ί/, /(z) > 7. Let y be such that y^y. This is
possible since every interior point of Kγ is an order unit. Using that y, we
are done with the case where f(x0) = + 00.
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Now suppose that f(x0) < +00. Then we have f(x0) — y G (Kγ ).
By the lower semicontinuity of / at x0 for every y G (Kγ ) there is a
neighborhood U of x0 such that, for all z G t/, /(x0) — y <f(z). Let
j = / ( x o ) - | G (iΓ£ ). Let U' be the neighborhood of x0 corresponding
to this particular choice of y. Then for z G ί/', we have/(x0) — (f(x0) —
y) <f(z) -»j> </(z) for all z G t / ^ ί / ' C ULy -> ULy is open in X.

(2) -> (1). Let >> G (^y ). If /(x0) = +00, then (2) is just the second
part of Definition 5.1. If x0 G dom /then/(x 0) >f(x0) - y. By (2) there
is a neighborhood U of JC0 such that for all z G Uf(z) > f(x0) ~ y which
is just our definition of lower semicontinuity.

Now consider Y with the assumption either of Lemma 5.2 or Lemma
5.2'.

(1) <•* (3). Consider the mapping F: XX Y -» Ϋdefined by

F(x,y) =f(x) ~y.

Under those assumptions F is l.s.c. if and only if /is. So (1) «-» (3) follows
from (1)~(2).

(1) ^ (4). Let xn G L^ and xn -> x. Then since /(xΛ) ^ j
-> l i m ^ ^ / ί x j < y . Butf(x) < l i m ^ ^ / ί x j <>; (by Lemma 5.1) -> x G
L^ -» L j is closed in X

(1) -* (5). Again by considering the mapping F(x, y) = /(x) — y, this
follows from (1) -> (4) above. D

Next we will present a Weierstrass type theorem for our class of lower
semicontinuous mappings.

For that, let Y be a Frechet o.t.v.s. which is a vector lattice and which
satisfies the assumptions of Lemma 5.2 or of Lemma 5.2'.

THEOREM 5.2. // /: K -> Y where KQX is compact and lm / is
o-complete then f attains its infimum on K.

Proof. Let y0 — irήx^κf(x) G lm /by its o-completeness. So there are
xn G AT such that/(xrt) -> y0.

Since, by hypothesis, K is compact, there is a subsequence of xn

(which for simplicity in the notation we will denote again by xn) such that
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By the lower semicontinuity of/, we deduce that

lim f(xn) >/(*)•

o—ru
Also f(xn) ->y0 -^f(xn) -> y0 (see Peressini [24], p. 162) f(xnj -» y0

(just from the definition of *-convergence). But litnl_^O0f(xnk) >r/(x). So

f(x) = y0oτ otherwise we will contradict the choice of y0. D

DEFINITION 5.4. A mapping /: X -» Y is said to be u.s.c. at x0 if and

only if -/is lower semicontinuous at x0.

Hence using Definition 5.1 we have the following topological descrip-

tion of upper semicontinuity.

"/: X -> Y which is finite at x0 is u.s.c. there if and only if for every

y G (Kγ ) there is a neighborhood U of x0 such that /(JC0) + >> — /(z) E

(Kγ ) for all z G U. Iίf(x0) = -oo, then/is u.s.c. at JC0 if and only if for

every y G (-Kγ ) there is a neighborhood C/ of x 0 such that /(z) <>>

Vz G ί/".

The next result shows that our definition of semicontinuity is the

appropriate one.

THEOREM 5.3. ///: X -> Y is finite at x0 and both u.s.c. and l.s.c. there

then f is continuous at JC0.

Proof. Let V G ̂ (0) where ^(0) is the filter of neighborhoods of the

origin in Y.

Takey G (Kγ ) such that [-y, y] C V. This is possible by the normal-

ity assumption, since in that case order bounded sets are bounded.

Now form the lower semicontinuity of/at x0 there is a neighborhood

Uλ of x0 such that

(1) f(xo)<f(*)+y Vz^Uλ.

Also from the upper semicontinuity of/at x0 there is a neighborhood U2

of x0 such that

(2) f(z)<f(χo)+y VzEU2.

Let U= Ux Π ί/2.

Combining (1) and (2) above we get that

-y<f(z)-f(xo)<y VzGί/

->f(z)-f(xo)e[-y,y]QV Vz G U

-+f(U)QV + f(x0)

-* f is continuous at x 0 . D
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A converse of this result can be obtained if we note that the first part

of hypothesis H holds, since Kγφ 0.

THEOREM 5.4. ///: X -> Y is finite and continuous at x0 then f is both

u.s.c. and l.s.c. at x0.

Proof. By the continuity of / at x0 for every V E ^(0) which is

symmetric, there is a neighborhood U of x0 such that

±(fM - / ( * ) ) G V for all z E l /

Let V — (-y, y) for some y E (Kγ ) (this is possible by H). Then

f{x0) </(z) + y -»/is l.s.c. at x0 and also/(z) <f(x0) + y ->/is u.s.c.

atx 0 . D

An important class of mappings that will have a key role in the

second paper is the class of o-Lipschitz mappings. By that we mean those

functions for which for U, a bounded, open subset of X, and for all

x,zEU, there is ay E K$ such that | f(x) - f(z)\<y\\x - z\\.

So we see that X must be a Banach space. Let Y be an order complete

Banach lattice. Recall that since Y is a Banach lattice, then Kγ is

automatically closed (see [35]).

PROPOSITION 5.1. J / / e L^(X, Y) then f is l.s.c.

Proof. Fix any x E X. Let 1/ be an open bounded subset of X

containing x such that for some j> E Kγ we have

\f(x)-f(z)\<y\\χ-z\\.

Lctd= diaml/< oo. ThenylU - z\\ <dy.

Consider y E (Kγ ) . Then being an interior point of Kγ is an order

unit. So there is λ E i?+ such that dy < λy -> φ / λ < y. So if z E 5 = (z7:

II JC - zΊI < d/λ} then /(x) </(z) + y -> f is l.s.c. at x. Since x was

arbitrary in X, then/is l.s.c. D

In the sequence we will get some results that relate the notions of the

subdifferential and of the o-directional derivative of a convex mapping

with that of lower semicontinuity.

PROPOSITION 5.2. 7/(1) Y is complete (i.e. is Frechet) with the diagonal

property and Kγ is closed.

(2) /: X -» Y is a convex mapping with 3/(x0) φ 0 then f is l.s.c. at

x0.
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Proof. By hypothesis (1) above, we deduce that τ y = τ0 (see [24]) and
furthermore that topological convergence in Y is equivalent to relative
uniform convergence which obviously implies order convergence. Since by
hypothesis 3/(x0) φ 0 , there is^l E £(X, Y) such that

A(z-χo)<f(z)-f(xo) VzGdom/.

Let zn -» x0. Then by the continuity of A we have that

A(zn-xo)-*0

-* A(zn — JCO)-+0 (by the remark in the beginning of the proof).

Then we have that

lim A(zn -xo)< lim f(zn) - f(x0)

-*0< Km f(zn)-f(x0)

->/is l.s.c. at xoby Lemma 5.2'. D

Note. In the above Proposition, we did not need assumption H since
from the fact that 3/(JC0) =£ 0 , we have x0 E dom /and so as it is easy to
see from the proof of Lemma 5.2', its result holds.

PROPOSITION 5.3. ///: X -> Y is convex, x0 E (dom f)ai andf(x0, )
is l.s.c. at 0 then f is l.s.c. at x0.

Proof. Directly from the definition of the o-directional derivative we
know that for h E X

(1) f(xolh)^f(xo + h)"f(xo).

Also from the lower semicontinuity of f'(x0; ) at the origin, we know that
for any y E (Kγ ) there is Uθ9 a neighborhood of the origin in X, such
that

O=f'(xo;O)<f'(xo;h)+y Vh E Uo.

Using (1) we deduce that

0<f(xo + h)-f(xo)+y VΛEί/o

is l.s.c. at JC0. •
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The next result is a very interesting one because it reveals another

case where the topological and algebraic subdifferential coincide (see also

Valadier's Theorem 6 in [38] and Lemma 3.2 of this paper).

PROPOSITION 5.4. ///: X -> Y is convex and u.s.c. at x G (dom / ) " '

such thatf(x) < 0 and f'(x; x) </(*) then daf(x) = 3/(JC). If in addition

/(0) > 0 andf(x) = 0 ώαi 9α/(z) = 3/(z) Vz G X

/. Let F' be any neighborhood oΐf(x) in Y. Consider V — V —

f(x). This is a neighborhood of the origin in 7. Since by hypothesis Y is

normal, there isy G (Kγ ) such that [-;;, j ] C F . Then

Now let Γ G 3 α / ( 4 As we have already pointed out in a previous section,

such an operator exists by the Hahn-Banach-Kantorovich theorem.

By definition we know that

T(z - x) </(z) - / ( * ) Vz G dom/.

Now by the upper semicontinuity of / at x we know that for every

y' G (Kγ) there is V a symmetric neighborhood of x such that

f(z)<f(x)+y' VzEC/'

- » Γ ( Z - J C ) < / ( Z ) - / ( * ) < / VzGί/'

On the other hand

-Γ(z) = Γ(-z) > - / - T(x) Vz G t/'

and since U' is a symmetric neighborhood of x we get that

T(z) > - / - T(x).

Hence we have

-y'- T(x) < T(z) <y'+ T(x) Vz G U'.

Since Γ(x) </'(JC; x) we get that

(l) -y'-f'(χ; x) < τ(z) <y' +/'(*; x).

Now specify y' to be^r = -/'(x; x) + y + f(x). From our hypothesis we

know that / E (A^ ).
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Substituting this choice of y' in relation (1) above, we get that

(2) -/ '(*; x) + / ' (*; χ)-y~ f(χ) < T(z)

<-f'(χ; x) + y + f'(χ; x) + f(χ)

- -y-f(χ) < τ(z) <y+f(χ) Vz e u\

Since f(x) < 0, we have that -f(x) >/(*) -> -y - / ( * ) ^ -^
Hence from (2) above we deduce that

τ(U') c[-y-f(χ),y +f(χ)] Q[-y+f(χ),y+f(χ)] Q V'.

But then this implies that T G £(X, Y). Since in general d"f(x) D 8/(JC),

we conclude that 3°/(x) = 3/(*)
For the second part of the Proposition, we proceed as follows.
Let w be any point in X and let A E daf(w). Let V be a symmetric

and full neighborhood of the origin in Y. Let ^ be such that Vx + Vx C F.
For some λ > 0, we have that λ(A(w) - f(w)) G K, -^yl(w) — f(w) G
Fj/λ. Let^ G (Kγ ) such that [-j, y] C Fj/λ. By the upper semicontinu-
ity of / at x, we have that there is a neighborhood U' = x + U oi x
{U — neighborhood of the origin in X) such that f(z) <y Vz G £/'.
Assume that ί/r is symmetric.

Now - / ( z ) > - j . But since 0 </(0) = f(±z + i(-z)) < i/(z) +
i/(-^) ^/(-^) ^ -/(^)» w e g e t that /(-z) > - j Vz G ί/r. Since U' is
symmetric again we conclude that /(I/') C [->>, j>] C t^/λ.

Now z G ί/' we have

A(z) =A(z + w- w) =A(z- w) +A(w) </(z) - f(w) + A(w)

= A(w)-f(w)+f(z).

But

A(w) -f(w) G K,/λand/(z) G Ft/λ

-> i4(£/') C ̂ /λ + Vx/\ C F/λ

/') C F

Hence we conclude that 3α/(z) = 9/(z) Vz G X. D

The next two results will show that the supremum of certain affine
continuous mappings are lower semicontinuous ones.

So let Y satisfy the hypotheses of Lemma 5.2 or those of Lemma 52'.
Let/: X -» Ybe an l.s.c. mapping which is minorized by j>0.
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Let A E £( X, Y), consider the affine continuous mapping

Tx(z)=A(z-x)+f(x).

Then the following result holds.

PROPOSITION 5.5. IfΦ(z) — snρxGXA(z — x) + f(x) then φ is convex
and l.s.c.

Proof. Clearly φ is convex.

Next we will show its lower semicontinuity. Let zn -> z. Then by its
definition

φ(zn)>A(zn-χ)+f(x).

Also

A(zn - x)Y^°A{z - x) -> A(zn - x) ™A(z - x).

So

Urn φ(zn) > lim A(zn - x) + f(x) = A(z - x) + f(χ)

-• Km φ(zn) > sup A(z - x) + f(x) = φ(x).

Hence from Lemma 5.2 or 5.2', we get that φ is Ls.c. Π

Before stating the final result in this direction, we need the following
auxiliary Lemma.

Let Y be any order complete vector lattice.

LEMMA 5.3. If{an}nSN and {βn}n(ΞN C Y then

lim (απ + #,) > l i m α n + lim βn.

Proof. First we have that

Pm= Λ an ^ an V« >

= Λ
A «„+ Λ

n>m

Λ «„ + Λ β, < Λ {an + j8j =
n>m n>m n>m
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But

/> m t l imα M , qm T lim & and rm t lim (an + βn).
«-»oo w—>oo «-»oo

Then

•i tn j.tn n n wι V n i n /

n—»oo w—»oo «—»oo

Now let everything be as in Proposition 5.5. Then we have

PROPOSITION 5.6. Ifφ(x) = supz&xTx(z) andf: X -> 7 w convex and
l.s.c. then φ is convex and l.s.c.

Proof. Clearly φ is convex.
Let xn -> x. Then by the lower semicontinuity of / we have that

A(z- xn)^A(z- x)

Since φ(xn) > ̂ (z - x J - f{xn) Vn (Ξ N

lim φ(xj > lim (^(z - x j +/(*„)),

lim φ(jcw) ^ lim ̂ 4(z — xn) + lim /(xn) (by Lemma 5.3),

hm φ{xn) > A{z - x)+f{x) for all z EX,
rt->00

hmφ(xn)>φ(x).

So by Lemma 5.2 or 5.2', is l.s.c. D

Now we pass to the duality theory of convex mappings.

DEFINITION 5.5. Let/: X -» 7be a mapping.
Then we define the Fenchel Transform of f to be the mapping /*:

Fgivenby

A)= sup
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Miming the notation existing for real valued functions, we will denote
the collection of l.s.c. convex mappings going from X into Y by Γ( X, Y).

PROPOSITION 5.7. // Y has the diagonal property and Kγ is complete

Proof. Let An -+s A. this means that for every x E X, we have that
Tγ

An(x) ->A(x). But from the assumptions on Y, we have that τγ = τ0

where, as always, τ0 = the order topology on Y (see [24]). So An(x) -+A(x)
ru o

-> An{x) -*A(x) (again by [24], p. 160) -> An(x) -+A(x).
Now from the definition of the Fenchel transform of/, we have

An(x)-f(x)<f*(An) VxGdom/

-» Urn An(x) -f(x) < Urn f*(An)

-> A(x) - f(x) < lim f(An) Vx e dom /
/!->OO

- sup A{x)-f{x)< li
/

< hmf*(An)

-»/is l.s.c. using Lemma 5.2'.

Next, let us show the convexity of/*( ).
Let Aλ = λAλ + (1 - λ)A2 for λ G [0,1] and Ax, A2 G dom /*. Then

= sup [(XA] + (l-λ)A2)(x)-f(x)]
x E dom /

= sup [XiAM - f(x)) + (I - λ)(A2(x) - f(x))]
jcGdom/

< sup λ[Ax(x) - f(x)] + sup (l
x €Ξ dom / ΛG dom /

So/* is convex. Therefore/* G Γ(££ X, Y), Y). D

We can continue this process and define

f**:(£s(X,Y),Y)->Ϋ
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by

r*(T)= sup (T(A)-f*(A)).
AfΞdomf*

Recall that X can be identified with a subspace of £(£S(X, Y), Y) via
the identification i: X -> £(£S(X, F), Y) where [i(x)](A) = A(x).

So it is natural to consider/** restricted on i(x)9 which, for simplic-
ity, we will denote again by X and then compare it with/.

A straightforward result in this direction is the following.

LEMMA 5.4. In general we have that f** \x </.

Proof. Observe that from the definition of/* we have

A(x) -f*(A) <A{x) ~[A(x) -/(*)]

-+A(x) - f (A) <f(x) VAedomf*

Also, as we did for /*, similarly we can show that /** is l.s.c. and
convex, i.e. /** e Γ(£(£/X, Y)\ 7). (Note that we can derive this also
from Proposition 5.6.)

The next proposition is a step further in understanding the relation
between / and /* * \x.

PROPOSITION 5.8. // 8/(*0) Φ 0 then f(x0) = / * * ( * 0 ) . Hence, if Y
satisfies the assumptions of Proposition 5.7 then f is l.s.c. at x0.

Proof. Let A G 3/(JC0).

From the definition of the subdifferential we have that

A(z-xo)<f(z)-f(xo) VzGdom/

-+A(z)-A(xo)+f(xo)<f(z).

C<ύiyo = A(xo)-f(xo).
Then A(z) — yo<f(z) Vz G dom/. So A(z) — y0 is a continuous

affine minorant of/.
Let any y <f(x0) and take z — x0. In that case, A(x0) — y0 — f(x0)

just from the definition of y0. So we have

(1) A(z)-yo<:f(z) VzGdom/
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andforj</(x0)

(2) y<A(xo)-yo.

From (1) we get that Vz G dom /, A(z) - f{z) <y0 -> f*(A) <y0.
 F r o m

(2) and since A G 3/(JC0), we have thatj < A(x0) - f*(A) -> y <f*(x0).
Let y =yn= f(x0) - w/n for wG(K$)

(3) -+/M-j;w<f**\χ(χo) V « G Λ Γ

Since by Lemma 5.4, we know that in general/** \x < / -> /(x0) = /**O 0 )
The last statement of the Proposition follows from the fact that/** is

convex and l.s.c. D

Note. Observe that the last part of the above Proposition reproduces
with a different approach the result of Proposition 5.2.

Next we will formulate a theorem that is the analog of the well-known
Moreau Theorem for real valued convex functions.

Assume that Y has an order bounded neighborhood of the origin.
Then we have

PROPOSITION 5.9. / / / is u.s.c. at x0 G (dom /) and daf(x) Φ 0

V* G dom / then f = /** \x. Hence if the hypotheses of Lemmas 5.2 and

5.2' hold then f is l.s.c. mapping.

Proof. For any y G (Kγ ), there is £/, a neighborhood of x0 such that
y + f(xo) >f(z) f°Γ aU z ELU. So/is majorized in a neighborhood of JC0.
By Theorem 3.1, we conclude that/is continuous at intdom /. Hence by
Lemma 3.2 daf(x) = df(x) Vx G X. Since for x G dom/, we have by
hypothesis that 3°/(x) T^ 0 , then 3/(JC) Φ 0 for x G dom/. Applying
Proposition 5.8, we conclude that/(x) = /**(*), * ^ dom /.

Clearly if/(JC) = +oo, then/**(*) = +oo, too.

Finally the last part of the Proposition follows again from the fact
that/**isl.s.c. D

We will conclude this section with a result that is suggested from the
proof of Proposition 5.8.
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PROPOSITION 5.10. If for every x E dom /, given y <f(x), there is A,

a (τxo)-bounded linear operator from X to Y such that y < A(x) — y0 and

A(z)-yo<f(z) V z E d o m /

then f is an l.s.c. mapping.

Proof. Consider the upper level set ULy = {x: y </(*)}.

We will show that this is open in X.

Let x0 E ULy. Theny <f(x0). By hypothesis, we can find A: X -> Y

which is (τ^o)-bounded and linear such that

y<A(x0) -y0

and

A(z) -yo<f(z) Vz edom/.

Lety = A(x0) ~yo-y>O.

By the (τx0)-boundedness of A, we deduce that for a neighborhood U

oΐxQ9

\A(x)-A{xo)\<y VxEC/

-> -y + A(x0) <A(x) < A(x0) +y Vx E U

^y<A(x)-yo<f(x)

-> x E UL^ for all x E U

-> U C ULj.

So ULĵ  is open and so by Theorem 3.1 /is l.s.c. D

. In a normal space a (τΛ,o)-bounded operator is bounded. So the

operator A in Proposition 5.10, since it is linear, is continuous i.e.

A ee(IJ).
But in general an operator fiE£(IJ) is not necessarily τxo-

bounded.

This concludes our study of the duality theory of convex operators.

In the next, last, section of this first paper, we will study some useful

generalizations of convex operators and of the notion of the subdifferen-

tial.

6. Quasidifferentiability, quasiconvexity and closedness. The notion

of quasidifferentiability, introduced first by Pshenichnyi, was the first

attempt to generalize the subdifferential calculus to nonconvex functions.
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Here we undertake this task for vector valued mappings.

DEFINITION 6.1. Let

f(x; h) — 0-lim — —

and we call the limit when it exists "the o-directional derivative of fat x in
the direction h".

REMARK. Clearly if f(x; •) exists for all A G I , then x e (dom/)™
i.e. dom / — x is absorbing.

We know that for/convex and x E (dom f)ai then/'(x; h) exists for
all hex.

What we mean by Definition 6.1 is that for every sequence λn > 0
λn 10, the limits exist. We need to check that the limit is unique, i.e.
independent of the sequence λn chosen.

Suppose that for λ^ > 0, we have

I \ X \ /Xnti ) T\ X I O , .

W
and for λ2

n > 0

f(x + λ\h)-f(x) o W v

λ: -fί(χ;h).

Now consider the combined sequence

χ _ |λ'n, «

" {λ2,,, n = odd,

Then

Λ» + x.*)-Λ») V ( h)

But every subsequence of the above sequence also converges to the
same limit/'(x; h).

So by taking the subsequence {λn}w=even and {λn}π=odd, we conclude
that

fi(x;h)=fi(x;h)=f'(x;h).

Hence, indeed, the limit is unique and so the notion of the o-direc-
tional derivative is well defined.
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Note. The definition of Valadier [38] given for / convex is just a
particular case of our general definition 6.1.

DEFINITION 6.2. If f\x\ h) = maxA€ΞmιMA(h), where Af̂ jc) is a
nonempty convex equicontinuous subset of t(X9 Y) then/is said to be
quasidifferentiable.

In the sequence, we will investigate in detail this new class of
mappings and relate it with notions and results obtained in the previous
sections.

PROPOSITION 6.1. Iffl9 f2: X -> Y are quasidifferentiable mappings then
so is fx + / 2 .

Proof. We have

λio

n -Mx) + f2(x + λh) - f2(x)
λio

[ ]
λio L Λ J λio

= f{(x;h)+β(x;h)

= max T( h) + max i? (Λ) (since /,, U are quasidifferentiable)

max Q(h).
() + M()]

We have to check that Mλ(x) + M2(x) is convex and equicontinuous
subset of £,(X9 Y). Clearly it is convex since Mx{x) and M2(x) are.

Now to show the equicontinuity of Mx{x) + M2{x), we proceed as
follows. Let V be a neighborhood of the origin in Y. Then there is W such
that W+ WQV.

Let Ux G ̂ (OJ such that T{UX) C PF for all T G M^JC) and t/2 G
^(OJ such that i?(ί/2) C ίF for all R G M2(JC) (such neighborhoods exist
from the equicontinuity of Mx and M2). Define U — XJX Π U2. Then
(Γ+/?)([/) = β([/) = T(U) + i?(ί/) C ί F + ^ c F . Hence Mx(x) +
M2(x) is equicontinuous and so we conclude that fι+f2 is indeed
quasidifferentiable. D

PROPOSITION 6.2. // / is quasidifferentiable and μ G i?+ ίλew μ/
quasidifferentiable also.
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Proof. Obvious from the definition.

From those two Propositions, we get immediately the following
Corollary.

COROLLARY. Positive linear combinations of quasidifferentiable map-
pings give a quasidifferentiable mapping.

Next we will examine the quasidifferentiability of the supremum of
two quasidifferentiable mappings.

Recall that in a vector lattice Y a + β = (aV β) + (a A β). Also
α, β G Y are said to be orthogonal if \a\ Λ| β | = 0. We denote that by
writing a ± β. In that case, it is easy to see that \a\V\β\ = \a\ +\β\ .

So now we can proceed to the next proposition.

PROPOSITION 6.3. Iffl9 f2 ^ 0, /, ±f2 and both are quasidifferentiable
then f — fχ V f2 is quasidifferentiable too.

Proof. By definition

r ( x . h) =

= o . U m

= o-lim f>{x + λ *> f M

 + o-lim ^
λ|0 A λ|0 A

(from the fact that/j J_/2 and the previous remarks)

= f{(x;h)+fi(x;h).

The rest are as in the proof of Proposition 6.1. D

Now assume that Y is an algebra lattice.

DEFINITION 6.3. // /: X -> Y is ^-continuous along lines then / is
called o-hemicontinuous i.e.

α-lim/(x + λλ) =/(*) .

PROPOSITION 6.4. If fx: X-+Y is quasidifferentiable at x and
fλ(x + λh) < λfλ(x) for λ > 0/2: X -> Y is o-hemicontinuous and nonnega-
tive at x then fx -f2 is quasidifferentiable at x.
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Proof. We have that

λ l O

λlO λ

2(x + λh) -
= o-lim

λio

λlO

λ|0 λ

By the o-hemicontinuity of f2 and since fx(x + λΛ) < λf}(x), the first
summand goes to zero, while the second is

f2(x)f((x;h)=f2(x) Max
ΓEM(

= Max -»/ 2(JC)Γ(Λ) (since/ 2(x)>0).
reA/,(jc)

So indeed/, /2 is quasidifferentiable at x. D

The next result will give us some sufficient conditions for quasidif-
ferentiability.

PROPOSITION 6.5. If f\x\ ) exists and is convex and continuous then f
is quasidifferentiable at x. Furthermore, if Y has the order intervals [x, y]
weakly relatively compact and the cone Kγ is closed, then the set M(x) is
also compact in ts(X9 Yw).

Proof. Let φ(h) = f'(x; h) for all h G X.
By hypothesis φ is convex and continuous. So it has a directional

derivative at every point. Hence we have

(,) φ ( 0 ; *) = M = ^
λ|0 A λ|0 A

But φ(0) = f\x\ 0) = 0 since/'(x; ) is positively homogeneous and

φ(λh) =/'(*; λΛ) = λf'(χ; h) = λφ(h).
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So going back into (1) we get that

/'(x;Λ) = Φ'(0;Λ)=φ(Λ).

But φ is convex and continuous. So by Valadier's Theorem 6 (see [38]) we

know that

Φ'(O;Λ) = Max T(h) -> f'(x; h) Max T(h).
τ<=dφ(0) reaψ(θ)

Since M(x) = 9φ(.x), it is convex and equicontinuous and so/is quasidif-

ferentiable at x.

The final part of the Proposition follows from Valadier's Corollary

7. D

Now assume that X is a normed space and Y an order complete

Banach lattice with (Kγ ) φ 0.

Let/: JSΓ -» y be a quasidifferentiable mapping i.e.

f'(x; h) = max Γ(A)
ΓGM()

where M(x) is convex and equicontinuous subset of £( AT, y).

Suppose that M: X -» 2 e ( X F ) is an u.s.c. multioperator from Xwith its

norm topology to the power set of £( X, y) with the strong operator

topology.

P R O P O S I T I O N 6.6. // Y has a strong order unit, whose linear hull is order

dense and f\z\ h) is finite VΛ, x G X then f'( \h) is u.s.c. Vh G X.

Proof. Fix h E X. Let 0 < ε < 1 and consider the neighborhood in the

strong operator topology, given by

Be(0, h) - {P G £(X, y ) : ||P(A)|| < ε}.

From the upper semicontinuity of the multioperator Λf, we deduce that

there is a neighborhood U of x such that for z G £/

M(z) C M ( J C ) + Be(0;h).

Then

max Γ(Λ) < sup F(h)
TGM(z)

max T(h) < sup (i? + P)(Λ)
T<ΞM(z)

max Γ(Λ)< sup Λ(A) + sup P(Λ).
T<ΞM(z) RGM(x) PSBe(O;h)
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But by the quasidifferentiability of/, we have that

sup R(h)= max R(h) = f'(x; h).
R<ΞM(x) R(ΞM(x)

Also ||P(A)|| ^ ε < 1 -> P(h) < εe, where e is the strong order unit.
Hence/'(z; A) </ ' (* ; A) + ee.
For e' > ε, we have/'(z; h) </ ' (*; h) + e'e for all z G ί / .
Since Re is order dense in 7, then for every y G(Kγ) there is an ε"

such that ε"e < y. In that case

f'(z;h)<f'(x;h)+y for all z e 1/

->/'(•; A)isu.s.c. D

We will continue by examining some useful generalizations of convex
mappings.

Given a convex mapping /: X-+ Y, we know that the level sets
Ly = {x: f(x) <^} are convex for every/ E 7. It is natural then to ask
"What about the converse?" This problem, for Y = R9 was studied in
detail by Fenchel. We will briefly examine its vector valued counterpart.

We start with a definition.

DEFINITION 6.6. A mapping /: X -» Y is called quasiconυex if and
only if for everyy G Y the level sets Ly = (JC: /(x) < y) are convex.

In the following Propositions, we will study further this generalization
of convexity of mappings, which in the real valued case was successfully
used in optimization theory (see [4]).

PROPOSITION 6.7. // /: X-> Y is quasiconυex then for λ G [0,1]
f(λx + (1 - λ)z) </(*) V/(z). So iff(z) </(*) then

+ (l-λ)z)</(x) /brλe[0,l].

P/w/. Clearly/(JC) </(*) V/(z) and/(z) </(JC) V/(z).
So JC, z G Lf{x)Wf(Z) which is by quasiconvexity a convex set. There-

fore/(λx + (1 - λ)z) </(JC) V/(z) for λ G [0,1]. D

PROPOSITION 6.8. ///: X-+ Y is quasiconυex and f(x) >/(0) then
f(λx) < / O ) for λ G [0,1]. Also φ(λ) = /(λjc) is increasing for λ > 0.

Proof. Consider the level set Lf{x) = {z: /(z) </(JC)} . This is convex
since/is assumed to be quasiconvex.
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By hypothesis 0 G Lf(x) -> (1 - λ)0 + λ x G Lf(x) for λ G [0,1] ->
/(λx) </(*).

Now consider the mapping φ(λ) = f(λx) for λ > 0.
Let λ2 > λ,. Call λ2x = j>. then λ ^ = (λ 1 /λ 2 ) j and (λ 1 /λ 2 ) G [0,1].

From the first part of the proposition we have that

/((λ,/λ2b>) </(>>) -/(λ,x) </(λ 2 x) - φ(λ,) < φ(λ 2 ). D

PROPOSITION 6.9. ///: AT-> 7 is quasiconvex and g: Y -> 7 «r α«
increasing lattice homomorphism then g ° f is quasiconvex too.

Proof. Consider the level set Ly = {JC: (g o /)(x) <>>}.
Let x, z G Ly and λ G [0,1]. Then

V/(z)

+ (1 - λ)z)) < g(/(x) V/(z))

= *(/(*)) Vg(/(z))<S,.

So we get that λx + (1 — λ)z G Lj for λ G [0,1] -> Ly is convex -> g ° /
is a quasiconvex mapping. •

PROPOSITION 6.10. ///α: ΛΓ-̂  Y, a &A, are quasiconvex mappings
then supα e / 4 /α: X -* F is quasiconvex too.

Proof. Let Lj = {*: supαG/ί

Then/α(z) < y and/a(x) <_
we have that for

VλG[0,l]/α(λx

and let x, z G Ly.
Since the/α's are quasiconvex,

z)<7 Va(ΞA

λx + (1 — λ)z ELj-> sup /α

is quasiconvex. D

We conclude with the following useful property of the ^-directional
derivative of quasiconvex mappings.

PROPOSITION 6.11. If f is quasiconvex andf\x\ h) exists for all h G X
thenf(z) </(x) implies that f(x; z - x) < 0.
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Proof. By definition

/'(x; z - x) = 0-lim — - — r — - — J - Λ - L .
λio A

Let λ E [0,1]. Then by the quasiconvexity of / and by Proposition 6.7 we
have that

f(x + λ(z - JC)) </(*) ->/'(*; z - x) < 0. D

Finally we will study a class of mappings which under some ap-
propriate assumptions on the nature of the space Y constitutes a generali-
zation of our class of lower semicontinuous mappings (see §5). So let Xbe
a first countable t.v.s. and Y a first countable o.t.v.s. which is order
complete and a lattice.

DEFINITION 6.7. f:X^> Y is said to be closed if its level sets Ly = {x:
f(x) < y) Vy E y are closed.

. By Theorem 5.1 of this work (in particular (1) -»(4)) if y
satisfies the assumptions of Lemma 5.2 or Lemma 5.2', then an l.s.c.
mapping is closed.

LEMMA 6.1. / is closed if and only if epif is closed.

Proof. Define F(x9 y) = f(x) — y. Clearly F is closed if and only if/
is closed. Next note that epifcan be considered as a level set of F. D

PROPOSITION 6.12. // X is α Bαnαch space, Y a Banach lattice and
f E L£( X, Y) then f is closed.

Proof. Let y E Y and consider the level set Ly — {x: f(x) < y}. Let
{xn}nξΞN CLy such that xn -> x. By the o-Lipschitz property of / for n
large enough | f(x) - f(xn) \<y'\\x ~ xj and | |xπ - x | | -» 0. So

o

f(xn) ->/(*). Since f(xn) ^y ->f(x) ^y -> x E Ly -+ Ly is closed and

so /is closed. D

PROPOSITION 6.13. If Kγ is closed and f is continuous then f is closed.

Proof. Again let Ly = {x: f(x) <y) and {xn}neN C Ly such that

xn -» x. By the continuity of /, f{xn) -*f(x). Since f(xn) <yVn EN and

AΓy is closed, then by Lemma 2.1, we have that/(;c) <y -> x E Ly -» Ljμ

is closed ^ /is a closed mapping. D
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Recall the Fenchel transform of /given by

f*(A)= sup {A(x)-f(x)}
xedoin/

where A G t(X9 Y) (see §5).

PROPOSITION 6.14. IfK$ is closed thenf*( ):£(X9Y)-* Ϋ is closed in

Proof. Consider Ly = {A G t(X9 Y): f*(A) <y}. We will show that
this is closed in ts(X9 Y).

Let {An}neN c Ly and

An' -> A.

Then for every x G X

An(x) -> Λ(x) -> An(x) - f(x) -> Λ(x) - f(x) Vx G JT.

Since An(x) - f(x) ^y VΛ G TV and A^ is closed, then Λ(x) ~/(x) < y
for all x G l ^ f μ ) <y ^A G Lj -̂  Ly is closed in ^(X, Y) and
then so is the mapping/*. D

PROPOSITION 6.15. If for every y* E:(Kγ )*, (/(x), y*) is an l.s.c. real
valued function then f is closed.

Proof. For y E.Y, consider the level set Ly = {x: f{x)<y). Let
{χn)n^N Q Ly, xπ -̂  x. Then since (/(•), 7*) is l.s.c. Vy* G (JΓ£ )*, we
have that l i m ^ J / ί x J , y*) > (/(x), j * ) . But (/(x j , ^*) < ( ^ j )
-> lim(/(xn), j;*) < (7, 7*) -» (/(x), J*) ̂  (y, y*) -> Vj;* G (Kγ )*,
(/(x)" - 7, 3;*) < 0 -̂  /(x) <j/->xGLy->/ is closed. D

Finally we conclude this section with an important generalization of a
well known result for real valued l.s.c. functions.

T H E O R E M 6.1. / / ( d o m f)Φ0 then a closed map is the supremum of

the affine maps that it majorizes.

Proof Letx G (dom / ) . Considery </(x),>; Φf(x).

Then since/is a closed mapping, we have that

is open.
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We will find an affine mapping h such that

and

h(z) </(z) Vz SX.

For that purpose, let U be a neighborhood of x such that U C (dom /)
and Uy D U. Then for all z G ^/(z) > j \

Define

-oo if z (£ £/,
^ ifz EC/.

Clearly g: X -» 7 is concave.
Now (dom /)α ι" Π (dom g) = (dom / ) α / Π C/ ̂  0 . So we can apply

Zowe's "Sandwich Theorem'' (see [42]) to get the desired affine map.
Then obviously this concludes the proof of the Theorem. D

This concludes the convex part of our work. In the second paper, we
deal with nonconvex extensions of this material and in particular with
Clarke's Theory, which was formulated during the last six years. This
theory extended significantly most of the results of Convex Analysis and
widened the spectrum of optimization problems that we can solve.

In the second paper (see [22]) we examine to what extent we can have
such a powerful theory for vector valued mappings and we generalize
several of the results obtained in this part of the work.
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