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DIVERGENCE OF COMPLEX RATIONAL
APPROXIMATIONS

D. S. LUBINSKY

General rational interpolations, orthogonal-Pade approximations and
best rational real approximations are shown to diverge as badly as
classical Pade approximants. The examples also show known conver-
gence results to be best possible in a strong sense.

1. Introduction. In [3], the author used extensions of Wallin's
methods [10] to show that the well known Nuttall-Pommerenke theorem
on convergence in capacity of Pade sequences is substantially best possi-
ble. One might expect that general rational interpolations with free poles,
should fare better than classic Pade approximants, at least inside the
closure of the interpolation points. Surprisingly they do not.

In this note, a new method is used to establish counterexamples to
extension of known convergence results for (i) rational interpolants (ii)
Pade-orthogonal approximations (iii) best rational real approximations.
More specifically, it is shown that diagonal and non-diagonal rational
sequences formed from entire functions may diverge in the limit on given
a-compact sets of capacity zero, and that diagonal sequences formed from
functions with finite radius of analyticity may diverge in the limit on sets
whose intersection with every open ball has positive area. Even in the
classic Pade case, the latter example is more complete than Theorem 3 in
[3]. It also settles conclusively a problem posed by Goncar1.

2. Notation, (i) Throughout L, L/? M, M/? N, Nt denote positive
integers and

(2.1) T(i)=Li + Mi+\.

Further / is a bounded real interval and for any function / : / -> C, let
| | / | | = sup{|/(0 | : t G / } . Also let | |/ | | - sup{| t | : t G / } .

(ii) Given any integer n > 1, % is the class of polynomials of degree n
with 1 as (leading) coefficient of zn. Also %={!}.

1 A. A. Goncar, On the convergence of generalized Pade approximants to meromorphic
functions, Math. USSR Sboraik, 27 (1975), 503-514. On page 504: "If D(f) is a disc of
finite radius..."
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(iii) For any Borel set $ C C, cap(S) denotes the logarithmic capacity
ofS.

(iv) A rational function R = P/Q is of type (L/M) if deg(P) < L;
deg(<2) < Af; Q ^ 0. Further R is real if P, Q have real coefficients.

DEFINITION 2.1. Let /? = {i8LM7} be complex number s.t. fiLMj is given
for each 1 <y < L + M + 1, all L, M. We assume for some T > 1

(2.2) I ^ M V N T all L,M,y

and set

(2.3) $(L/M){z)= II ( ^ - i 8 ^ ) allL,M.

If/: j8 -> C is analytic at the zeroes of S(L/M) then 9(L/M) = P/Q is
the rational function of type (L/M) s.t. (fQ - P)/£(L/M) is analytic at
the zeroes of l(L/M).

See Wallin [9] for the convergence results for the rational interpolat-
ing functions §{L/M).

DEFINITION 2.2. Let a: I -> R be non-decreasing with infinitely many
points of increase. Let $y G ̂  (allj > 0) satisfy /7 fyfyda = 0 all z ^=7.

Then given continuous / : / -> C, the linear a-Pade approximant
([L/Af]>= P/<2 and non-linear a-Pade approximant ((L/M)) are ra-
tional functions of type (L/M) s.t.

J(fQ~ P)<S>jda = 0 all 0 <y < L + Af,

/ ( / - ( ( L / M » ) $ / / a = 0 all 0 <y < L + M.

See [7] and Suetin [8] for convergence results for <[L/Af]>, ((L/M)).

DEFINITION 2.3. Let / : / -> R be continuous in /. The best rational
real approximation <3l(L/M) to / is a real rational function of type
(L/M) s.t. | | / - &(Z,/Af)|| = min| | /~ R\\9 the minimum being taken
over all real rational functions R of type (L/M).

See [5] for some "overconvergence" results for 9l(L/Af).
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3. Construction of the functions. The examples are based on:

LEMMA 3.1. Let M, N>0 and L>N. Let C^O and Qe%;

(3.1) 6 = max{|z|: (UQW)(z) = 0}

and

(3.2) r > 0 and s > max{l,26,2r}.

Then there exist polynomials P* of degree < L, a«<i g* of degree M s.t.

(3.3) [/g*e - P* +

(3.4) \UQ*\(z)<(3s)L+M+l\C\ all\z\<r.

If C, U, W, Q are real, so are P*, Q*.

Proof. Let P* be the polynomial of degree < L that interpolates to
-CW at the (L + 1) zeroes of UQ. Then Q* = (/»* + CW)/(t/g) has
degree M and (3.3) follows. Further for | z \ < s,

(3.5) Q*(z) = (2*ir7 (i»* + C^) (0 / [ (^ f i ) (0 ( ' -01*
•'11=*

CW(t)/[(UQ)(t)(t - z)]dt
s

(as P*(r)/[(i7Q)(O(^ ~ 2)] is analytic in / for | /1> s and is O(\ t \'2) as
I /1 -* 00). Then for | z | < r, (3.1), (3.5) give

\Q*U\{z) < s\C\(s + b)L+M+\s - b)<L+\s - r)-\r + bf~N+X

and (3.2) then gives (3.4). •

Following is the construction for the interpolation examples:

LEMMA 3.2. Let {L,}, {M,}, {N,} satisfy Mj >Nt>0 and

(3.6) Li - N, + 1 > 2 T'Cy) a» i >
7 - 1
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(where T(j) is given by (2.1)). Let Qi G 9N have no zeroes in /? (i > 1). Let
{st} be a monotone increasing sequence s.t. st > 2F and

(3.7) jf.>2max{|z|: Qt(z) = 0} all i ^ 1

(3.8) r = lim5I/2.

7%e« //zere w a function f analytic in \z\< r s.t.

(3.9) / r ( 0

(3.10) lim sup|£;(z)|1/7Xl) < 1/2 all \z\ < r

the upper bound holding uniformly in compact subsets for large i.

Proof. Let Wi = £(L,/M,.); Ui = z / ( / ) n^U( V M 7 > a11 ' > ! ' w h e r e

/(/) is chosen s.t. deg(C/;) = L, - TV;. + 1 (possible by (3.6)). Let

(3.11) C,. = (6s,yno all r > 1.

Then for each i > 1, Lemma 3.1 with Q = Qt, U = Ut, W = Wt, C = C,
shows that there exists P;* of degree at most Lt, Q* of degree M; s.t.

(3-12) V.Q*Q. = />* + CtWt

and

(3.13) \U,Q

(by (3.4), (3.11)). Let

(3.14)

and for each i > 1, let

(3.15)

and

(3.16)

00

M = 2
7 = 2

00
r, >T1

J
7=2
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Now we see that (3.6) implies T(i) > i, so (3.10) follows from (3.13)
and it also follows that / is analytic in | z |< r. Using (3.12), (3.14), (3.15),
(3.16), we see

(3.17) fQi-Pi = EiQi + CiWi.

It is easily seen from the definition of UJ9 Wi that the right member of
(3.17) has zeroes when f(L/Af) does; and (3.6) shows that deg(Pz) < Li9

while deg(gf.) < M) so S(WMi) = Pi/Qi by uniqueness. Finally (3.11),
(3.17) => (3.9). •

Note that in the Newton-Pade case (all jSLMJ = fij) we could just take
Lt - Nt:+ 1 > T(i: - 1) and 0J = z/(/)f( JVAQ. Following is the con-
struction for the Pade-orthogonal examples:

LEMMA 3.3. Let {LJ,{MZ}, {Nt} satisfy Mt > Nt and

(3.18) L. - Mi-Ni>Li_x + Mt_x + Nt_x all i ^ 1.

Let Qt E 9N be real alt i > 1. Let {st} be monotone increasing and satisfy
st > 2|| /1 | and (3.7). Let r be given by (3.8).

(a) There is a function f analytic in\z\< r and real in (~r, r) s.t.

(3.19) / T()

all\z\<r,i>\, where (3.10) holds.
(b) If the {Qj} have no zeroes in I, then there is a function f analytic in

| z | < r and real in (-r, r) s.t.

(3.20) / - { ( )

all \z\<r,i > \, where (3.10) holds and Wt e ^Pr(/) has all its zeroes in I.

Proof, (a) Let U, = ®L-Nl+V Wt - $T(l) and C, be given by (3.11) all
i > 1. Lemma 3.1 with !/='{/„ W - Wt, Q = Qt, C = C,, show that
there exist P*, Q* s.t. both (3.12), (3.13) hold. Let / , Et, Pt be given by
(3.14), (3.15), (3.16) respectively. We see that (3.10), (3.17) hold and so

f{fQt-Pt)*kd«= 2 (

= 0 forO<fc<r(0

(by (3.18) and choice of Uj).
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(b) Let Ui9 C, be as in (a) but define Wt differently: Since da(x)/Qt(x)
is of one sign in / with infinitely many points of change, there exists
Wt G %(i) s.t. jT WiPda/Qi = 0 for all polynomials P s.t. deg(P) < T(i).
Then all Wt

9s zeroes lie in /. Further with/, Ei9 Pt given by (3.14), (3.15),
(3.16) respectively we see

f(f-Pl/Q,)*kda= 1 fUjQJ^da + qfw^da/Q,
Ji j = i + x

 Ji Ji

= 0 aU0<A:<r ( i ) . •

Following is the construction for the best approximation examples.

LEMMA 3.4. Let {L,}, {M,}, {Nt} satisfy Mt > N, and

(3.21) L, - N, - 1 > 2 2 (L, + My + JV,) a// / > 1.
7=1

Let Qi G ^ be real with no zeroes in I(i > 1). Let monotone increasing {st}
satisfy

(3.22) 5/>24max{l,||/||,max{|z|: Q,(z) = 0}}

and let r be given by (3.8).
Then there is a function f analytic in\z\< r and real in (~r, r) s. /.

(3.23) / - <&(L/M,.) - Et + ( S ^ r ^ ' V / G /

/« | z |< r wAere (3.10) /w/ds a^J P^ G ^Pr(/) has all its zeroes in I (i > 1).

. Let C,- = (3^)-2r(/) all i > 1. Let ^.(z) = zr(i> + Pz
#(z) where

deg(Pf) < 7X0 - 1 and II^/GJI = min||(zr(/> + P)/G,-ll the minimum
being taken over all polynomials P s.t. deg(P) < T(/) — 1. Then Achieser
[1, p. 55] shows that Wi/Qi equioscillates at 7X0 + 1 points in /. Further
then all W?% zeroes lie in /. Thus (3.22) and 7X0 > 2JV- and Theorem 4 in
Walsh [11, p. 104] show that all zeroes of the derivative (J^/G/) ' l i e i n t h e

region {z: | z |< ^z/8}. So

(3.24)

where Ht E ^PL+M+Ar is real and has at least T(i) + I zeroes at the points
of equiosciUation of Wl/Qi in /, the remaining at most Nt — 2 zeroes lying
in | z |< st/%. Then \z\— st/4 implies

(3.25)
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(as s, > 24 and T{i) + \>2Nt + 2). Next let

(3.26) U,(z) = z'W
1 - 1

][Hf{z) (z-inf/)(z-sup7)

where /(/) is determined so that deg(Lf) = L, — iV, + 1 (possible by
(3.21)). Then for each i > 1, Lemma 3.1 with Q = Qt, U = Ut, W = Wt,
C = Ct gives polynomials P*, Q* s.t. (3.12) holds and s.t.

(3.27) max{me*\(z): \z\ < Sj/2} < (3*<)-rxo all,' >

Let/, £„ P, be given by (3.14), (3.15), (3.16) respectively. It remains to
show PJQi - ^(Li/Mf). Cauchy's integral formula for E[ applied to the
contour {/: | /1 = st/2} gives for | z | < st/4,

-2

00

JLi \3s

(by monotonicity of {sj} and by (3.27))

< Cf/3 (by choice of C, and as T(j) > 2T(j - 1))

So for \z\=Si/4, \E'i(z)\<\{CiWi/Qi)\z)\ (by (3.25)). Then Rouche's
Theorem and analyticity of Et shows that (Et + C^WJQ^)' has the same
number of zeroes as {C^VJQ^ in {z: | z \ < st/4}. But Et and E[ vanish at
all zeroes of (C^/C?*)' (bY (3.15), (3.24), (3.26)) while Et vanishes at / ' s
endpoints. We deduce that /— Pt/Qi = Ei + ClWi/Qi equioscillates at
the at least T(i) + 1 points of equioscillation of C-Wi/Qi in /. Hence
p /o = f̂t ( T /M\ n

Finally, we define some polynomials.

LEMMA 3.5. Let {£,}, {Af,}, {iV;.} satisfy for some c > 0, TJ > 0

(3.28) N,>cT(i),

(3.29) L ;>(l

^ > 1 ̂ f«(i 0 < e < 1 < r. Let °*{be a subset of {z: | z \< r) with empty
interior and % - {z: \ z |< r}\TZ>e non-empty. Let Wi G %(i) have all its
zeroes in T(/ ̂ 1 ) .
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Then there exist real polynomials Qt G 9Nm with zeroes in {z: \z\< r}\V
s.t. if

(3.30) S, = {z: IWt/QAiz) > aT^} alii > 1

then
(a) If B is a ball sJ. B n % is non-empty, then there is a ball B' that is

non-empty sA.B' C &. d B for all large i.
(b) IfB is a ball in {z: \ z \< r) s.t. d(B) > e then

lim inf meas(S/ Pi B) > 0

where meas denotes planar Lebesgue measure.

Proof. We set Qt = QXiQli where Qu is used to give (a) and Q2i is
used to give (b). Construction of {Qu}.

Choose {xt} dense in, and contained in %. Set p(i) — (r]/4)(l + t])'1

all i so

(3.31) 1 p(i) = 1/4.

Choose positive {r(} s.t. for all i

(3.32) k | + rz.<r and r^>/2 < (</(*„ T) / (2^) ) 1 A (2 r ) - 2

where rf(xi? T ) denotes the distance from xt to T. Let w(i; j) = greatest
integer < p(y)iV/ all 1 <y < /. Using (3.28), (3.29) and (3.31) we see

(3.33) n(i; j) > pU)^/! all 1 <:j < i/2

(for large /). Now let

7 = 1

where m(/) is chosen s.t. deg(gh) = greatest integer < JV /̂2, this being
possible by (3.31). Then Qu is a real polynomial with zeroes in 6ii. Let J3,
be the open ball of radius ri9 center xi9 all i > 1. Then 1 <y < i/2 and
z G 1?7 implies

(d(xJt T ) / (2«))Wl/e(2r)^ (by (3.32), (3.33))
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(by (3.28) and as if u is a zero of W then w E T s o \z — u\>\u — Xj\ —
| Xj - z | > d(xj9 T ) - rj > </(*,., T ) / 2 ) . Then as deg(g2/) < Nt and its
zeroes will lie in \z\< r, we deduce from (3.30) that U'42j 2?7 C S. for all
large enough /. As the {JC,} are dense in % and rf -> 0, (a) follows.

Construction of {Q2l}- Choose 0 < e0 < f/30 s.t.

(3.34)

for some integer n and choose 5 > 0 so small that 8/e0 is a positive integer
> 1 and

(3.35) e{)/
cfi-1/<8'l2>(4r)'1 > al^c(2r).

Let § = (z: |Re(z) |<r ; | Im(z) |<r} and divide § into AI2 squares
S(l) --S(n2) of side \0e0. Let

(3.36) e z -{z : |^ . (z ) |<e^} all / > 1

which implies meas(£z) < Aeirel all i > 1 (by Cartan's Lemma [2, p. 194]).
Next, for i > 1, 1 <y < «2, meas(5r(y)) = 100ê  > 2meas(£.) so we can
find a square £(/; y) of centre b(i; j) side 8 s.t.

(3.37) 5(r, 7) C S(j) and meas(S'(i; 7

By displacing the b(i; j) slightly we can assume all b(i; j) J T . Let

Q 2 l ( z ) = ( z ~ rY{l) f l { ( z - b(i; j ) ) ( z - b ( i ; j ) ) } p ( l )

where p(i) — greatest integer < Nt/(4n2) and f̂(i) is determined so that
deg(ghe2 /) - iVr Then z G UjL, S(i; j)/tt implies

(as /?(/) > A^/(8«2) and by (3.28), (3.35)). As before this implies z E S r

Finally if B C {z: | z |< r} and rf(5) > e, then (3.34) implies that B must
contain some £(7). Then for all 1, meas(j? Pi Sy) > meas(S'(7) n &t) >
meas(5(/; y ^ ^ ) > 82/2 (by (3.37)). D

4. Results. We show now that for functions / analytic in a large
circle centre 0 (but with singularities of positive capacity in C) diagonal
sequences of rational approximations will not in general converge in
measure or in capacity in any open set within/'s radius of analyticity. So



150 D. S. LUBINSKY

the requirement of singularities of cap 0 in C in the various Nuttall-Pom-
merenke theorems [5, 7, 9] is essential. Even for the usual Pade approxi-
mants (where all fiLMj = 0) this provides a more complete counterexample
than Theorem 3 in [3], which did not exclude the possibility that the Pade
approximants converged in measure in a neighbourhood of zero.

THEOREM 4.1. Let 0 < e < 1 < r. Let {Lk}, {Mk} satisfy for some
A > 1,77 > 1

(4.1) l/X < Mk/Lk < X alU > 1,

(4.2) Lk>(\ +r))T(k- 1) all k > 1.

Then there is a function f analytic in \ z |< r s.t. if Rk = $(Lk/Mk) all
k> 1, and if

(4.3) $k = {z: \z\<rand\f-Rk\(z)>2TW} allk>\

then
(a) for any ball B s.t. B D {z: \z\< r}\/5 =£ 0 there exists a ball

B' ^ 0 s.t. B ' C f ^ n Bfor large k.
(b) for any ballB in {z: \z\< r} s.t. d(B) >: c, we have

lim inf meas(^ (1 B)>0.
kk

Hence {Rk} (and all its subsequences) cannot converge in measure in
any open set in {z: | z | < r } \ / ? nor in any ball B in {z: | z | < r } s.t.
d(B)>e.

Proof. Let

(4.4) Nk = greatest integer < min{M^? (1 - \/r\)Lk} all k > 1.

Then (4.2) implies T(j) < (1 + y\)~xT(j + 1), so

< L/i, <Li-Ni+\
7=1

(by (4.4)). Hence (3.6) holds. Let Wt = ^LJM^ all j > 1 and a = 25r
and T = iff in Lemma 3.5. Since (4.1), (4.2), and (4.4) hold, Lemma 3.5
gives real polynomials Q. E <$N satisfying Lemma 3.5(a), (b) and with all
their zeroes in (z: \z\< r}\/i. We can clearly assume r > T (given by
(2.2)). Letting st = 2r all j , we see (3.7) holds. Then with the {LJ, {AQ,
{Nt}9 {Wt}9 {Qt} chosen above, Lemma 3.2 gives a function / analytic in
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| z | < r s.t. (3.9), (3.10) hold. Then for all | z | < r' < r s.t. z G S. (given by
(3.30)) we have for large i

| / - ^WM^z) > {\2r)-T^ULi/Mi)/Ql\{z) - 1 > 2™

(by (3.30) and as a = 25r). Thus Sf. n {z: | z |< r'} C 3;. for large i and
Lemma 3.5(a), (b) give our result. •

REMARKS, (a) So surprisingly enough, there is not even convergence in
measure in /?, the closure of the interpolation points, in general.

(b) One may modify the above example so that divergence of the
above type occurs even when most of the poles of the {§(Lk/Mk)} are
fixed in advance and are not determined by interpolatory conditions-see
the technical report [6] (not intended for publication).

THEOREM 4.2. Let r > 1. There is a function f analytic in \z\<r and
real in (-r, r) s.t. if {Rk} = {([Lk/Mk])} (or {Rk} = {((Lk/Mk))}; or
{Rk} = {^(Lk/Mk)}) then for any ball B s.t. B D {z: \z\<r) ¥= 0 there
exists a ball B' # 0 s.t. B' C§k D B for large k {where % is given by
(4.3)).

Hence {Rk} (and all its subsequences) cannot converge in measure or in
capacity to f in any subset of {z: \z\< r} with non-empty interior.

Here (a) / / {Rk} = {([Lk/Mk])} or {Rk} = {{{Lk/Mk))} we must
insist that for some t\ > 0, X > 1,

(4.5) Mk/\ <LLk-Mk< \Mk; Lk~Mk>{\+ <q)T(k - 1).

(b) / / {Rk} = {^{Lk/Mk)} we must insist that (4.1), (4.2) hold for
some t] > 2, X > 1.

Proof. Similar to Theorem 4.1, but using Lemmas 3.3, 3.4. •

REMARKS, (a) While (4.5) excludes the case Lt - Mi9 it allows Lz =
(1 + 8)Mt where 8 > 0 may be arbitrarily small.

(b) For the linear Pade approximants {([Lk/Mk])} the example can
be modified to show that there is not even convergence in capacity in any
segment of / with diameter > e (e being fixed in advance).

(c) We next show that general diagonal rational sequences formed
from entire functions can diverge in the limit on given a-compact sets of
cap 0. As in [3] (where this was shown for the usual Pade approximants)
this implies that convergence in cap cannot be strengthened to con-
vergence in some " thinner" set function.
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THEOREM 4.3. Let & be o-compact and cap(S) = 0. Then there is an
entire function fs.t.

(4.6) lim | / - Rk\(z)vnk) - oo allzG&.
k

Here (a) In the interpolation case, we assume & C C\/3 and {Rk} —
{$(Lk/Mk)} where (4.1), (4.2) hold for some A > 1, TJ > 1.

(b) In the orthogonal-Pade approximation case, we assume & C C \ /
and {Rk} = {([Lk/Mk])} {or {Rk} = {((Lk/Mk))}) where (4.5) holds
for some X >: 1, r} > 0.

(c) In the best approximation case, we assume & C C \ / and {Rk} —
{<&{Lk/Mk)} where (4.1), (4.2) hold for some X > 1, i\ > 2.

. (a) With {7V,J given by (4.4), we see as before that (3.6) holds.
Further there exists c > 0 s.t. (3.28) holds. Next the arguments in [3,
Theorem 2] show that there exist Qk G %k (all k > 1) and {^} s.t.

= 0, s.t.

(4-7) g*'s roots lie in | z | < e*c / 3 /2 a11 l a r S e enough k,

(4.8) z G S implies | Qk(z) |< e^ all large enough k.

By minute displacements to the zeroes of {Qk}> we may assume that they
lie outside £. Set sk = e^c/3 all >t > 1 in Lemma 3.2. Then (2.2) and (4.7)
imply (3.7). Further limksk = oo, so / of Lemma 3.2 is entire. Further
z e S and (3.9), (3.10), (3.28), (4.8) give for large k,

I / - {
^ 1 ( ) | ( ) 1 / r ( / c ) oo as k-» oo

as £(Lk/Mk)
9s zeroes lie in /? and z & ft. (b), (c) are similar, though one

replaces Qk above by Qk = Q%(z)Q*(z) where g* E ^ ^ to obtain real
k

REMARKS, (a) One can relax S C C\ft slightly and also allow the
zeroes of £(Lk/Mk) to tend to oo sufficiently slowly (the rate depending
on S). Similarly for the linear Pade approximants, one can relax & C C \ / .

(b) It is well known that non-diagonal sequences of various rational
approximations converge in capacity-in fact, this is best possible:

THEOREM 4.4. Let $ be a o-compact set s.t. cap(S) = 0. There exists an
entire function f and {Mk}, {Lk} s.t. lim^Z^ = oo; limk Mk/Lk = 0 and
lim* | / - Rk\(z)l/™= ooallz G S.
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Here (a) In the interpolation case, we assume & C C\f$ and {Rk} =
{KLk/Mk)}.

(b) In the orthogonal-Pade approximation case, we assume & C C \ /
and{Rk) = {{[Lk/Mk])} (or {Rk} = {((Lk/Mk))}).

(c) In the best approximation case, we assume & C C \ / and {Rk} =

Proof, This is similar that of Theorem 4.3—a full proof appears in
[6]. •

Note finally that the results in [4] which characterize the thinness of
exceptional sets for non-diagonal sequences of Pade approximants also
hold for the above approximations-see [6].

5. Acknowledgement I would like to thank Professor Oved Shisha
for referring me to [11],
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