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INTEGRAL COMPARISON THEOREMS
FOR RELATIVE HARDY SPACES OF SOLUTIONS
OF THE EQUATIONS Au = Pu
ON A RIEMANN SURFACE

TAKEYOSHI SATO

We consider two partial differential equations of elliptic type Au =
Pu and Au = Qu, which are invariantly defined on a Riemann surface R.
M. Nakai showed that the Banach spaces PB, QB of bounded solutions
on R of these equations are isometrically isomorphic under the condition
fr| P — Q|< + 0, where it is assumed that R is of hyperbolic type. Let
PH? and QH?, 1 < p < + 00, be the relative Hardy spaces of quotients
of solutions of the preceding equations by elliptic measures of R. In this
paper we shall prove that the above condition is also sufficient for PH?
and QH? to be isometrically isomorphic. For this purpose we shall
introduce a mapping between the P-Martin and Q-Martin boundaries of
R, and give some properties of this mapping.

1. Introduction. Let R be a hyperbolic Riemann surface and P a
density on R, that is, a non-negative Holder continuous function on R
which depends on the local parameter z = x + iy in such a way that the
partial differential equation
(1.1) Au=Pu, A=03%/3x>+93%/9y2,

is invariantly defined on R. A real valued function f is said to be a
P-harmonic function (or P-solution) on an open set U of R, if f has
continuous partial derivatives up to the order 2 and satisfies the equation
(I.1) on U.

The totality of bounded P-harmonic functions on R is denoted by
PB(R). Then, PB(R) is a Banach space with the uniform norm

I = sup|£(2)].
zER
H. L. Royden [10] considered the pair of differential equations (1.1) and
(1.2) Au = Qu,

where Q is another density on R, and he proved that, if the densities P
and Q satisfy the condition:

(1.3) c'og=P=<cQ
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outside a compact set of R, then there exists an isometric isomorphism
between the Banach spaces PB(R) and QB(R). On the other hand,
concerning this comparison problem M. Nakai [8] gave a different crite-
rion from (1.3) for PB(R) and QB(R) to be isomorphic and proved the
following theorem: If two densities P and Q on R satisfy the condition

(1.4) [R|P(z) — 0(2){G"(z, wy) + Gz, w,)} dx dy < + 0

for some points w, and w, in R, where G”(z, w) and G2(z, w) are Green’s
functions of R associated with (1.1) and (1.2) respectively, then Banach
spaces PB(R) and QB(R) are isomorphic.

A. Lahtinen [2] considered the equation (1.1) for densities P which he
called acceptable densities. Acceptable densities can also have negative
values, and so, P-harmonic functions do not obey the usual maximum
principle. He gave generalizations of Nakai’s comparison theorem for
acceptable densities and also showed, in [3], that for non-negative densi-
ties Royden’s condition (1.3) is a special case of Nakai’s condition (1.4).

The P-elliptic measure of R is, by definition, a P-harmonic function
on R which takes the constant 1 at the ideal boundary of R and is denoted
by e”. A quotient of a P-harmonic function on R by e’ is called a
e-P-harmonic function. Then, the relative Hardy class, denoted by
PH?(R), 1 <p =< + o0, of e-P-harmonic functions is defined by the way
analogous to that of the Hardy class H?( R) of harmonic functions on R.
Recently, the present author [12] showed existence of an isometric isomor-
phism between the relative Hardy spaces PH?(R) and QH?(R), 1 <p =
+ o0, related to the equations (1.1) and (1.2) respectively, when the
densities P and Q satisfy the above Royden’s condition (1.3). And, he also
has considered in [11] a comparison problem between the relative Hardy
space PH?(R), 1 <p < + o0, and the Hardy space H?(R) of harmonic
functions on R under the Nakai’s condition (1.4) in which Q = 0.

The purpose of this paper is to extend the theorems cited above to
one in which we assume Nakai’s condition (1.4) to be valid: if P and Q
satisfy the condition (1.4), then the relative Hardy classes PH?(R) and
QH?(R), 1 <p =< + 0, are isometrically isomorphic. For the sake of this
it is necessary to consider a measurable transformation #72: A%, - A%,
between subsets A%, and A%, of P-Martin and Q-Martin boundaries of R.
In [12] we have already constructed the measurable transformation p,:
Apo — A, p between subsets of P-Martin and Q-Martin boundaries of R,
which will be extended to the transformation 17¢: A%, — A%, that is,
A%y D Azy, A%p D Agp and 172 = 1,, on Ag,. For fundamental proper-
ties of P-harmonic functions we refer to the works of Myrberg [5] and
Royden [10].



INTEGRAL COMPARISON THEOREMS 409

2. Reduced functions and mapping of P-solutions to Q-solutions. By
a regular region we shall always mean a connected open set in the
Riemann surface R whose boundary is composed of at most a countable
number of analytic curves clustering nowhere in R. A sequence {R,} of
relatively compact regular regions in R is called an exhaustion of R if
R,CR,,,andR= U"_R,.

Let K be a relatively compact regular region and f a continuous
function on the boundary 0K of K. Then, there is a unique continuous
function u on the closure K of K which is P-harmonic on K and is equal to
f on the boundary 9K of K. This function u is the solution of Dirichlet’s
problem on K for boundary value f with respect to the equation (1.1),
which is denoted by P. The notation Qf is also understood as above.
And, for a lower semi-continuous or upper semi-continuous function f on
the boundary of K we can also define PfK and Q}( by taking a sequence of
continuous functions converging to f, which are P-harmonic and Q-
harmonic on K respectively.

For two densities P and Q, G®(z,w) and G9(z,w) are Green’s
functions of R with poles w associated with the equations (1.1) and (1.2)
respectively. For a regular region D Green’s functions of D with poles w in
D associated these equations are denoted by G¥(D, z, w) and G9(D, z, w)
respectively. We refer to Myrberg [5] for the existence and properties of
Green’s function of the equation (1.1).

DeriNITION 2.1. Let K be a relatively compact regular region in R.
We define transformations T, f and T f of real valued bounded con-
tinuous function f defined on K as follows:

T () = 1(2) + 5 [ (P(w) = Qw))GA(K, w, 2)f(w) dudo
and
T () = 1(2) + 57 [ (Q(w) = P(w))G7(K.w. 2)f(w) dudo,

where w = u + iv.
The next lemma follows directly from Green’s formula (C. F. Nakai
[8] and Lahtinen [2]).

LEMMA 2.1. For a continuous function f on the boundary of a relatively
compact regular region K, TSo(P*) = Qf on K.
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LEMMA 2.2. Let u be a continuous function on the closure of a relatively
compact regular region K which is P-harmonic on K. Then, it follows that

T,%u = T,%(Pu’if,,() = Q(’%;(Qu)la,( on K.
Proof. From the preceding lemma this lemma follows. O

DEFINITION 2.2. For two densities P and Q on R we denote by Py(R)
the class of all those P-harmonic functions f on R which satisfy the
condition:

(2.1) [R |P(2) — Q(2)|G%(z, wp)|f(2)]dx dy < + o0

for some point w, in R, and by Qp(R) the class of all those Q-harmonic
functions g on R which satisfy the condition:

(22) [10(z) = P(2)I6"(z, m)lg(2)ldx dy < +o0
for some point w;, in R.

If f € Py(R) and g € Qp(R), then (2.1) and (2.2) hold at all points of
R by Harnack’s inequality. Py(R) and Qp(R) are real linear spaces with
respect to the usual definitions of addition and scalar multiplication of
real numbers.

DEFINITION 2.3 (Nakai [8]). Let f be in Py(R). Then, the linear
transformation 7T, f of f is defined by

(23) Toof(z) =1(2) + 5 [ (P(w) = Q())G%(z, w)f(w) dudo,
where w = u + iv. For g in Qp(R)T},pg is defined by
(24) Tors(z) = g(z) + 55 [ (Q(w) = P(w))G"(z w)g(w) dudo.

An open set D in R is said to be regular whenever its boundary 9D is
composed of at most a countable number of analytic curves clustering
nowhere in R. Let D = U?_, D" be the decomposition of D into con-
nected components D" of D, where each D" is a regular region in R.
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Taking a regular open set D of R in place of the surface R in
Definition 2.2 we define the linear spaces Py(D) and Qp(D) as follows:
f € Py(D) if and only if

[ JP(2) = @()|G2(D", 2,w,)|f(2)]dx dy < + 0

for every n, where w, is some point in D". Q p(D) is also definf:d by‘ the
same way. Then, the linear transformation T,?Q fof fin Py(D) is defined

by
Trpf| D" = Th,f, ifP=QonD"
TR, f| D" =1, if P=QonD",

where f | E is the restriction of f to the set E.

LEMMA 2.3 (Lahtinen’s lemma [2]). Let { D,} be an increasing sequence
of regular open sets of R such that U2, D, = R. For a positive P-solution u
on R and a sequence {u;} of P-solutions u; in Py(D;) such that lim,_, . u,
= u and there exists v in Py(R) with | u;|=< v, then Tpyu is well defined and

D) lim, , 4o, Trgu, = Tppu,

(i) Tpou is Q-harmonic on R.

This lemma was given by Lahtinen in the case that the sequence { D,}
is an exhaustion of the Riemann surface R, that is, each D, is relatively
compact regular region in R.

Proof. For any z in R we may suppose that z is in D,. Let D; be the
connected component of D, which contains the point z. Since the sequence
{GY(D), z,w)} of Green’s functions of regular regions D, converges
increasingly to Green’s functions G2(z,w) of R, Lebesgue’s bounded
convergence theorem implies that

lim [D (P(w) = Q(w))G2(D;,w, 2)u(w) du dv

= [(P(w) = Qw))GO(w. 2)u(w) dis do,

from which it follows that

lim TRu(z) = .liin Tryu(z) = Tpyu(z). O

i—+o0
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Let R* be a metrizable compactification of the Riemann surface R
and denote by A the ideal boundary of R in this compatification, that is,
A = R* — R. Now, we recall properties of the reduced function of a
P-harmonic function on R with respect to a compact subset 4 of A.

A closed subset F of R will be said to be regular if its boundary 0F
consists of at most a countable number of analytic curves clustering
nowhere in R. For a positive continuous function u on a regular closed
subset F of R, let u, be a function on the boundary 9( R, — F') such that

u,|R,NdF=u|R,NdF
and
u,|dR, N (R—F)=0.

Then, P-harmonic functions Pu’:"”F form an increasing sequence, whose
limit is P-harmonic on R — F and denoted by P}~ . For a compact set 4
in A there exists a sequence {F*} of closed sets in R* converging
decreasingly to A such that the interior of F* contains 4 and R N F*is a
regular closed set in R. In the following, for a set F* in R* we shall denote
by F the set F* N R.

DEFINITION 2.4 (Martin [4], Brelot [1], Nakai [7]). Let u be a positive
P-harmonic function on R, and let { F*} be a sequence of closed sets in
R* given as above. Then, the sequence {Pf:pf } converges decreasingly to
a P-harmonic function which is called the reduced function of u relative to
the set 4 in A, and which is denoted by Liu. Similarly, for positive
Q-harmonic function v on R, we have

25 = | R—F,
Lio= lim Q, ™.
i—+oo

THEOREM 2.4. Let A be a compact subset of the ideal boundary A of R
with respect to the compatification R*. For a positive P-harmonic function u
in Py(R) we have

Tpo(Liu) = L(Tpou) onR.

Proof. For a sequence { F*} of closed sets in R* used in Definition 2.4
the sequence of P-harmonic functions Pf*‘F" converges to Liuasn - + oo,
and | PX~"|<u for each i, where F, = F* N R. Then, Lemma 2.3 gives
that
Tpo(Liu) = lim TE 5 PR-F).

, u
i—+o0 *
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And, since for an exhaustion {R,,} of R we have

lim PR~—F = pR-R
n->+o00 " *

and

PREl<u, uePyR),
it follows, from Lemmas 2.2 and 2.3, that

(25) TRF(PRE) = lim T&E(PRE)

n— +oo

— R—F — 1 R,—F  — ()R=F
= lim Q%% = lim Qg r,, = Qg i,

n— +oo n— +o0
where the equality
(2.6) T fu=TJ;"u=u onR,NIF
is applied.

By the definitions of T, and T/, %, the inequality
G%(R—-F,z,w)<G%z,w), z,wE€R-F,
implies that
|Trou(z) — T7g "u(z)|< q(z), z€E€R-F,

where
1
a(2) = — [ |P(w) = Q(W)|G2(z, w)u(w) du dov.
R
Since g(z) is a potential with kernel G¢(z, w) of the measure
21P(w) = Q(w)lu(w) du do,

as in the case of harmonic Green potentials we can show that LYg = 0 on

R (C. F. Brelot [1]). Then, we have
’Q(R}:inn ~ OQrriuy, | = Qa0 >

by which the equality
Jim Q577 =Lgg=0
shows that

in OR~F. = lLim ORSFE
(2.7) ill-lgloo QTraive i_l)141¥10o QT8 iy -
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Therefore, we have, by (2.5), that

DEFINITION 2.5. We denote by P)(R) the class of all those P-harmonic
functions in Py(R) whose transformation by 7p, belongs to the class
Op(R), and by QH(R) the class of all those Q-harmonic functions in
Qp(R) whose transformation by T, belongs to the class Py(R).

DEFINITION 2.6. We denote by Pg( R) the class of all those P-harmonic
functions u in Py(R) for which T,,T,ou = u on R, and by Qp(R) the
class of all those Q-harmonic functions v inQ%(R) for which T,,T,,v = v
on R.

Later on it will be shown that, if the densities P and Q satisfy Nakai’s
condition (1.4), then PJ(R) and QJ(R) are not empty.

By the definition, it is evident that PJ(R) C P)(R) and Q3(R) C
Q3(R). And, classes Py(R), PJ(R) (resp. Q3(R), Qp(R)) are linear
subspaces of Py(R) (resp. Qp(R)). It may be shown that Tp, is an
isomorphism between linear spaces PJ(R) and QY(R), and T} is its
inverse.

We recall the definition of the P-elliptic (or P-harmonic) measure of a
Riemann surface from the work of H. Royden [10]. For R, in an
exhaustion {R,)} of R, let ¢l be the P-harmonic function on R, continu-
ous on its closure which is identically one on the boundary dR, of R,. For
P = 0 we have 0 < e? < 1. Since the maximum principle implies that the
functions e’ form a monotone decreasing sequence of positive P-harmonic
functions, this sequence converges uniformly on each compact set in R to
a non-negative P-harmonic function e”, which is called the P-elliptic (or
P-harmonic) measure of R. Similarly the Q-elliptic measure of R is also
defined and is denoted by e?. The P-elliptic measure e” is either identi-
cally zero or else everywhere positive. In the second case we say that the
pair (R, P) is hyperbolic provided P = 0. The P-elliptic measure e of R
may be characterized as the largest P-harmonic function on R which is
bounded by 1.

The following theorems give a sufficient condition for the P-elliptic
measure e’ to belong to the class Py(R) and P, (R)

THEOREM 2.5. If the densities P, Q on R satisfy Nakai’s condition
(cf. Nakai [8)):

(2.8) fR|p(z) — 0(2){G (2, o) + G2z, w,)} dx dy < + o0
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for some points wy, w, in R, then the P-elliptic measure e” of R belongs to
the class Py(R) and the Q-elliptic measure e? of R belongs to the class
Q(R). In this case the transform Tppe” is the Q-elliptic measure e? and
T, pe® is the P-elliptic measure e”.

Proof. By the inequality e” < 1 and Nakai’s condition (2.8), Lemmas
2.1 and 2.3 imply that

P_ 1 R,,P
Tppe" = ngglw Tpge,

= lim e2=¢¢ onR.

n—+oo
And, (2.8) gives that e” € Py(R) and e? € Q,(R). Therefore, we have
that ” € P)(R) and e2 € Q}(R). O

THEOREM 2.6. If the densities P, Q on R satisfy the condition (2.8), then
the P-elliptic measure e” of R belongs to the class PJ(R) and the Q-elliptic
measure e2 of R belongs to the class Q% R).

Proof. This theorem is an immediate consequence of Theorem 2.5. [J

3. Relation between the P-Martin and Q-Martin boundary. Nakai
[7] studied the Martin theory [4] for the equation (1.1) on a Riemann
surface R and showed that the situation was similar to that of harmonic
case as was treated by Martin. Let R% be the compatification of R in this
sense, which is called the P-Martin compactification of R. Let A, be the
ideal boundary R} — R. The P-Martin kernel with origin z, in R is
denoted by K¥(z, a), (z, a) € R X R%, which satisfies that K*(z,, a) = 1,
a € R%, and is finitely continuous on R X A,. For points a,, a, in R% the
distance between them is given by

0 KP , KP ,
dp(ay, a,) = 3 27" sup (2.4, - (2. a,) )
n=1 zer,|1+K"(z,a)) 1+K"(z,a,)

where {R,} is an exhaustion of R. P-Martin kernel is also written by K7,
that is, K¥(z) = K¥(z, a), (z,a) E R X A,.

Let R* be any metrizable compactification of R and A be the ideal
boundary R* — R. The reduced function L5u of a minimal P-harmonic
function u with respect to a subset A of A is equal to u or zero, and there
exists at least one point @ in A such that L{a}u = u on R. (By definition a
positive P-harmonic function # on R is said to be minimal if u = f for
some non-negative P-harmonic function f on R implies that there exists a
constant a such that f = au on R). In this case, the point a is termed the
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pole of u on A (C. F. Brelot [1]). The next theorems are fundamental
properties of P-Martin boundary, whose proof we refer to Martin [4],
Brelot [1] and Nakai [7].

THEOREM 3.1. Every minimal P-harmonic function u on R has a unique
pole on the P-Martin boundary A .

THEOREM 3.2. If P-Martin kernel KF, a € A, is minimal, then its pole
on A, is the point a. If K} is not minimal, then L{,,K} = 0.

THEOREM 3.3. For a positive P-harmonic function u on R and a compact
set A in A, there exists a measure p. on A such that

Liu(z) :/KP(Z, a)du(a), z€E€R.

A point a in A, which is the pole of some minimal function on R is
called a minimal point of A,. The set of all minimal points of A, is
denoted by A, ;. A, denote the set of all non-minimal points of A, and
it is a countable union of compact sets of A,. The next well-known
theorem is important in this paper.

THEOREM 3.4. For any positive P-harmonic function u on R there exists
a unique measure j1 on Ap such that p(Ap,) = 0 and

u(z) =jA

This measure p is characterized by the relation

K*(z,a)du(a), z€R.

P,

Llu(z) :LKP(Z, a)dp(a), z€ER,

which holds for every closed subset 4 of A .
This measure is called the canoncial measure of u on the P-Martin
boundary.

DEFINITION 3.1. We define subsets of A, ;, A, | by the following:
Apo={a €A, : KI € Py(R)},
{a €, KP € Py(R)},
App={bEA,,: KZ € 0:(R)},
{behy,: K2 € 04(R)}.

’ po—
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The following two properties on the sets Apj, A, which have been
shown by Sato [12], are cited with proofs for convenience sake.

LeMMA 3.5. Let w, be a fixed point in the Riemann surface R. The
function defined on Ap | by

(3.1) a~ [ |P(z) = 0(2)|G2(z, w))K"(z, a) dx dy
R
is lower semi-continuous. Then the set Ap, is Borel measurable.

Proof. Let m be the measure defined by

m(E) = fE |P(2) — 0(2)|G2(z, w, ) dx dy

for a Borel measurable subset E of R, where w, is the fixed point in R.
Since the function (3.1) is represented as follows:

jKQ(z, a)dm(z) = lim / K9(z, z) dm(a),
R n— +o0 R,
this lemma is easily shown by the fact that the function given by
a —»/ K9(z,a) dm(z)
R,
is continuous on A ;. O

By changing the roles P and Q in the preceding proof the measurabil-
ity of A,,p is shown.

LEMMA 3.6. Let u be a non-negative P-harmonic function on R which
belongs to the class Py(R), and let p be the canonical measure in the Martin
integral representation of u. Then, the set Ap, — Ap, has p-measure zero,
i.e.

V'(AP,I - APQ) =0.
Similarly, for the canonical measure v of a non-negative Q-harmonic

Junction v in Qp(R), the set A, — A, p has v-measure zero.

Proof. For each positive integer n, let E, be a set of all points ain A,
such that

‘/;IP(Z) — 0(2)|G%z,wy)K*(z,a) dxdy > n,
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where wy, is a fixed point in R. Since E, is measurable by Lemma 3.5 and,
by Fubini’s theorem,

m(E,) = [ { [1P() = Q()]G(z m)K "z, @) de dy} d(a)
=/ { [1P(2) = (@)1G%(z, )K"z, a) i dy} dy(a)

:j}]P(Z) — 0(2)|Gz, wy)u(z) dx dy < + o0,

we have

#(8r = brg) = [ AV 5| =u(E)

n=1

<L [1P(2) = Q(2)[G%(z, wo)ulz) dx dy
nJp
for every positive integer n. Hence it follows that
H(AP,l - APQ) =0. (

If a boundary point @ of the P-Martin compactification belongs to the
set Ay, then the integral

/R 1P(2) — Q(2)|G%(z, wy)K (2, a) dx dy

is finite for some point w, in R, and the transformation 7,,K P s
well-defined. Similarly, for b in A, the transformation T,,, K2 is defined.
Since T, K} is a non-negative Q-harmonic function on R, Harnack’s
inequality implies that, if 7,,K. vanishes at one point, it vanishes
identically.

LEMMA 3.7. For a fixed point w, in the Riemann surface R the function
of ain Ap, given by

a~[|P(z) = Q(2)|G" (2, ) Tpo K£(2) dx dy
R
is measurable on Ap,. Then, the set A%, is measurable in Ap .

Proof. Since the function

(5,2, a) = (P(§) — Q(£))G2(§, 2)K7(§, a)

is measurable on the product space R X R X A, the function
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(z,a) > TPQK:(Z)

= K"z, ) + 5 [ (P(0) ~ QU)GE. D)K"(5, a) d d

is a measurable function of (z,a) in R X A PO> where { = £ + in. From
the measurability of the function

(2, a) ~|P(z) — Q(2)|G"(z, W) Tpo K(2),
our theorem follows. O

LEMMA 3.8. Let u be a positive P-harmonic function in Py(R), and let p
be its canonical measure in the Martin representation. Then, we have

Tpou(z) =fA TpoK2(z) du(a), z€ER.
ro

Proof. For a point z in R, let F, be the function defined by
F(w,a) = (P(w) = Q(w))G®(w, z)K"(w, a)

for (w,a) in R X Ap,. Since Lemma 3.6 shows that A,;, — Ap, has
p-measure zero, it follows that

‘/I;{,//; |E(w, a)ldp.(a)} du dv

-flP(w Q(w)|G2(w, z)u(w) dudv < + o0,

where w = u + jv. Then, Fubini’s theorem shows that F, is an integrable
function on R X Ap, with respect to the product measure of the area
measure on R and the canonical measure p of u, from which it follows, by
Fubini’s theorem, that

Tyou(z) = [ K"(z,a) dp(a)

PQ

27 [ (200 = 200)G%(n, )| [ K20 duta)} o

-,

[z )+ 5 [ (P00) = o)

PQ

XGP(w, 2)KP(w, a) du dv} du(a)

=fA TpooKZ(z)dp(a), z€ER. 0
PQ
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LEMMA 3.9. Let u be a positive P-harmonic function in Py(R) and let p.
be its canonical measure in the Martin representation. Then, the set Ap, —
A’p has p-measure zero: p(Apy — App) = 0.

Proof. Let ¢ be the function defined by

p(a) = /R |P(2) = Q(2)|G"(z, wy) TpoKZ(z) dx dy,  a € Apy,

where w, is a fixed point in R. Let F, be the measurable set in A, given
by
F,={a€ A, ¢(a) >n}

n

for each positive integer n. Then, we have

mu(E) = [ la)du(a)
= [1o(:) - P(z)w"(z,wo){ [, Trokt(e) dula)] ax

—fIQ(Z (2)|G*(z, wo)Tpou(z) dx dy < + o0,

where the last equality is obtained by Lemma 3.8. Since, for any positive
integer n,

1(Anp = Bpg) = 1 (mF) W(E,),

we obtain this theorem by the preceding inequality. O

THEOREM 3.10. Let u be a positive P-harmonic function in P)(R), and
let p be its canonical measure in the Martin representation. Then the set
Apy — A%y has p-measure zero: p(Ap, — Apy) = 0.

Proof. Lemmas 3.6 and 3.9 give this theorem by
Bpy —App = (AP,I - APQ) U (APQ - A,PQ)‘ u

Now, we define a subset of Ap, on which the canonical measure
representing a positive P-solution in Pg(R) is distributed.
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DEFINITION 3.2. We define subsets A%, A, of Aj,, Ay, by

A%y = {a € A%yt TQP(TPQK:)(ZO) > ( for some point z,, in R},
Ay = {b € Alp: Tp(TppKE)(2,) > 0 for some point z, in R}.
The definitions of A%, and A%, are independent of the point z; in R,

for a non-negative P-harmonic function vanishes identically whenever it
vanishes at one point in R.

LeEMMA 3.11. For a fixed point w, in the Riemann surface R the function
of a € Al given by

a- TQP(TPQK:)(WO)

is measurable on Alp,. Then the set M, is a measurable subset of Ap ;.

Proof. In the same way as that in the proof of Lemma 3.7, we may
show this lemma. O

LEMMA 3.12. For a point a in Apg with Tpo K P > 0 there exists only one
point b in A, | such that

TpoK) = TpoK[(29) X K¢ onR.
For a point b in Ayp with Tp K 2 > 0 there exists only one point a in
Ay, such that
TypK2 = T)pK2(2,) X K] on R.
Proof. Let b be a pole on the ideal boundary A, of the minimal

P-harmonic function K, that is, L{,,K; = K; on R. Then, it follows
from Theorem 2.4 that

(3.2) L8 \(TpoK?) = Tpp( L1, KP) = TooKZ onR.

Since the positive Q-harmonic function T,,K P is represented by the
canonical measure v on A ;:

TpoKZ(z) =fKQ(z, b)dv(b), zER,

Theorem 3.4 shows that
L8(TyoK?) = »({b})) X K¢ onR,
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by which (3.2) gives that
(3.3) TpoK} = TpoK[(2) X K§ onR,

where bisin A, ;.
The uniqueness of poles of K7 on A o 1s shown easily by the equality
(3.3). a

DEFINITION 3.3. Since Lemma 3.12 shows that the Q-harmonic func-
tion Tp, K7, a € A%, is minimal, we may define a transformation

172 A%, - A,
by assigning to a point @ in A%, a point b in A 5, such that
TpoKy = TpoK[(z9) X KZ onR,
where it is easily seen by
T,pKP = TypK2(z,) X K} onR

that the point b is contained in A% .
Similarly, a transformation

12P: A%Yp = A%
is defined by assigning to a point b in A%, a point a in A%, such that

Top K@ = TppK2(2,) X K? onR.

THEOREM 3.13. The transformation t7: A%, — A%, is one-to-one and
onto, and the transformation t°: A%, — A%, is its inverse.

Proof. If a point b in A, , is the pole on A, of K7, a € A%, then the
point a is the pole on A, of K2. Hence we have, for a in A,

(3.4) Typ Koy = TopKea(20) X KI' onR.

If 179(a) = t"¢(a’) for points a, a’ in A%, then it follows that K} = K7,
on R, and so, a = a’.
And, the equality (3.4) implies that 12%(:7(a)) = a, a € A, O

To investigate relations between the sets A%, and A%, we have to give
a proof of the measurability of the transformations 72, 127 (cf. Sato [11;
12]). For this purpose we identify ideal boundaries Ap, A, of R with
subsets of the product space of the real lines, respectively. Let {w;} be a
countable dense set of R. To a point a in A (resp. b in A,) we assign a
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point mp(a) (resp. my(b)) of the product space II{2, I; (I is the real line
for all positive integers i) whose ith coordinate is Kf(w;, a) (resp.
K9(w;, b)) for each i. Then, the mappings

mp:Ap > I3, I,
my: Ay -1, 1,

are continuous and one-to-one and also their inverse mappings
-1,
mp'imp(Bp) —> Ap,
-— l .
my': mQ(AQ) -4,
are continuous. Therefore the mappings

mp: Ap > mp(Bp),

my: AQ - mQ(AQ)

are homeomorphisms.

For a point my(a), a € A‘},Q, we assign the point in m y( AOQ p) wWhose
ith coordinate is K9(w;, t"2(a)) for each i; this mapping will be denoted
by

s7mp(A%pg) — mo(AYp).
Similarly, the mapping

s97: mo(8p) > mp(45,)
is defined by changing the roles of P and Q, that is, for a point my(b),
be AOQ p» we assign the point in mp(A%,) whose ith coordinate is
K*(w;, t9%(b)) for each i. It is evident that s©” is the inverse mapping of
sPe

THEOREM 3.14. The transformations
17 A5y » AYp and 197 A, — A%,

are measurability preserving.

Proof. Since the ith coordinate of the point s o my(a), a € A%,
which is

a = KO(w,, 1"%(a)) = {ToK[(20)} " X TooK[(w,),
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is measurable on A%, for each i, the mapping

o0
sPComp: A%y — 1 1,
i=1

is measurable. Therefore, the relation
my'osPComp=1"2 ond%,

implies that the mapping "¢ is measurability preserving, for mg' is
continuous on m (A% ). O

THEOREM 3.15. Let u be a positive P-harmonic function in the class
PJ(R), and let . be its canonical measure on Ap ;:

u(z) :/; K*(z,a)dp(a), z€ER.

Then, the set Ap | — A%, has p-measure zero:

M(Ap,l - A?"Q) =0

P

and the equality
(3~5) TPQK;J(ZO) X TQPthQ(a)(ZO) =1

is true almost everywhere on A‘},Q with respect to the measure |i.

By changing roles of P and Q we have also the similar for a
Q-harmonic function v in Q% R).

Proof. To see that
Top(Tpou)(z) =j;0 TQP(TPQKf)(z) du(a), z€E€R,

PQ

let F(w, a) be the function given by
(w, @) = (Q(w) = P(W))G™(w, 2)TpoK(w),

where z is any fixed point in R. Then, we have, by Lemmas 3.8 and 3.9,

that
,/R{,/;, |E(W’ a)ldﬂ(a)} du dv
= [/ 1000) = PG (0. 2){ [ TooKZ(w)di)]

:j;lQ(W) — P(W)|GP(w, z)Tpou(w) dudv < +oo.
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Therefore, Fubini’s theorem implies that
TQP(TPQu)(Z) = TPQu(Z)

g [(@() = POn)G" (o, ) Tyqu(w) du o

= Tpou(z) + %L{{IA;QFZ(W, a) du(a)} du dv
= [ {Tokl(a) + 5 [ (@00) ~ P(x)

XGP(w, 2)Tpo K] (W) du dv} dp(a)

:./Ao TPQ(TPQK;)(Z) du(a).

Since the definition of 72 shows
TQP(TPQK:) = TpoK(z,) X TQPthQ(a)
= TpoKF(20)TppKFoiuy(2) X KI onR,

we have, by T;,p(Tpou) = u which was given in Definition 2.6, that
'/4;' K; dp(a) :/AO TPQKf(Zo)TQPKng(a)(Zo) X K7 dp(a).
PQ PQ

Hence, it follows from Theorem 3.4 that
TPQK:(ZO) X TQPthQ(a)(ZO) =1
almost everywhere on A%, with respect to the measure p and Apy — A%

has p-measure zero. Then, we have p(Ap, — A‘},Q) =0 by Theorem
3.10. O

By the Martin integral representation, for the P-harmonic measure e”
of R there exists a unique measure x » supported by 4, | such that

ef(z) =fA K*®(z,a)dxp(a), z€R,

which is called the P-harmonic measure on the P-Martin boundary. The
Q-harmonic measure x, on A, is defined similarly.
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COROLLARY 3.16. Let P and Q be densities on R which satisfy Nakai’s
condition (2.8) for some points w, and w, in R and let the pair (R, P)
be hyperbolic. Then the set Ap, — A‘}Q is of P-harmonic measure zero:
xp(Bp, — A‘},Q) =0, and the equality (3.5) is true almost everywhere on
A%, with respect to X p.

Proof. This is an immediate consequence of Theorem 3.15 by Theo-
rem 2.6. g

The measurable transformation t27: A%, — A%, assigns in an obvious

way a measure » on A%, to a measure u on A%,; » is defined for eve
y QP N PQ ry
measurable set E in A, by »(E) = p(127(E)). It is written by » = p o 1¢%.

THEOREM 3.17. Let u be a positive P-harmonic function in the class

PS(R), and let v denote the Q-harmonic function Tpyu. Let p, and ., be the
canonical measures in the Martin representations of u and v, respectively:

u(z) =/A

v(z) :/ K9z, b)dp,(b), z€ER.

Q.1

K*(z,a)dp,(a),

P,

Then, p is absolutely continuous with respect to the measure p, o 127 and
satisfies that

(3.6) dp,(b) = TPQKtZP(b)(ZO) du, © 127(b), be AOQP-

Proof. By Lemma 3.8 and Theorem 3.15, the definition of 27 gives
that

o(2) = Toqu(2) = [ TpoK[(2) dis,(a)
= [, K%z, 1"%a))TooK(2o) dp, ()

= o K9(z, b)TPQKtZP(b)(ZO) dp, © t9%(b),
QP

which shows that the measure on A, | given by

H(E) = [ TooKlorw(20) dis, = 197(5)
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for each measurable set E in A, is a canonical measure representing the
QO-harmonic function v. From uniqueness of canonical measures repre-
senting a non-negative Q-harmonic function (Theorem 3.4) it follows that
1, is absolutely continuous with respect to p, ° 27 and that the relation
(3.6) holds. O

COROLLARY 3.18. Let (R, P) be a hyperbolic pair. Under Nakai’s
condition (2.8) the Q-elliptic measure x , is absolutely continuous with respect
to xp o t9F and

dXQ(b) = TPQKzf?"(b)(Zo)dXP o t27(b), be AOQP'

Proof. By Theorem 2.6 we can take e and €€ for u and v in Theorem
3.17. O

4. Integral comparison theorems. Now we consider two L?-spaces
LP(A‘},Q, p) and LP(AOQP, v) for 1 < p < + o0, where p and » are measures
on A%, and AY,, respectively. For functions ¢ in L?(A%,, p) and ¢ in
LP(A%,, v) the norms of ¢ and ¢ are denoted by li@ll? and lly]/2

respectively:
1/p
P 4
oy = { [, 1ol ]

ro
1/p
g = { [, oo}
oP

Also, we shall consider the sets of all essentially bounded measurable

functions on measure spaces (A%, p) and (A%, »), which are denoted by

L*(A%g, p) and L*(A%,,, v) respectively. For functions ¢ in L*(A%,, p),

¢ in L*(A%,, v) the norms of ¢ and y are denoted by lpllZ and |12
P
ol = ess.sup{lp(a)|: a € A%},
Q
1S = ess.sup{[4(b)]: b € %,).

THEOREM 4.1. Let u, v and p.,, p, be same functions and measures as
those in Theorem 3.17. Then, the Banach spaces L*( A‘},Q, w,) and
L¥( AOQ p» Ib,) are isometrically isomorphic, where 1 <p < + 0.

Proof. By assigning for ¢ in L?(A%,, p,) the function °2(¢) given by
i"2()(6) = {TppK(20)} " X 9(197(b)),  if1=p< +oo;
= ¢(¢97(b)), ifp = +oo,
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we can define a transformation
P2 L7 (A%, ) = LP(8%p, 1)
If 1 <p < + o0, Theorems 3.15 and 3.17 show that, for @ in L?(A%,, p,),

()5 = { [, 1ol o) X Top k(e

QP

1/p
X TPQKzIZ”’(b)(Zo) dp, ° tQP(b)}

I/p
=/, Jota) an” =tol.

PQ

and, if p = + oo, then evidently |772(p)II2 = llpll L.
Similarly, we can define the inverse of 772, which is denoted by 797,
and can show that

P, =lwle, e L7(8%, 1),
forl <p < +o0. ‘ O

COROLLARY 4.2. Let (R, P) be a hyperbolic pair. Under Nakai’s
condition (2.8) the Banach spaces L”(AOPQ,X p) and L”(AOQP, Xo) are
isometrically isomorphic, where 1 < p < + c0.

Proof. Corollary 3.18 shows this as Theorem 3.17 implies Theorem
4.1. a

L. L. Naim [6] has developed the theory of Hardy classes and relative
Hardy classes of harmonic functions in the harmonic space context and
established the structures of Hardy classes and relative Hardy classes in
terms of the Martin boundary and fine limits. To apply her results to our
case of the harmonic space given by the differential equation (1.1) on the
Riemann surface R, we reform the definition of relative Hardy class and a
theorem due to Naim, which gives the structure of Hardy class.

Let u be a positive P-harmonic function on R. The quotients f/u of
P-harmonic functions f by the P-harmonic function u are called u-P-
harmonic functions.

DEFINITION 4.1. A real valued u-P-harmonic function f/u is in the
relative Hardy class PHZ(R), 1 <p < +oo0, if and only if |f/u |’ has a
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u-P-harmonic majorant on R; in the class PH°(R) if and only if | f/u| is
bounded on R. In particular, if ¥ = 1 on R (and so, P = 0), then PHZ(R),
1 <p < + o0, is the Hardy class of harmonic functions on R, which is
denoted by HP(R), and PH?(R) is the class of bounded harmonic
functions on R, which is denoted by H*(R) or HB(R).

THEOREM 4.3. (L. L. Naim). Let p, be the canonical measure repre-
senting the positive P-harmonic function u in the Martin integral representa-
tion:

u(z) ———fA K*(z,a)dp,(a), zER.

The relative Hardy class PH?(R), 1 < P < + o0, is a Banach space isomet-
rically isomorphic to the LP-space L*(Ap |, p,).

The isometric isomorphism in this theorem will be denoted by
PIZ: PHE(R) —» L?(Ap,p,,)-
THEOREM 4.4. Let u be a positive P-harmonic function in the class
Pé’(R), and let v denote the Q-harmonic function Tpyu. Then, the relative

Hardy classes PHEZ(R) and QH?(R), 1 <p < + o0, are isometrically iso-
morphic.

Proof. Since p,(Ap, — A%p) =0 and p,(A,, — A%p) = 0 by Theo-
rem 3.15, we can identify L”(A,,, p,) and L?(A,,, p,) with L?(A%,, p,,)
and L? (AOQ p» I,,), Tespectively. Thus, denoting the product

(o1} o i 0 pIP

by Ty, where i€ is the isometric isomorphism defined in the proof of
Theorem 4.1, we obtain the isometric isomorphism

Tpo: PHZ(R) > QHZ(R). O

In particular, in the case that densities P, Q satisfy Nakai’s condition
(2.8) the P-harmonic and Q-harmonic measures e”, e belong to the class
PJ(R), Q(R) respectively, and satisfy Tp,e? = e? by Theorem 2.5.
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Then, replacing u and o in the preceding theorem by e” and e? respec-
tively, we obtain the following;:

THEOREM 4.5 (Integral comparison theorem). Let the pair (R, P) be
hyperbolic. If P and Q satisfy Nakai’s condition (2.8), then the relative
Hardy classes PH?(R) and QH?(R) with respect to e¥ and 2, 1 <p <
+ o0, are isometrically isomorphic.

Since PH®(R) = RB(R) and QH(R) = QB(R), the preceding the-
orem contains the following.

COROLLARY 4.6. ( Nakai [8]). Let (R, P) be a hyperbolic pair. If P and
Q satisfy Nakai’s condition (2.8), then the Banach spaces PB(R) and
QB(R) with uniform norm are isometrically isomorphic.
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