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REGULAR EMBEDDINGS OF A GRAPH

HIROSHI MAEHARA

In this paper we study embeddings of a graph G in Euclidean space
R" that are 'regular' in the following sense: given any two distinct
vertices u and v of G, the distance between the corresponding points in
R" equals a if u and v are adjacent, and equals β otherwise. It is shown
that for any given value of s — (β2 — a2)/β2

9 the minimum dimension
of a Euclidean space in which G is regularly embeddable is determined by
the characteristic polynomials of G and (7.

1. Introduction. To embed a graph in Euclidean spaces with vari-
ous restrictions, and to find the minimum dimension of the space for these
embeddings, are interesting problems [1], [4], [5]. In this paper we consider
a regular embedding of a graph.

An embedding of a graph G in a Euclidean space Rn is called a
regular embedding of G provided that, for any two distinct vertices u and v
of G, the distance between the corresponding points in Rn equals a if u
and v are adjacent, and equals β otherwise. The vertices of G are mapped
onto distinct points of Rn, but there is no restriction on the crossing of
edges. The value s — (β2 — a2)/β2 is called the parameter of the regular
embedding. Let dim(G, s) denote the minimum number n such that G can
be regularly embedded in Rn with parameter s.

Consider, for example, the circuit graph C5. For every regular embed-
ding of C5, it is seen that

and

( 5 ) {
[4 otherwise.

The 'critical' embeddings of C5 in R2 with s = \(± vT — 1) are illustrated
in Fig. 1.

Let φ(G; x) denote the characteristic polynomial of a graph G (that is,
φ(G; JC) = | JCI — A(G) |), and put

Φ(G; x) = φ(G; -x) - ( - l ) g φ ( G ; x - 1),
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where g is the number of vertices of G, and G is the complement of G. Let

x~ and x4" be, respectively, the minimum root and the maximum root of

the polynomial Φ(G; x). Suppose that x~~ < 0, and 1 < x + . Then our

results are stated as follows.

For every regular embedding ofG, l/x~ < s < l / x + and

dim(G, l/jc*) — g — 1 — (/Ae multiplicity of the root x*)9

* = x~ or x + . For o/Λer values of s, dim(G, s) — g — 1.

FIGURE 1

2. A theorem for isometric embedding*. We shall recall a theorem

in distance geometry ([2], Ch. IV). Let S = {/?0,.. .,pk} be a finite

semimetric space with distance function d. The determinant

1

0 doι

rfiπ 0

1

1 dkθ 0

is called the Cayley-Menger determinant of the semimetric space (S, d),

and is denoted by D{S) or by D(p0 -pk). Note that the value of the

determinant does not depend on a labeling (ordering) pO9...9pk of the

points of S.

If S = {pO9...9pk} CΛ", Λ>fc, then we denote by Vol(5) the

/:-dimensional volume of the simplex (perhaps degenerate) spanned by S.

In this case, Vol(S) and the Cayley-Menger determinant of S are related

as follows:

2"(k\y

For details, see Blumenthal [2], p. 98.
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A semimetric space S is said to be irreducibly embeddable in Rn

provided that it is isometric to a subset of Rn but not isometric to any
subset of Rn~K

THEOREM (Blumenthal [2]). A semimetric space S is irreducibly embed-
dable in Rn if and only if

(i) S contains an (n + \)-tuplepQ,... ,pn such that

άSiD(p0 .pJ) = (-l)J+ι (y = 1 Λ);

(ii) for every pair x, y of points of S,

D(PO * -pn>
χ) = D(PO - -Pn> y) = D(PO * •/>„>*> y) = °

3. The Cayley-Menger polynomial of a graph. A regular embedding
of a graph G with parameter s is called, briefly, an s-embedding of G. To
apply BlumenthaΓs theorem let us define a distance function ds on the
vertex set K(G) of Gby

if ι/ and t) are adjacent,

otherwise.

Then the Cayley-Menger determinant of the semimetric space (V(G)9 ds)
is a polynomial in .s , which we shall call the Cayley-Menger polynomial of
G and denote by CM(G; s). For example, C M ( ^ ; j) = ( - 1)ΠΛ(1 - s)n~\
and CM(Kn; s) = ( — l)πw, where !£„ denotes the complete graph of order
n.

Since there is a O-embedding of G in a Euclidean space as a regular
simplex of side-length 1, we can restate BlumenthaΓs theorem in the
following way. For any two graphs G and H, let H C G mean that H is an
induced subgraph of G.

THEOREM 1. There exists a t-embedding (t < 1) of a graph G in Rn if
and only if there is a Go C G with g0 (< n + 1) vertices such that

(i) for any F C Gθ9 signCM(F; t) = signCM(F; 0);
(ii) for any Go ^ H C G, CM(H; t) = 0.

In this case, dim(G, t) — g0 — 1.

Let s+(G) be the minimum positive root of the polynomial
CM(G; s), if it exists, and oc otherwise. For example, s+ (K2) — 1, and
s+ (Kn) = oo. Let s~ (G) be the maximum negative root of CM(G; s), if it
exists, and — oc otherwise.
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LEMMA I. For H C G, S~(H) <S~(G) <S+(G) <S

Proof. We shall only show that s+(G) < s+(H). Let s0 be the
minimum value of s+ (F) for F C G. It is sufficient to show that s0 >:
s + (G). If 50 = oo then clearly s0 = s+ (G) = oo. Suppose s0 < oo and
CM(F0; 50) = 0 for some Fo C G. In this case, s0 < 1, because 5+ (AΓ2) = 1.
Since signCM(F; s) = signCM(F; 0) f o r F C G and for 0 < s < s0, it
follows from Theorem 1 that for every 0 < s < s09 there is an ^-embedding
fs: G-> Rn of G where n + 1 > g := | F(G) | , the cardinality of the
vertex set V(G) of G. Since Vol(/5(F(F0)))2 is the product of CM(F0; s)
by a constant, and CM(F0; s0) = 0, we have

Vol(/,(K(F0)))->0 a s 5 - ^ 0 .

Hence we have

Then by the continuity, CM(G; s0) = 0, and hence s0 > s* (G).
Note that if G contains at least one edge, then s+ (G) < 1.

THEOREM 2. /br et ery s~ (G) < s < min(^+ (G), 1), there is an s-em-
bedding of G, and dim(G, s) — g — 1. // — oo < s*(G) < 1 /Λew /λere w an
s*(G)-embedding of G, wAm? s*(G) = 5" (G) or s + (G).

/. We shall only prove the existence of an s+(G)-embedding of
G, provided that s+ (G) < 1. Let H be a maximal induced subgraph of G
such that CM(#; s+ (G)) ^ 0. Then

(i) if FCH then 5+ (G) < s+ (i/) < 5+ (F), and hence

signCM(is 5+ (G)) = signCM(F; 0);

(ii) if H £ F c G, then CM(F; 5+ (G)) = 0 by the maximality of H.
Hence there is an s+(G)-embedding of G, by Theorem 1.

4. Calculation of CM(G; s). Let \r and Jr denote, respectively, the
identity r X r matrix and r X r matrix each entry of which is 1. (In the
following, the subscripts are often omitted.) Put Kr = J r — I r and

B(G) =

0 ••• 0

: A(G)

.0

where A(G) is the adjacency matrix of G, and put g —\V(G)\ . Then, by
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the definition of CM(G; s),

CM(G; s) = \Kg+ι - sB(G) \ = \sK\ | (1/5)1 - K

SinceK-'=(l/g)J-I,

dg/g0 dλ/g

0 dx/g ••• dg/g

where dt is the sum of entries in the ίth column of A(G). In the matrix
xl — K~'B((j), by subtracting the top row from other rows, we have

••• -dg/gx ~dχ/g

—x

xl

—x
On the right-hand side, adding to the top row the product of the ith row
by 1/g, i = 2,... ,g + 1, we have

0 x/g
— X

— x

xl + A(G)

0 1

1

A(G)

1

x 1
1

x\
- x I JCI + A(G) I

= -x2/g{\ xl8+ι + A(G + Kx) \-x\x\

(where G + Kt is the join of G and Ku defined by G + Kλ - G

= -x2/g{(-\y+'\(-x)l- A(G + KJ\

+ (-\)8+ιx\(-x)l-A(G)\}

= (-\)gx2/g{φ(G + K,); -x) + xφ(G; -x)}.
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Using Cvetkovic's theorem ([3], p. 57):

φ{Gx + G2;x)

= (-l)S2φ(Gi;x)φ{G2; -χ-\)

+ (-l)8'φ(G2;x)φ{Gϊ;-χ-\)

- (- l)g<+g>φ{G]; -x - l)φ(G2; -x - 1), g, =\ V(Gt) \ .

After a brief calculation, we have

\xl - K-'B(G) |= (-\)gx2/g{φ(G; -x) - (-\)gφ(G; x - 1)}.

Since | (l/x)Kg+ι \= ( - l)«g(l/jc)«+1, we have the following:

THEOREM 3.

CM(G; \/x) = ( l / x ) r l { φ ( G ; -x) - (-\)gφ(G; x - 1)}.

5. Bounds on the parameter s. Put

Φ(G; x) = φ(G; -x) - (-\)8φ(G; x - 1),

where g is the number of vertices of G. Then Theorem 3 says

CM{G\s) =sg-χΦ(G; \/s).

Note that s0 φ 0 is a root of CM(G; s) if and only if l/s0 is a root of
Φ(G; x). Thus we have the following theorem:

THEOREM 4. The polynomial Φ(G; x) has a positive root if and only if
5+(G) < oo. In this case, \/s+ (G) is the maximum root of Φ(G; x). The
polynomial Φ(G; x) has a negative root if and only if s~ (G) > —oo. In this
case, l/s~ (G) is the minimum root ofΦ(G; x).

Now let V(G) = {!>!,... ,vg], g>2, and put

LEMMA 2.

£-kΦ(G;x) = (-\)kk\ 2

he summation extends over all k-subsets of {1,... ,g].
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Proof. Since

(see [6], p. 331), we have

-£-Φ(G; x) = -^{φ(G; -x) - (-l)gφ(G; x - 1)}

Differentiating repeatedly, we have the lemma.

LEMMA 3. // — OC <S*(G) < oo, and the multiplicity of the root
x* = 1 /s*(G) ofΦ(G; x) equals k + 1, then

where s*(G) = s~ (G) or s+ (G).

Proof. Since ΦU\G; x*) — 0 for j < k it follows from the above
lemma that

Since there is an ^-embedding of G for every s" (G) < s < 5+(G), it
follows by the continuity that

iι...ij;s*(G)) = (-l)*-J or 0.

Since CM(GlV..f. s*(G)) = s*(G)g~J'ιΦ(Giι...i; x% it follows that the
non-zero term of the left-hand side of ( # ) must have the same sign, which
is impossible. Hence Φ(Giι...i;9 x*) = 0.

THEOREM 5. If there is a t-embedding of G then

Proof. It is clear that the theorem holds true for graphs with fewer
vertices than three. Assume that there exists a graph for which the
theorem does not hold, and let H be one of such graphs which is minimal
in the number of vertices. Then there is a ί-embedding of H such that
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t < s~(H) or s+ (H) < t. Suppose that s+ (H) < t. (The case t<s~(H)
is similar, and is omitted.) Let V(H) = {t?, t?A}, and put //,- = H — €>,-,
i = l,...,λ; x + = l/s+(/f). Then x+ is the maximum root of Φ(H; x)
and \/t < x+ . By the minimality of H, t < s+ (//,.), i = 1,... ,Λ.

Now we show that JC+ is a simple root of Φ(H; x). If x + is a multiple
root, then <&(//,; x + ) = 0 by Lemma 3, which implies that s+ (//,.) =
5+ ( ί ί ) < t, a contradiction. Thus x + must be a simple root of Φ(H; x).

Since Φ(H; x) changes sign when x passes through x+ , a simple root,
CM(/f; 5) also changes sign when s passes through s*(H). Since
signCM(#; ί) = signCM(#; 0) or CM(^; 0 = 0 (because there is a
r-embedding of H), and s+(H) < t, there must be a root J 1 of CM(7/; s)
such that s + ( # ) < sλ < ί. Thus Φ(/ί; x) has a root Xj = \/sx such that
1// < Xj < x + . Then, by Rolle's theorem, there is a £, xλ < | < x + , such
that Φ\H\ ξ) = 0. But since l/{ < l/jct < / < J + (fl)), there is a (l/£)-
embedding of Hi9 and Φ(//, ; I) is non-zero and has the same sign for
every /. This contradicts the fact that 0 = Φ'(H\ ξ) = -Σ Φ(ifz; ξ).

6. The dimension of a critical embedding. Let G be a graph with
vertex set V{G) — {vl9... 9vg}9 and put

Giι...i=G-vi] O 7 < g .

THEOREM 6. If —OO <S*(G) < 1, α«rf rΛe multiplicity of the root
x* = 1/$*(G) ofΦ(G; x) equals k, then

dim(G,s*(G)) = g-k-l,

where s*(G) = s~ (G) or s+ (G).

Proof. Since

{«•••••'•*>

there is a {y,,... ,jk) such that ΦίG,-,.. .jk; x*) ¥= 0. By Lemma 1, it follows
easily that if F C Gh.. .jk then

signCM(F; s*(G)) = signCMίF; 0).

Using Lemma 3, it follows that if Gh.. .h £ H C G then CM(/ί; s*(G)) =
0. Hence dim(G; s*(G)) = g - k - I, by Theorem 1.
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7. On regular graphs. If G is a regular p-valent graph with g
vertices, then by Sachs' theorem ([6], p. 56),

φ(G; x) = (-iy^±£±l^-φ(G; -x - 1).

Hence we have

Let λ1 > λ2 > > λg be the eigenvalues of A(G). Then λ, — p is a
simple root of φ(G; x), and λ g < 0. Therefore

and

s-(G)=ίiΛ2

[ — oo otherwise.

EXAMPLE. Let G be the Petersen graph. The characteristic polynomial
of G is (x - 3)(x - l)5(x + 2)4. Hence s+ (G) = 1/2, j " (G) = - 1 , and

, ^ ^ 1/2,
9, - 1 < * < 1/2.
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