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NATURAL TRANSFORMATIONS OF

TENSOR-PRODUCTS

OF REPRESENTATION-FUNCTORS I,

COMBINATORIAL PRELIMINARIES

JACOB TOWBER

The present paper furnishes some combinatorial preliminaries to-
wards a study of natural transformations between tensor products of
shape functors Λ α and co-shape functors V α. The main result is the
construction of an explicit basis for the module defined by (1) below; an
apparently new result used for this purpose, which may be of some
independent interest, is a 'column-free' expression for the Young
idempotent NPN (in Young's terminology) associated with a partition,
given by 1.2 below.

Introduction. In the following, the reader will be assumed to be
familiar with the concepts and results of [1] and [2].

Let au...,am,βι,...,βn be partitions, and let A be a commutative
ring. The present paper is the first of a series concerned with the
A -module, denoted by

(1) NatTsf^α, X Xα^jί, X ,...9Xβn),

which consists of all natural transformations from the functor

Λ^ 1 ® . .-ΘΛJ-.Mod^ -+ModA9Ev+ Λ J £ ® - β Λ J E

into the similar functor Λ β

A

λ ® ® Λ % (If A is a field this is equivalent
to studying the space of interwining operators between the two representa-
tions of GL(E) with representation-modules Λ^1 E ® ® ΛA

mE and
Λ % E ® ® Λ β/ E respectively (provided dim E is sufficiently great).

When A is a Q-algebra, a generating set for the A -module (1) is
furnished by the "exchange-transformations" given by Def. 3-6 below
and a free basis by the subset of these given by Def. 3-8 (In the case
m = 2, n = 1 this furnishes a more precise version of the Littlewood-
Richardson rule (which only specifies the cardinality of such a basis).) The
general case does not seem to be an immediate consequence of this special
case; the attempt to reduce to the special case in the obvious way, by
using the associativity of the tensor product, leads to the problem next to
be discussed (and yields a second, different free basis for 1), related to
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that first mentioned by a generalization of the Robinson-Schensted corre-
spondance, to which it reduces when all the α's and β's equal the
partition (1).

(2) In computing with these 'exchange-transformations', it is first of
all necessary to describe the 'recombination-laws' which express a com-
posite of two such, as a linear combination of exchange-transformations.
This problem in representation-theory seems hitherto to have been studied
in detail only by the physicists in certain special cases (cf. for instance the
discussion of 'Racah coefficients' ( = '6 — j symbols' = 'recoupling coeffi-
cients') in [3], p. 299 et seq.).

This problem of 'recombinations' is in fact not difficult on the level
of representation-theory; its main difficulty is that of presenting a certain
combinatorial complexity. The purpose of the present paper is to sketch
some combinatorial concepts, which the author has found useful in
studying these questions, as a preliminary to further work shortly to
appear.

The main idea is, roughly, to treat Λ aχ E ® ® Λ α#n E in a fashion
independent, not only of an arbitrary choice of basis for E, but also (as
far as possible) of an arbitrary choice of ordering of the set {au... ,«„} of
partitions, and in a manner which uses only the row structure (but not the
column structure) within each 'tableau' at. For certain questions (e.g.
when a 'standard basis' is desired) specific choices of such orderings, or
even of a specific ordered basis for E, become in fact necessary; in
questions so intimately related to the representation-theory of symmetric
groups as these, however, an arbitrary choice of ordering can be a step as
significant as an arbitrary choice of basis for E. Thus, we define in Section
One below a category Fin-2-Sets of partitions α, and a category Fin-3-Sets
of unordered sequences (α,, . . . ,αrt) of partitions, and in §2 treat Λ aE9

Λ α E ® ® Λ a" E functorially over these categories as well as over the
category of i?-modules E; the study of (2) involves a further category
Fin-4-Sets. In this context, note especially Def. 1-2 below, which gives a
construction (which the author believes to be new) for a suitable Young
quasi-idempotent, in terms which depend only on the row-structure of the
associated tableau (but not involving its column-structure, i.e. independent
of the particular choice of ordering of the elements within each row).

The author would like to thank the National Science foundation for
partial support during the time this paper was written.

1. Some set-theoretic concepts. For any set E9 we denote by @(E)
the group of bijections of E (written to the left of the elements of E on
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which they act, so the group operation is read from right to left:

( σ . σ 0 ( O = *(σ'(e)).
If 2?, Ef are finite sets with the same cardinal:

#E = #E'

then two bijections

ι,ι':E^E'

will be called equally oriented if the element Γ 1 o t ' in @(£) is even; this is

an equivalence relation, whose equivalence classes will be called orienta-

tions from E into E'. If σλ is an orientation from Ex to E2, o2 an orientation

from E2 to E3, then all bijections

(where ιl912 are bijections belonging to σ1? σ2 respectively) are in the same

orientation from Ex to E3, which we denote by σ2 ° σ,. For each natural

number n we thus obtain the category OR(n) whose objects are sets of

cardinality n, and whose morphisms are orientations between these sets,

with composition of morphisms defined as just indicated. All morphisms

in this category are isomorphisms; if σ is an orientation from Eλ to E29

then

σ"1 = {Γ1: i E σ}.

Note that if #EX — #E2 — n, then if n > 2 there are exactly two

orientations from Ex to E2, while if n — 0 or 1 there is exactly one.

If σ is an orientation from Ex to E2, and ι: Ex A E2 a bijection, we

write

* i f t G σ '
-1 i f ι « σ .

If also ij . £"2 -> £, is a bijection, we set sgnσ tj equal to sgnσ ιx

ι = sgnσ_, ιlβ

We next define the category

Fin-n-Sets

of "level n finite sets", by recursion on «, as follows:

Fin-1-Sets is simply the category whose objects are finite sets, and

whose morphisms are bijections; a 'level 1 finite set', is simply a finite set.

If n > 1, a level n finite set is defined to be a finite set of pairwise disjoint

non-empty level n— \ finite sets; a level n morphism between two level n

finite sets φ , , βύ2 is defined to consist of a bijection t: Θ, -^ 6D2 ' together

with the assignment to each Δ E ^ of a level /ι — 1 morphism AΔ from Δ

to t(Δ); we denote by Fin-n-Sets the category constituted by these level n

finite sets and level n morphisms.
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Note that level 2 finite sets were called 'partitionings' in ([2], Def.

2.5).

If ^ is a level n finite set, we define the relation Δε/6D for all / such

that 1 < / < n by recursion on z, as follows:

If i = 1, Δεl6D means Δ E <>D; if 1 < / < w, Δε/όD means there exists <Φ'

such that Δ G ^ and ^ V 7 " 1 ^ .

Note that Δε/6iD thus implies that Δ is a level n — i finite set (if / < n).

fy being a level n finite set, and 1 < i < w, we denote by U'6)) the set

{Δ:Δε / + 1 6D};

note that this is a level n — i finite set.

We next consider level 2 finite sets in some detail.

Call two finite sequences (al9...9an) and (6 , , . . . ,6W) order-equivalent

if they contain the same number of elements, and if 3ττ E @n such that

We shall denote the order-equivalence class of(α 1 , . . . ,β w )by(f l 1 , . . . , f l / I ) ,

and call it an unordered finite sequence. In particular, an unordered finite

sequence of positive integers, will be called a numerical partition (it is

convenient to include among the numerical partitions, the 'empty parti-

tion' < ».

We may associate to every level 2 finite set a = {i?1 ?... 9RS} the

numerical partition | a \ = ( #Rl9..., #RS)9 and we set

Conversely, given any numerical partition

&= {aλ9...9as)9aλ> > flj > 0

we may associate with it a level 2 finite set, its Young-Ferrars frame,

F={R](&),...,RS(&)}

with

clearly

Note also that two level 2 finite sets α, αr are isomorphic if and only if

I a I = I a! \ thus the numerical partitions may be identified with the

isomorphism-classes in Fin-2-Sets.
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DEFINITION 1.1. Let a be a level 2 finite set; we denote by Row(α) the

sub-group of @(Uα) consisting of all π in @(Uα) such that

b <Ξ R <Ξ a=>πb <Ξ R,

and denote by Alt(α), Sym(α) the elements

2 (sgnτr)τr, 2 (respectively)
πGΞRow(α) 7rGRow(α)

inZ[@(Uα)].

We denote by @#(α) the sub-group of @(α) consisting of all permu-

tations σ of a (considered simply as a finite set) such that

R(Ea=* #R = #(σR);

finally, we denote by Aut(α) the group of automorphisms of a in the

category Fin-2-sets.

REMARK. There is a short exact sequence (natural in a)

{1} -» Row(α) -» Aut(α) -» @#(α) -> {1}

which splits (but not naturally in a).

Let a be a level 2 finite set, and let / denote Uα. We recall from [1]
and [2] the concept of an "/-indexed function with common domain D

taking values in T" (where D and T are any sets) i.e. an element of T°f

(there is a natural left action of ©(/) on these); recall also the property of

having 'Young alternation in α' (defined when T is an Abelian group)

possessed by some of these functions (cf. [2], Def. 2.4, where a is called a

'partitioning' of/). Denote by YAa(D, T) the sub-group of TD' consisting

of those /-indexed functions with Young alternation in a.

Such functions with Young alternation in α, may be obtained as

follows. A classical construction of Young yields a quasi-idempotent in

Z[©(/)], and left multiplication by this projects TD' into YAa(D,T)

(onto, if T is a Q-module). This quasi-idempotent involves writing the

elements of / in a frame F^ , and uses not only the row-structure, but also

the column-structure of this frame; in our present terminology, the

quasi-idempotent

(3) YAlt(a9<) eZ[@(/)]

in question involves an arbitrary choice of a total ordering < Λ o n each

R E a. [Cf. [2], Def. 4.2 for the details; note that there P is used instead of

α, and (3) is denoted by
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There are

«!= Π (#*)!
R<=a

possible choices for these orderings; thus (when T is a g-module) we
obtain many different projections, YA\ t(α, <), all however onto the same
sub-group YAa(D, T).

The problem thus suggests itself of finding a ' column-free' method of
constructing functions with Young alternation in α; we now sketch such a
construction. (The proof it works will be left to a later paper, because
some ideas to which it leads deserve detailed study in their own right).

PROPOSITION AND DEFINITION 1.2. Let a be a level 2 finite set, and let
π E @(Uα); then there exists an integer ca(π), the Young index ofπ with
respect to a, uniquely characterized by the following property:

If D is any set, T any Abelian group, and f any function indexed by Uα,
with common domain D and taking values in T, which has Young alternation
in a, then

(4) Alt(α)ττ/=c(π)/.

We then define YA\i{ά) to be the element

Σ{c(π)π:π E@((Jα)}

in Z[@(Uα)]; this is a quasi-idempotent, left-multiplication by which maps
TD(Ua) into YAa(D, T) {onto, if T is a Q-module).

Note. If we modify the hypotheses on f, under which (4) holds, by
requiring instead that / have Young symmetry in α(Cf. [2], Def. 4.2) then
we have, instead,

Sym(α)τr/= (sgnτr)c(τr)/,

and the quasi-idempotent

ySym(τr) = 2 {(sgnτr)c(7r)7r: π E @(U2α)}

maps into the group of such functions.

DEFINITION 1.3. Let a, a' be level 2 finite sets, with

#(Uα) =
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By a reflection of a! in a will be meant a level 1 isomorphism i of a! with a
level 2 set α, such that U α = Uα. By an exchange-matrix from a to α' will
be meant a map

M: α X a! -> (set of non-negative integers)

satisfying the two following conditions:
(i) For all R in α, #R = ΣR,^a,M(R, R').

(ii) for all R' in a\ #R' = ΣΛ G αM(i?, i?').
We then set

M!=Π{[M(Λ,Λ')]! : i? Ga,R' Get'}.

If A = a! -> α is a reflection of α' in α, we denote by ML the
exchange-matrix defined by

Mι(R9 R') = #(R Π ι(R')) (R (Ξa.R'G a')

Given a bijection <f>: U α ' A U α , w e denote by ιφ the reflection of αr

in a defined by

LΦ(R') = φ(R') (R' E a')

and by Mφ the exchange-matrix defined by

MΦ(R,R') = #(R Πφ(R')).

Note. If i = ιφ then Jlί* = Mφ. Given a reflection t or exchange-matrix
M, there exists a bijection φ with t = ιφ or M = Mφ respectively.

PROPOSITION AND DEFINITION 1.3. Let a be a level 2 finite set, M an
exchange-matrix from a to a; then by the Young index c(M) of M will be
meant the common value of (sgnφ)c(φ) for all φ in @(Uα) such that
M = Mφ.

2. Some module-theoretic constructions. On the purely module-
theoretic level, the constructions next to be defined are contained in [1];
the purpose of this section is to clarify the functorial dependence of these
constructions on the level n finite sets involved (n — 1,2,3) as a pre-
liminary to the constructions in Section Three. Throughout this section, A
will denote a fixed commutative, associative ring with 1.

Let E be an A -module, D a finite set with n elements. For the class of
questions under discussion, there is some advantage in replacing the usual
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H-fold tensor product E®n, spanned by elements

eλ ® ••• ®en (e's'mE)

by the module ®D E = ®^ 2?, spanned by elements

m a P ^ -> £

Of course there is an A -isomoφhism, natural in E, between E®n and
®DE: the point is that this isomoφhism is not natural in D (in the
category of finite sets and bijections), since it depends on the choice of a
particular ordering for D. Similarly, we shall replace the usual nth exterior
power Λ " £ , spanned by elements

e\ Λ ••• Λ en (<?'sin£)

by the module Λ D E = A % E, spanned by elements

Λ e(d) (e any map D -» E)
d<ΞE

Here again, although the latter module is ^4-isomorphic (naturally in
E) to Λ n E, this isomoφhism cannot be chosen naturally in D (unless
n — 0 or 1); there is rather (if #D >: 2) an arbitrary choice between two
such isomoφhisms, corresponding to the two orientation-classes of bijec-
tions

We thus regard <8>D E, Λ D E as functors

(4) Fin-1-Sets X Mod^ ->

in two variables; the functorial dependence on the first variable D is
specified as follows: a bijection σ: D -> Df induces the isomoφhisms

0 E: <g) E A 0 E, <g) e(d') -> ® e(σ(d))9

σ D' D d<ΞD' d<ΞD

ΛE: ΛDΈ->ΛDE, A e(d')-> A e(σ(d)).

(We thus obtain a right action of @(Z>) on ®DE, yielding the usual
r i g h t a c t i o n of © „ o n E®n ifE={l,...9n}.)

We next modify similarly the functor Aaχ'"'aE constructed in [1]: we
define the functor

(5) Λ = Λ A: Fin-2-Sets X Mod,,

contravariant in the first variable and covariant in the second, as follows.
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DEFINITION 2.1 Let a be a level two finite set, E an A -module; then
by

ΛaE= Λa

AE

will be meant the i?-module, defined by generators and relations as
follows:

For each map e: U α - ^ £ w e assign a generating element for Λ a

A E,
which we shall denote by

(6) Π Λe(fc);
R<Ξa b<ΞR

these are to generate Λ £ E over A, with relations next to be described.
Let

be the (U α)-indexed function which assigns to each map e: Uα -» E the
generator (6); the relations over A on these generators, are then to be
those generated over A by the requirement that ωa have Young alternation
in a.

If σ: a' -> a is a level 2 morphism, then Λ(σ): /\aE -> Λ α ' £ is
well-defined by the requirement that it map (6) into

Π A e(a(b')).
R'Ga' b'GR'

REMARK. If | a \ — (al9...,as) then Λ aE is isomorphic to Λ *lv >a* E,
naturally in E, but not in a.

DEFINITION 2.2. Let ^ be a level 3 finite set, E an yί-module; then by

will be meant the A -module

If σ: fy' -» Θ is a level 3 morphism, the ^-isomorphism Λ(σ):
Λ E -> Λ 6i)/ £ is well-defined by the requirement that it map

0 Π

into

® Π
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REMARK. We thus have a functor

(7) Λ = Λ Λ: Fin-3-Sets X

contravariant in the first variable and covariant in the second. (There is an
abuse of notation involved in using the same symbol Λ A for the three
functors (4), (5), (7)). Since all morphisms in Fin-n-Sets are isomorphisms,
the fact Λ is contravariant in the first variable must be regarded as a
choice of convention rather than as a fact of life; one could make it
covariant by replacing Λ(σ) by A(% ~1).)

DEFINITION 2.3. If α is a level 2 finite set, we denote by Sα the level 3
finite set, whose elements are the singleton sets {R} containing the
elements R of α.

REMARK. Thus, if | a \ = (al9... ,a), then Λ S α E is isomorphic (natu-
rally in £, but not in a) to Λ "ι E ® ® Λ a E.

DEFINITION 2.4. Let α be a level 2 finite set, A any commutative ring.
Denote by A (Ua) the free A -module on the set Uα; then by the
Specht-Young A-module associated to a will be meant the sub-^4-module
SYA(a) of

generated over A by the set of all

Π Λ πb (/>G@(Uα)).
RGa b<ΞR

REMARK. It follows easily from results in [1] that SYA is a functor
from Fin-2-Sets to the category of free A -modules, and that there is a
natural isomorphism

SYA(a)**SYz(a)<8zA.

3. Exchange-transformations.

DEFINITION 3.1. By a level 2 oriented pair will be meant an ordered
triple δ = (α, ε, αr) where α, α' are level 2 finite sets and ε is an orientation
from Uα to Uα' (note this implies # U α = # U α').
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PROPOSITION AND DEFINITION 3.2. Let 8 —{a, ε, α') be a level 2
oriented pair', and let i be a reflection of a! in a; let E be an A-module.

Then the following A-homomorphism has the same value for all bijec-
tions σ: Uα' A U a, such that L — tσ, and will be called the interchange-
transformation INTδ(*) associated to t and 8:

(g)£^Λ*'£, <g) e(6)ι-»(sgnεσ) <g) Λ e(σb').
Uα fceUα Λ'eα' &'£/*'

PROPOSITION AND DEFINITION 3.3. Lei 8 = (a, ε, β) be a level 2
oriented pair, and let M be an exchange-matrix from a to af. Let E be a
module over the commutative ring A.

Then, by the associated switch-transformation

(8) SW\M): /\%aE-*

will be meant the unique A-homomorphism whose composite with the canoni-
cal projection

(g) E -> Λ %aE, 0 e(b) H> (8) Λ e(b)
Uα b(=2a

is the A-homomorphism

Uα

the sum being extended over the set of all a\/M\ reflections i of β in a such
that M — Mι. If a — β and ε is the orientation of the identity map, we write
also SWa(M) for (8).

PROPOSITION AND DEFINITION 3.4. Let E be an A-module, and let a be
a level 2 finite set.

We denote by ia = ia(E) the natural projection

ΛSaE^Λ«E, (g) Λφ)h>Π Λe(b)
R(=ab(ΞR R<Ξab<ΞR

and by ' M * = ty&a(E) the natural transformation

M

{the sum being taken over all exchange-matrices M from a to a, and c(M)
denoting the Young index ofΌcf. 1.3)



476 JACOB TOWBER

Finally, we denote by Φ" = φa(E) the unique A-homornorphism which
makes the following diagram commute:

ΛaE

DEFINITION 3.5. Let ^ be a level 3 finite set; then we define the
natural transformations in the commuting diagram.

(10)

as follow:

DEFINITION 3.6. By a level 3 oriented pair will be meant an ordered
triple

with ^ p όD2 level 3 finite sets, and ε an orientation from U2βΐ)ι to U26D2;
if M is then an exchange matrix from U6ϋι to U ^ , we define the
associated exchange-transformation EX8(M) to be the natural transforma-
tion

EX\M) - ^ o INTδ'(M) o $*«: Λ ^ -> Λ ^

REMARK. If 4̂ is a Q-algebra, these exchange-transformations yield
the generating set over A, promised in the introduction, for the A -module

of natural transformations from the functor

into the functor Λ^2; the set-theoretical structure on tf)l9

 βΰ2 needed for
this construction is simply that of level 2 finite sets (together with an
orientation ε needed to eliminate ambiguity of signs). On the contrary,
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some additional set-theoretic structure (involving arbitrary choice of
orderings) is needed to select a basis for NatTsf^Φ,, ̂ 2)9 consisting of
the 'standard' exchange-transformations, as given by the two following
defintions. We note a possible modification of this final step in the
construction: once the arbitrary choices involved in Def. 3.7. have been
made, the 'column-free' method of constructing functions with Young
alternation given by Def. 1.1 and Def. 3.4 may be replaced by the
procedure (cf. [1] and [2]) involving the usual Young quasi-idempotent; it
turns out the combinatorial requirements of Def. 3.8 work without modifi-
cation if the exchange-transformations are modified in this way.

DEFINITION 3.7. By a level 3 ordering < of a level 3 finite set, will be
meant a total ordering <<$ of the set Φ, together with the assignment to
each α 6 ^ of a total ordering < α of α, and the assignment to each
R G26D of a total ordering <R of R, subject to the requirement that
a G 6D, Rx and R2 G α, Rx <aR2 => #RX > #R2.

REMARKS. Thus, a level 3 finite set Φ, together with a level 3
ordering < , may be thought of as an ordered set of Young-Ferrars
frames. Note that < then induces a total ordering < on U^D, defined by:

(11) R « R' if either:

RGaGty, R'ta'efy, α <<$«',

or

R and R' £ a G <$, R<aR\

DEFINITION 3.8. Let (ty, α, <φ') be a level 3 oriented pair; let < , < '
be level 3 orderings for φ, φ ' respectively; then an exchange-matrix M
from U6!) to U Φ ' will be called standard with respect to < , < ' if it
satisfies the two following conditions (where < is given by (11), and < ' is
defined similarly in terms of < r):

(i) If a G φ, R <a R} (so R G α, R{ G α), 5 G2 <Φ' then

2 M(R,S')> Σ M(Rl9S').

(ii) If a G <Φ, S < β , S,, i? G 2 ^ then

S')> 2

the corresponding exchange-transformation EX8(M) will then be called
standard with respect to < and < f.
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