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BESSEL FUNCTIONS ON Pn

THOMAS E. BENGTSON

In this paper Bessel functions are defined in the homogeneous
symmetric space GL(n,R)/O(n). Two definitions are given. One is an
integral over the space itself, the other is a Euclidean integral. A relation
between the integrals is proved. The use of this relation is shown
explicitly in a low dimensional case. Some additional properties of these
Bessel functions are then noted.

I. Introduction. The Riemannian symmetric space Pnoi n X n sym-
metric matrices over the real numbers has appeared in many areas of
mathematics. It has been studied in connection with multivariate statistics
[J], [I], with analytic number theory [S], [M], and with the study of other
higher rank symmetric spaces, such as the Siegel upper half space of n X n
complex matrices with imaginary part in Pn. The above references have
been cited merely as examples of the uses of Pn.

One way to approach questions about Pn is to use harmonic analysis
and special functions. Pn has many coordinate systems. In the geodesic
polar coordinate system a general theory has been worked out by Harish-
Chandra [HC] and Helgason [Hel]. Using some computations of Bhanu-
Murti [BM], Audrey Terras has been able to make this theory explicit for
Pn [T]. However, it seems that the so-called partial Iwasawa coordinate
system is needed in the study of some questions that arise in number
theory. This is the coordinate system that is used in this note. In fact, the
functions and formulas proved here have already found application in the
Fourier series expansion of Eisenstein series for GL(3, Z) due to recent
work of Kaori Imai and Audrey Terras [I-T].

The purpose of this note will be to define some Bessel functions for Pn

and prove some of their properties. To begin, however, we establish some
notation and recall some basic facts about Pn. We will only mention those
details of structure that directly concern us here.

II. Basic facts and notation. Let Pn be the space of all n X n
symmetric matrices over the real numbers. Let Y = (ytJ) be in Pn and let
A be in GL{n, R). Then GL(n, R) acts on Pn by sending Y to Y[A] = rA YA
where 'A denotes the transpose of A. The orthogonal matrices 0{n) fix
the identity / in Pn. The action is sufficiently nice that Pn can be identified
as the symmetric space ^ \ G where G — GL(n,R) and K= O(n). The
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invariant volume on Pn is given by dvn = | Y\~^n+l)/1 dY where | Y\ is the
determinant of Y and dY = II !</<,<„ dytj and dytj is ordinary Euclidean
measure.

Denote by dY the matrix (((1 + Sl7)/2)9/9.yl7) where 5/y is the usual
Kronecker delta. Then an algebraically independent basis for the com-
mutative polynomial ring of invariant differential operators on Pn is given

Let Yt be the upper left i X / corner of Yand let s = (sl9...,.?„) be in
C". Then define the power function ps{Y) = IIf=11 Yt \

Si. These are joint
eigenfunctions for the ring of all invariant differential operators. Further-
more, the action of an invariant differential operator on these functions
determines the operator. The power functions were introduced by Selberg
in the 1950s. Details for the above facts can be found in Terras [T] or
Maass [M].

Carl Herz [Her] in the early 1950s considered many special functions
on Pn. However, at that time the symmetric space structure was not well
understood. For example, he uses the measure | Y\~{n+X)/1 dY but does
not seem to recognize it as an invariant volume, and he did not know
about the power functions. Consequently, his generalizations were only of
the special case s — (0,... ,0, sn) in C". However, due to the recent work
of Terras and Imai already cited [I-T] it is clear that more than this special
case needs to be considered. We will do that here.

Let Y be in Pn. Then Y has the decomposition Y= fTT where
T= {ttj) is upper triangular, that is ttj = 0 for / greater than j . The
invariant volume can be computed and the result is

* „ = 2" ft ('//)"'<*r wheredT = ][ dttJ
i=\ l

and the dttJ are ordinary Euclidean measures.
Again for Y in Pn we have the partial Iwasawa decomposition:

Y = (ocMo 71 with Fin Pp9 G in Pq9 and H in R'x* with/? + q = n. The
invariant volume here is dvn=\F|<?~(n+1)/21 G\~(n+1)/2 dFdGdH with the
following usual products of Euclidean measures:

dF= n 4fij> dG= n dgiJ9 and dH = ft dhtj.
1 / l

With the same notation we can also decompose Y by Y — (££)['# /] (F>
G, and H are all the same size and in the same places as before.) The
invariant volume for these coordinates is

dvn = |

These computations are done, for example, in Terras [T].
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III. The iC-Bessel and /c-Bessel functions on Pn. The classical one
dimensional £-Bessel function, sometimes called MacDonald's function,
can be defined by

Kv(z) = (1/2)y°V*- ( 1 / 2 )* ( w + 1 / w ) dw/w for v and z in C

with Rez > 0 . Audrey Terras has extended this definition for s in Cn, A
and B real symmetric matrices to

Kn(s\A,B)=f Ps(Y)ctr(-AY-
P

where etr(A) — exp(trace(^4))

is a notation taken from Herz. In the one dimensional case the
function is related to the Euclidean integral

(l+w^e^dt

by a 'complete the square' argument. This case arises in number theory. In
that application, the Fourier series expansion of an Eisenstein series is
computed by using Poisson summation. Poisson summation relates the
sum of a function at integer points to the sum of the Fourier transform of
the function at those same points. In this way the &-Bessel function, which
is a Fourier transform, arises. Hence we expect to relate the jST-Bessel
function to a Euclidean integral in order to carry out the expansions in
higher dimensional cases. After we find the A -̂Bessel function as a
Euclidean integral a correct generalization of the fc-Bessel function as a
Fourier transform can be made.

The complete the square argument in the one dimensional case
introduces a gamma function. We will need the generalization:

This, it turns out, factors into one dimensional gamma functions:

Tn(s) = ̂ " - D / 4 fi r(5,
1=1
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We can now show

THEOREM 1.

Ps{(A +'XX)~l)etY(2i'RX) dx = <nmn/2Kn(s* \A/RR)
R m X "

with A in Pn9 R in RwXw, and

s = (sl9...,sn) inC", s*=s + (09...,0,-m/2).

Proof. Our proof will put aside questions of convergence, which will
be considered in more detail later. We start with the left hand side and
transform it into the right. To begin, write Tn as an integral and inter-
change the order of integration to obtain

f [PS(Y)PMA +'XX)-l)etr{-Y)doneti(2i'RX)dX.
JXJY
f [

XJY

Since A is in Pn, A +'XX is also in Pn. Write A +'XX = TT with T
upper triangular. Make the change of variables Y -» Y[T] and get

f f ps(Y[T])ps{(T'Tyx)etr(-Y[T]) dvnetr(2i'RX) dX.
JXJy
f f
XJy

Now note that

and that Tr(Y[T]) = Tr(TYT) = TT(T'TY). Our left hand side has now
become

ps(Y)etr(-AY) [ etr(-'XXY + li'RX) dXdvn.Jx

The next part is the part where we complete the square in the X
integral. We do this by writing Y = V2, V in Pn, and making the change
of variables X -» XV~', dX -»| V~' |m dX = \ Y | " m / 2 dX. Thus

etr(-'XXY + li'RX) dX

= f etr(-'(XV~])(XV-])V2 + 2iRXV~]) \ Y\~m/2dX.
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It takes five steps to verify that TT(\XV~X)(XV-{)V2) = Tv('XX), which
was why we made this substitution in the first place. To finish completing
the square, let C = iRV~x and note that

Tr(l[X- C]) + TT(Y-1['R]) = Tr('XX-2i'RXV-1)

by a short computation which we omit. Thus our X integral is

f etr(-/[J!r- C])eto(-Y-l['R])dX.
x

All together our left hand side is

f ps(Y)\ Y\-m/2etr(-AY- fRRY~l)dvJ e t r ( - / [ X - C])dX.
Jy JX

We need to make a change of variables X -» X + C, dX -> dX to
evaluate the X integral. This involves integration in several complex
variables, which is omitted. However, it reduces the X integral to

f etr(-'XX)dX=7Tmn/2.Jx
Now we have brought the left hand side to the definition of the right hand
side, and so we are done.

Next we turn to the definition of the fc-Bessel function.

km,n-m(s\Y,N)=f ps\Y
J Yin T>mXn-m \

where 7 is in Pn9 s is in Cw, N is in RmXn w, and dX is the usual Euclidean
measure. This definition is a Fourier transform of the power function and
hence ordinary Fourier inversion gives us

».»-M Y,N)etv(-2i'NX)dN.

One can also see that the A>Bessel functions transform under the action of
the abelian subgroup {(^ °r)} of GL(n, R) by a character of that subgroup
since the following formula is a consequence of the definition.

This establishes a connection between these functions and group represen-
tations.
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We will next relate this function, for restricted values of s in C", to
the AT-Bessel function. We will show

THEOREM 2.

im\S)Km,n-m\
/o | M ®\ N) —\

- = (sl9...9sm) is in C m , »sext = (sl9... , s m , 0 , . . . , 0 ) is in Cn, s =
- „ . . . 9sl9 - 2 r = i */) , and s = s + (09... A (n ~

Proof, Only an outline of the proof will be given. The first step is to
rewrite the previous theorem as follows:

Tm(s) f x ps((A + 'XX)~l)etr(2iR'X) dX

with A in Pm9 R in R™x»-* and s* = (09... ,0, -{n - m)/2) + s in C m .

Now for5 = (^m_1,...,.y1, — 2 ™ ^ ) and

0 1

\ 1 0

a computation will show t h a t / ^ y 1 ) = ps(Y[U]). So we put 5 for .s1 in the
statement of the previous theorem to obtain

Tm(s) [ Ps(A[U] + ('XX)[U])eti(2i'RX) dX

Next note that

[[A 0 U / 0l\
M \ 0 BIl'X l\)

First make the change of variable X -» C/JfF where F2 = B and JX -»
\detU\n-m\detV\mdX = \B\m/2dX and then make the change 'R ->
V~URU, A -* A[U]. When done these substitutions will produce the
statement of the theorem.

As consequences of the above theorem relating the AT-Bessel function
to the fc-Bessel function we can note that since the power function ps is an
eigenfunction for the invariant differential operators on Pn9 so is kmn_m,
and in this way one can obtain differential equations for the iT-Bessel
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function. Convergence information is also available by this formula. We
will next discuss this.

Audrey Terras has shown that the AT-Bessel function is given by a
convergent integral whenever the arguments are in Pn. [T] For certain
singular arguments the integral also makes sense. For example, one can
show that Kn(s | 0, B) = Tn(s)ps(B), where s = (sn_l9... 9sl9 - 2 ^ = 1 st). In
fact, this author has extended this result to show that

I \[C 0\ (A 0\\l X]

M 5 | \ o o M o B)[O I\
= "min-m)/2 \A \-{n-m)/2pAB)Tn_m($)Km(s* | C, A)

where s = (s}9.. .9sn) is in C", f = Om + 1 , . . . 9sn) is in C"~m, 1 =
( ^ - i - - - ^ + i , - 2 ^ + ! ^ ) is in C"-m, and ^* = (sl9... ,^w_l9 sm

+ - " +sn + (n — m)/2) is in Cm, and C and A are in Pm, B is in Pn_m,
and X is in RmX"~m. This result is proved using the partial Iwasawa
decomposition in the integral defining the ^T-Bessel function. It is the
Jacobians involved that produce some of the mess. The same techniques
also will show

K ,^;A o\\ I ol (oo\\i
0 Bli'X / J ' \ 0 D,

— —w(« — m ) / 2 I n I —m / 2 _ / ,< — 1 \ "P* /r.>k\ f / £ I Z? 7"l \
— 7/ -^ I r * \ ^ / V " / "**• V " \ ^ ? " ^ /

wi th s in C" , 5* = (sx,... ,sm_x, sm + • • • + 5 n _ , + sn) i n C m , 5 =

(sm+],...,sn_u sn - m/2) in C"~m, A in Pm, 5 and D in />
n_m, and X i n

IV. A low dimensional illustration. As an example to show what
can be done by using Theorem 2 explicitly in a low dimensional case we
take B in Pl9

 fN = (nX9 n2) in R2, and consider K2(sl9 s2 \ N'N9 B). We
express this as an integral over Y in P2 and write

Y = 'TT with r =

Now

and

_ 2txtX2nxn2 - n\t\ - b(tx~
2 + t2

ntx
2q2 + q2))
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where b is the smallest eigenvalue of B. In checking for absolsute conver-
gence we are led to examine

rrr o2^"^2* 2rrr
The substitution

enables us to complete the square in the tl2 integral, which evaluates to
(?7)1/2. We are left with checking that

>.oo /.oo _ j >2

I I i ^ i ) 1 2 v ^ 2 / 2 1^2~'~ ^ i ^2 ) e x p ( w ) dt\ dt2

c o n v e r g e s , w h e r e

w = —t2n2 — n\t\ — bt\2 — bt2
2 + n\n\t\/{n\ 4- bt^2t2

2).

There is no trouble near the zero end of /, or /2, so we are left with
looking at

'i J\

where

v = -t\n\ - n\bt2
2/ (n2

2 + bt^2t2
2).

Consider what happens when n2¥
z0. Then the second term in v is less

than or equal to zero so it can be thrown away. Note also

Thus we have convergence when Re(2s2 + 2 ^ — 1) < — 1 and all s2.
When n2 = 0 we are looking at a different thing. The integrand

simplifies quite a bit and we are left with

If n2 — 0 and «, ^ 0 , then this says that we have convergence whenever
Re(2s2 — 1) < — 1. If both nx = 0 and n2 ~ 0, then this says that we have
convergence whenever Re(2s2 — 1) < — 1 and R e ^ ^ + 2s2) < — 1. It is
interesting to note how the region of convergence varies with n2. Thus
K2(sv s21 N'N, B) converges whenever N — 0 and Re(^2) < 0 and
Re(s{ + s2) < -1/2, or n2 = 0 and nx=£0 and Re(>2) < 0, or n2 ¥= 0
and Re(5j + s2) < 0. Note that as the symmetric matrix N'N moves
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away from 0 toward Pn some of the restrictive conditions for conver-
gence are removed.

This can now be used to make sense of the integral defining k2X past
its region of absolute convergence. Some of the zeros oi k2X will also be
found. Let s = (s,, s2), s — (sx, ~sx — s2), s = (sv s2 + 1/2) be in C2 ,
sext = (sx,s2,0) be in C3, N-\nx,n2) be in R2, A be in P2, and
5 = Z? > 0 be a real number. We have

T2(su s 2 - * , ) = T(-s2)T(-s2 - s x - 1 / 2 ) .

Thus Theorem 2 says

Sl, s2 + 1/2 I '(/ij, n2)b'l(nl9 n2)9 A).

Suppose n2 ih 0. Then our previous discussion gives the convergence of
the right hand side when Re(s2 + 1/2) < — Re(j,), or equivalently R e ^ )
< —1/2 — Re(s2). This enables us to display some zeros of k2X as
follows. Let s2 - 0? 1,2,... and let sx - —s2 - d where d > 1/2. Then
Re(jj) = —s2 — d< —1/2 — Re(^2) and the condition for convergence
on the right is satisfied. Next note that — s2 — sY — 1/2 = — s2 — (—^2 —
d) - 1/2 = d - 1/2 and so T(—s2 - sx - 1/2) converges, while T(—s2)
has a pole. Thus

),'(nl9n2))=0

f o r w 2 ^ 0 , y = 0,1,2, . . . a n d d > 1/2.
In the case n2 — 0, nx ^ 0, the condition for convergence on the right

becomes Re(>2) 4- 1/2 < 0, or equivalently Re(s2) < —1/2, in which
case F(—s2) always converges. However, T{ —sx — s2 — 1/2) has poles at
sx — j — 1/2 — s2 for j = 0,1,2, . . . The zeros of k2X are then at sx — j ~
1/2 -s2iovj = 0 ,1,2, . . . .

V. Properties of the Bessel functions. In this section, a few proper-
ties of the Bessel functions will be discussed. These will, hopefully, serve
to demonstrate the elegance and utility of the Bessel functions.

In the one dimensional case a Mellin transform is an integration
against a power function. Here we compute an integral of a jfiT-Bessel
function against a power function. Let s and t be C". Then

Ps(A)Kn(t\I, A) dvn = Tn(s)rn(s + t).
A inPn



28 THOMAS E. BENGTSON

To see this, note that the left hand side is

ps(A)pt(Y)eti(-Y-ATrl)dondon.

Let Y = '7T, T upper triangular, and make the change A -» A[T]. A short
computation will then produce the result. This generalizes a result in the
one dimensional case.

One can connect the arguments Y and N of kn_x x(s | Y9 N). If Y has
the partial Iwasawa decomposition Y — (Q %)[IQ °] where GisinPn_u Qis
in R " 1 a column vector and h is a positive real number, and G ~ fTT
where T is upper triangular, then a computation will show that

k^U](s\Y, N) = ctx(-2

where

s = ( s ] , . . . , s n _ 2 , s n _ l + n / 2 , s n - ( n -

The final result we will mention is one that builds kn_lx out of an
integral of kn_2,. This is, in fact, motivated by a formula of Kaori Imai
and a suggestion of Audrey Terras. Imai's formula used the i^-Bessel
function, which obscured the correct generalization [I-T].

Here we consider the case n > 3.

XQtr(2i'NX)dX.

The above step is not immediate, but follows as follows. The upper left
i X i corner of I[,^ °}] is It + '(xl9... .x^x^... ,x /). We are interested in
the determinant of this. The matrix \xX9.. .9xt)(xl9.. .9xt) is iX i with
rank 1. Its eigenvector '(xw • • >xi) *s associated with its unique non-zero
eigenvalue xf + • • • +xf. Thus a diagonalization will produce

\X\\2 0
0 0

Any diagonalization leaves / fixed, and the determinant invariant. Our
desired determinant is

= 1 + Xf + ' ' ' +JC?
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Thus we have the above step. Next, make the substitution (x2,...,xn_l)
-» (1 + *?) 1 / 2 (* 2 >-••>*„-! ) a n d <**-> 0 + x , 2 ) ( * - 2 ) / 2 ^ X A direct com-
putation now shows that

where5 = ( s ^ . . . ,£„) i s i n C " , JV = '(nX9...9nn_x) i s i n R " \

t = Sl + ... +sn_, + (n- 2 ) / 2 , W 2 = ( * 2 , . . . , « „ _ , )

a n d 5* = ( 5 2 , . . . , 5 w _ 2 , 0 ) .

These last two facts also show that induction proofs on Pn should
work well.
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