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REGULAR EMBEDDINGS OF A GRAPH

HIROSHI MAEHARA

In this paper we study embeddings of a graph G in Euclidean space
R" that are ‘regular’ in the following sense: given any two distinct
vertices u and v of G, the distance between the corresponding points in
R" equals « if u and v are adjacent, and equals 8 otherwise. It is shown
that for any given value of s = (82 — «?)/B82, the minimum dimension
of a Euclidean space in which G is regularly embeddable is determined by
the characteristic polynomials of G and G.

1. Introduction. To embed a graph in Euclidean spaces with vari-
ous restrictions, and to find the minimum dimension of the space for these
embeddings, are interesting problems [1], [4], [S]. In this paper we consider
a regular embedding of a graph.

An embedding of a graph G in a Euclidean space R" is called a
regular embedding of G provided that, for any two distinct vertices  and v
of G, the distance between the corresponding points in R” equals « if u
and v are adjacent, and equals 8 otherwise. The vertices of G are mapped
onto distinct points of R”, but there is no restriction on the crossing of
edges. The value s = (82 — a?)/B? is called the parameter of the regular
embedding. Let dim(G, s) denote the minimum number n such that G can
be regularly embedded in R” with parameter s.

Consider, for example, the circuit graph C;. For every regular embed-
ding of Ci, it is seen that

=5 —-1)=s=4(5-1)
and
dim(Cs,s)-—-{z if s = §(=/5 - 1),
4 otherwise.

The “critical’ embeddings of C in R* with s = (= /5 — 1) are illustrated
in Fig. 1.

Let ¢(G; x) denote the characteristic polynomial of a graph G (that is,
¢(G; x) =|xI — A(G) |), and put

®(G; x) = ¢(G; —x) — (=1)%¢(G; x — 1),
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where g is the number of vertices of G, and G is the complement of G. Let
x~ and x* be, respectively, the minimum root and the maximum root of
the polynomial ®(G; x). Suppose that x~ <0, and 1 <x*. Then our
results are stated as follows.
For every regular embedding of G, 1/x~ <s<1/x" and
dim(G, 1/x*) = g — 1 — (the multiplicity of the root x*),

where x* = x~ or x* . For other values of s, dim(G, s) = g — 1.

A

s=4(+/5-1) s=4(-5-1)
FIGURE 1
2. A theorem for isometric embeddings. We shall recall a theorem

in distance geometry ([2], Ch. IV). Let S = {p,,...,p,} be a finite
semimetric space with distance function d. The determinant

0 1 . 1
1 0 dO] dOk

le 0 ’ d,-j:: d(pi’ pj)2
1 dkO . 0

is called the Cayley-Menger determinant of the semimetric space (S, d),
and is denoted by D(S) or by D(p, ---p,). Note that the value of the
determinant does not depend on a labeling (ordering) p,,...,p, of the
points of S.

If S={py-...px} CR", n=k, then we denote by Vol(S) the
k-dimensional volume of the simplex (perhaps degenerate) spanned by S.
In this case, Vol(S) and the Cayley-Menger determinant of S are related
as follows:

( _ 1)k+ 1
24(k1)
For details, see Blumenthal [2], p. 98.

Vol(S)* = D(S).
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A semimetric space S is said to be irreducibly embeddable in R”
provided that it is isometric to a subset of R” but not isometric to any
subset of R"™ 1.

THEOREM ( Blumenthal 2]). A semimetric space S is irreducibly embed-
dable in R" if and only if
(1) S contains an (n + 1)-tuple p,,...,p, such that

sign D(po--p) = (=17 (j=1,...n);
(i1) for every pair x, y of points of S,
D(py -+ Py»x) = D(po Py y) = D(py---p,, x, y) = 0.
3. The Cayley-Menger polynomial of a graph. A regular embedding
of a graph G with parameter s is called, briefly, an s-embedding of G. To

apply Blumenthal’s theorem let us define a distance function d, on the
vertex set V(G) of G by

0 ifu=o,
_ 12 . .
d(u,v)=1(1—35s) if u and v are adjacent,
1 otherwise.

Then the Cayley-Menger determinant of the semimetric space (V(G), d,)
is a polynomial in s, which we shall call the Cayley-Menger polynomial of
G and denote by CM(G; s). For example, CM(K,; s) = (—1)"n(1 — 5)" ',
and CM( I?n; s) = (—1)"n, where K, denotes the complete graph of order
n.

Since there is a 0-embedding of G in a Euclidean space as a regular
simplex of side-length 1, we can restate Blumenthal’s theorem in the
following way. For any two graphs G and H, let H C G mean that H is an
induced subgraph of G.

THEOREM 1. There exists a t-embedding (t < 1) of a graph G in R" if
and only if there is a G, C G with g, (< n + 1) vertices such that

(1) for any F C G, sign CM(F; t) = sign CM( F; 0);

(ii) for any Gy & H C G, CM(H; t) = 0.
In this case, dim(G, t) = g, — 1.

Let s*(G) be the minimum positive root of the polynomial
CM(G; s), if it exists, and oo otherwise. For example, s* (K,) = 1, and
sT(K,) = 0. Let s~ (G) be the maximum negative root of CM(G; s), if it
exists, and — oo otherwise.
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LemMA 1. For H C G, s™ (H) < s (G) < s*(G) <s* (H).

Proof. We shall only show that s*(G)<s*(H). Let s, be the
minimum value of s* (F) for F C G. It is sufficient to show that s, =
s7(G). If s, = oo then clearly s, = s* (G) = o0. Suppose s, < oo and
CM( Fy; so) = 0 for some Fy C G. In this case, s, < 1, becauses™ (K,) = 1.
Since sign CM(F; s) = sign CM(F; 0) for F C G and for 0 < s <s,, it
follows from Theorem 1 that for every 0 < s < s, there is an s-embedding
fi: G->R" of G where n +1=g:=|V(G)|, the cardinality of the
vertex set V(G) of G. Since Vol( £(V(F,)))? is the product of CM(Fy; s)
by a constant, and CM( Fy; s,) = 0, we have

Vol(£(V(F,))) >0 ass—s,.
Hence we have .
Vol(£(V(G))) >0 ass - s,.

Then by the continuity, CM(G; s,) = 0, and hence s, = 5" (G).
Note that if G contains at least one edge, then s™ (G) < 1.

THEOREM 2. For every s~ (G) <s < min(s* (G), 1), there is an s-em-
bedding of G, and dim(G, s) = g — 1. If —oo < s*(G) < 1 then there is an
s*(G)-embedding of G, where s*(G) = s~ (G) or s* (G).

Proof. We shall only prove the existence of an s* (G)-embedding of
G, provided that s* (G) < 1. Let H be a maximal induced subgraph of G
such that CM(H; s* (G)) # 0. Then

(i)if F C H thens™ (G) <s*(H) <s* (F), and hence
sign CM(F; s* (G)) = sign CM(F; 0);
(ii) if H S F C G, then CM(F; s (G)) = 0 by the maximality of H.
Hence there is an s* (G)-embedding of G, by Theorem 1.

4. Calculation of CM(G; s). Let I, and J, denote, respectively, the
identity r X r matrix and r X r matrix each entry of which is 1. (In the
following, the subscripts are often omitted.) Put K, = J, — I, and

0O --- 0
B(G)=|: A(G) ;
0
where A(G) is the adjacency matrix of G, and put g =| V(G) | . Then, by
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the definition of CM(G; s),
CM(G; 5) =|K,,, — sB(G)|=|sK|| (1/5)l = K~'B(G) | .
SinceK™'=(1/g)J — 1,
K™ 'B(G) = (1/8)JB(G) — B(G)
0 dy/g - dy/g

: : - B(G)’

0 d/g - dy/g
where d; is the sum of entries in the ith column of A(G). In the matrix
xI — K7 'B(G), by subtracting the top row from other rows, we have

x —d/g e —d,/8

|xI — K™ 'B(G) |= :x S AG)
—x

On the right-hand side, adding to the top row the product of the ith row

by1l/g,i=2,...,g + 1, we have

0 x/g x/8
—_ X! N a—
|¥1 = K~'B(G)] : xI+ A(G)
—X
O 1 e 1
— __ 2 1
- "/g; xI + A(G)
1
x 1 1
— 2 —
= —x/8|. xI + A(G) x| xI+ A(G)|

1

= —x2/g{|xI, + A(G+ K,)| —x|xI + A(G) |}

(where G + K is the join of G and K|, defined by G + K, = G UK,)
= —x2/g{(= D" | (=) - A(G +K,) |
+(=DF x| (=x)I — A(G) [}
= (—1)*x*/g{¢(G + K,); —x) + x¢(G; —x)}.
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Using Cvetkovic’s theorem ([3], p. 57):
(G, + G,; x)
= (—1)*¢(G; x)9(Gy; —x — 1)

+ (=1)®¢(Gy; x)9(Gy; —x — 1)

— (=D)*"¢(Gy; —x — 1)6(Gy; —x — 1), & =|V(G)].
After a brief calculation, we have

| xI— K 'B(G) |= (—1)*x%/g{9(G; —x) — (—1)*¢(G; x — 1)}

Since | (1/x)K ., |= (—1)%g(1/x)*"!, we have the following:

THEOREM 3.
CM(G; 1/x) = (1/x) {9(G; —x) — (=1)*¢(G; x — 1)}.

5. Bounds on the parameter s. Put
®(G; x) = ¢(G; —x) — (—=1)%¢(G; x — 1),
where g is the number of vertices of G. Then Theorem 3 says
CM(G; s) = s57'®(G; 1/s).

Note that s, # 0 is a root of CM(G; s) if and only if 1/s, is a root of
®(G; x). Thus we have the following theorem:

THEOREM 4. The polynomial ®(G; x) has a positive root if and only if
57 (G) < o0. In this case, 1/s* (G) is the maximum root of ®(G; x). The
polynomial ®(G; x) has a negative root if and only if s~ (G) > — o0. In this
case, 1/s~ (G) is the minimum root of ®(G; x).

Now let ¥(G) = {vy,...,0,}, § =2, and put
G, =G—v, — U, k=g—1.

[IRRR P

LeEMMA 2.
d* k
—®(G;x)=(—1)"k! (I)Gi...i;x,
2@ =C0% 3 0(G, i x)

where the summation extends over all k-subsets of {1,...,8}.
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Proof. Since
d i=g
S 0(Gix) = i§1¢(6'; x)
(see [6], p. 331), we have
2L 5(G; x) = L (9(G; —x) — (~1)%6(G: x — 1))
— 2 {9(G;; —x) —=(=1)*¢(G;; x — 1)}
= —29(G; x).

Differentiating repeatedly, we have the lemma.

LEMMA 3. If —oo <s*(G) < oo, and the multiplicity of the root
x* = 1/s*(G) of ®(G; x) equals k + 1, then

(I)(Gil._.ij;x*) =0 forj<k,{i,....i,} C{l,....,8},
where s*(G) = s~ (G) or s* (G).

Proof. Since ®V)(G; x*) =0 for j <k it follows from the above
lemma that

(#) (—1)j!2@(G,....; x*) = 0.

Since there is an s-embedding of G for every s (G) <s <s'(G), it
follows by the continuity that

signCM(G,l,,,,.j; s*(G)) =(-1)*"7 or 0.

Since CM(G; .. iy S s*(G)) = s*(G)s 7/~ “I)(G ; x¥), it follows that the
non-zero term of the left-hand side of (#) must have the same sign, which
is impossible. Hence ®(G; .., ; x*) = 0.

THEOREM 5. If there is a t-embedding of G then
s (G) =t=s5"(G).

Proof. 1t is clear that the theorem holds true for graphs with fewer
vertices than three. Assume that there exists a graph for which the
theorem does not hold, and let H be one of such graphs which is minimal
in the number of vertices. Then there is a t-embedding of H such that



400 HIROSHI MAEHARA

t<s (H)ors"(H) <t Suppose that s™ (H) < t. (The case t < s~ (H)
is similar, and is omitted.) Let V(H) = {v,,...,v,},and put H, = H — v,,
i=1,...,h; x*=1/s*(H). Then x* is the maximum root of ®(H; x)
and 1/t < x* . By the minimality of H, t <s* (H,),i = 1,...,h.

Now we show that x* is a simple root of ®( H; x). If x™ is a multiple
root, then ®(H; x*) =0 by Lemma 3, which implies that s* (H,) =
st (H) <, a contradiction. Thus x* must be a simple root of ®( H; x).

Since ®( H; x) changes sign when x passes through x* , a simple root,
CM(H; s) also changes sign when s passes through s (H). Since
sign CM(H; t) = sign CM(H; 0) or CM(H; t) = 0 (because there is a
t-embedding of H), and s* (H) < ¢, there must be a root s, of CM(H, s)
such that s* (H) <s; <t. Thus ®(H; x) has a root x, = 1/s, such that
1/t < x, < x™. Then, by Rolle’s theorem, there is a £, x, < ¢ < x™*, such
that ®’(H; £) = 0. But since 1/£ < 1/x, <t <s"(H,), there is a (1/£)-
embedding of H,, and ®(H;; £) is non-zero and has the same sign for
every i. This contradicts the fact that 0 = ®'(H; §) = —Z ®(H;; §).

6. The dimension of a critical embedding. Let G be a graph with
vertex set V(G) = {v,,...,0,}, and put

G._,,,-I=G—vil—---—-vij, j<g.

THEOREM 6. If —oo <s*(G) <1, and the multiplicity of the root
x* = 1/s*(G) of ®(G; x) equals k, then
dim(G, s*(G)) =g—k— 1,

where s*(G) = s (G) or s (G).

Proof. Since

O#CD(")(G;x*)*—‘(—l)kk!.E (G, ., ;x*),

'I“'ik’
{iy--- i}

there is a { ji,...,ji} such that ®(G, .. ; x*) # 0. By Lemma 1, it follows
easily thatif F C G; .. ; then

sign CM( F; s*(G)) = sign CM(F; 0).

Using Lemma 3, it follows thatif G, ..., £ H C G then CM(H; s%(G)) =
0. Hence dim(G; s*(G)) = g — k — 1, by Theorem 1.
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7. On regular graphs. If G is a regular p-valent graph with g
vertices, then by Sachs’ theorem ([6], p. 56),

= V(X tetl—g .. _

’ X p ’ )

Let A\, =\, = --- = A, be the eigenvalues of A(G). Then A\, =p is a
simple root of ¢(G; x), and A ¢ < 0. Therefore

sT(G) = —1/A,
and

— 0 otherwise.

ExampLE. Let G be the Petersen graph. The characteristic polynomial
of Gis (x — 3)(x — 1)’(x + 2)*. Hence s* (G) = 1/2,5 (G) = —1, and

4, s=—1,
dim(G,s) =15, s=1/2,
9, —-l<s<l1/2.
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