A NOTE ON PRIMARY POWERS OF A PRIME IDEAL

Wei-Eihn Kuan

Abstract

Let $X \subset P_{k}^{n}$ be an irreducible projective variety. Let $B=$ $k\left[x_{0}, \ldots, x_{n}\right]$ and let $P \subset B$ be the homogeneous prime ideal of X generated by $\mathrm{ht}(p)+1$ elements and let $A=B / P$ be the homogeneous coordinate ring of X. The following are equivalent: (1) $A_{(p)}$ is a complete intersection for all homogeneous prime ideals p in A of height $\mathbf{1 ; ~ (2) ~} P^{2}$ is primary: (3) P^{i} is primary for all integers $i>0$.

1. Introduction. In [RV, Theorem 3.3, p. 497], Robbiano and Valla proved the following: if $Y \subset X \subset P_{k}^{n}$ are projective schemes in the projective n-space over a field k, which are complete intersections in P_{k}^{n} and if Y is a positive dimensional irreducible, reduced normal subscheme of X with (sing $X) \cap Y \subseteq \operatorname{sing} Y$, and if P is the prime ideal of Y in the homogeneous coordinate ring of X, then (a) P^{2} is primary and (b) P^{n} is primary for every integer $n>0$ if $\operatorname{dim} Y>\operatorname{codim} X$. [RV, Example 2, p. 560] gave an example of a projectively Gorenstein projective smooth curve in P_{k}^{7} with homogeneous prime ideal P such that P^{2} is not primary. It is known that an almost complete intersection is not Gorenstein. We prove the following theorem: Let X be a projective irreducible variety in P_{k}^{n} which is an almost complete intersection, i.e. the prime ideal P of X in the polynomial ring $k\left[x_{0}, \ldots, x_{n}\right]$ is generated by (codimen $\left.X\right)+1$ elements. Let $B=k\left[x_{0}, \ldots, x_{n}\right]$ and let $A=B / P=\bigoplus_{i \geq 0} A_{i}$ be the homogeneous coordinate ring of X, where A_{i} is the group of all homogeneous elements of degree i and $A_{i} A_{j} \subset A_{i+j}$. For a homogeneous ideal prime p in A let

$$
A_{(p)}=\left\{a_{i} / s_{i} \mid a_{i} \in A_{i}, s_{i} \in A_{i}-p\right\}
$$

The following are equivalent:
(1) $A_{(p)}$ is a complete intersection for all homogeneous prime ideals p of height 1 in A.
(2) P^{2} is primary.
(3) P^{i} is primary for all integers $i>0$. Thus for an almost complete intersection X, " X is free of codim 1 singularities", is equivalent to " P^{i} is primary for all integers $i>0$ ". Examples of projective varieties which are almost complete intersections are plentiful, for example, the Segre imbedding of $P_{k}^{1} \times P_{k}^{2}$ into P_{k}^{5} and the twist cubic in $P_{k}^{3}[\mathbf{S z}, \mathrm{p} .15-4]$. The local case of (1) $\Leftrightarrow(2)$ was proved in [K2, Theorem, p. 1]: Let B be a regular
local ring, $P \subset B$ a prime ideal which is an almost complete intersection, and let $A=B / P$. Then P^{2} is primary if and only if A_{q} is a complete intersection for all prime ideals q of height 1 in A. Recently $[\mathbf{H}$, Theorem 3.1] proves that (1)-(3) are equivalent in the affine case: Let B be a Cohen-Macauley ring, and let $P \subset B$ be a prime ideal which is an almost complete intersection such that B_{P} is a regular local ring. Then the following are equivalent: (1) $P^{2}=P^{(2)}$; (2) $P^{n}=P^{(n)}$ for $n>0$ where $P^{(n)}$ is the nth symbolic power of P; (3) B_{Q} is a complete intersection for all $Q \in \operatorname{Spec}(B)$ with $Q \supset P$ and $\operatorname{ht}(Q / P)=1$; (4) $P_{Q}^{(n)}=P_{Q}^{n}$ for every Q in (3); and (5) $\operatorname{gr}_{P}(B)$ is a domain, where $\operatorname{gr}_{P}(B)=B / P \oplus P / P^{2} \oplus \cdots$. The purpose of this note is two-fold. One is that the projective case can be easily derived from the local case by introducing a simple but interesting lemma of Seidenberg [S, Lemma 1, p. 618] which says that if A is a graded domain and q is a nonhomogeneous prime of height 1 , then A_{q} is normal. The other is that we make some further comparisons between $A_{(p)}$ and the usual localization A_{p} for the homogeneous prime ideals p of A and show that $A_{(p)}$ is an almost complete intersection (complete intersection) if and only if A_{p} is an almost complete intersection (complete intersection). Equivalences of these two local rings on the properties of being regular and normal were proved in $[\mathbf{K 1}]$ and those on the Cohen-Macauley condition, the Gorenstein property, and the Buchsbaum singularity have been shown in [DE].
2. Notations and Definitions. Let $A=\bigoplus_{i>0} A_{i}$ be a graded domain. Let p be a homogeneous ideal of A contained in $\oplus_{i>0} A_{i}, A_{p}$ is the usual localization of A with respect to the multiplicative set $A-p$, namely

$$
\begin{gathered}
A_{p}=\{a / s \mid a \in A, s \in A-p\} \\
A_{(p)}=\left\{a_{i} / s_{i} \mid a_{i} \in A_{i} \text { and } s_{i} \in A_{i}-p\right\} .
\end{gathered}
$$

If $I \subset A$ is a homogeneous ideal, then I_{p} will mean the extended ideal of I in A_{p} and

$$
I_{(p)}=\left\{b_{i} / s_{i} \mid b_{i} \in I \cap A_{i} \text { and } s_{i} \in A_{i}-p\right\}
$$

Let $f \in A_{1}$, and $f \neq 0$.

$$
A_{(f)}=\left\{A_{i} / f^{i} \mid a_{i} \in A_{i}\right\} \text { and } I_{(f)}=\left\{b_{i} / f^{i} \mid b_{i} \in I \cap A_{i}\right\}
$$

$\mu(I) \equiv$ minimal number of generators of $I, \mu\left(I_{p}\right) \equiv$ minimal number of generators of I_{p} in A_{p} and $\mu\left(I_{(p)}\right) \equiv$ minimal number of generators of $I_{(p)}$ in $A_{(p)} . A_{p}\left(A_{(p)}\right)$ is a complete intersection if it is isomorphic to the
quotient ring of a regular local ring B modulo and ideal \mathfrak{A} generated by a regular B-sequence. $A_{p}\left(A_{(p)}\right)$ is an almost complete intersection if it is isomorphic to the quotient ring of a regular local ring B modulo an ideal \mathfrak{A} minimally generated by $\operatorname{ht}(\mathfrak{A})+1$ elements. In this case the first $h t(\mathfrak{H})$ elements can be taken to be a regular B-sequence.

Let $k\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial ring in indeterminates x_{0}, \ldots, x_{n} and let $P \subset k\left[x_{0}, \ldots, x_{n}\right]$ be an ideal. P is an almost complete intersection if $\mu(P)=\operatorname{ht}(P)+1$.

3. Notes.

Lemma 1. Let $R=\bigoplus_{i \geq 0} R_{i}$ be a Noetherian graded ring with $R_{0} a$ field, and let $m=\bigoplus_{i>0} R_{i}$ be the irrelevant maximal ideal. Let $\mathfrak{H} \subset R$ be a homogeneous ideal. Then (1) $\mathfrak{A} R_{\mathfrak{m}} \cap R=\mathfrak{A}$; (2) $\mu(\mathfrak{H})=\mu\left(\mathfrak{H} R_{\mathfrak{m}}\right)$; and (3) The minimal generating set of \mathfrak{U} can be chosen to consist of homogeneous elements.

Proof 1 . It suffices to show that $\mathfrak{H} \cdot R_{\mathfrak{m}} \cap R \subset \mathfrak{H}$. Let $f \in \mathfrak{A} \cdot R_{\mathfrak{m}} \cap R$ and write $f=g / t$, where $g \in \mathfrak{H}, t \in R-\mathfrak{m}$. There exists $s \in R-\mathfrak{m}$ such that $s(f t-g)=0$. Let $s t=a_{0}+a_{1}+\cdots+a_{u}, \quad s g=g_{c}+g_{c+1}$ $+\cdots+g_{d}$ and $f=f_{r}+\cdots+f_{v}$, where $a_{i}, g_{i}, f_{1} \in R_{i}$ and $a_{0} \neq 0$, for some nonnegative integers c, d, r, u, v. Then $a_{0} \cdot f_{r}=g_{c} \in \mathfrak{A}$ and $r=c$ because \mathfrak{A} is a homogeneous ideal. Thus $f_{r} \in \mathfrak{A}$. Also $a_{0} f_{r+1}+a_{1} f_{r}=$ $g_{c+1} \in \mathfrak{A}$. It follows that $f_{r+1} \in \mathfrak{A}$. Inductively, we get $f_{l} \in \mathfrak{A}$ for $i=$ r, \ldots, v, and hence $f \in \mathfrak{H}$. Thus $\mathfrak{H} \cdot R_{m} \cap R=\mathfrak{H}$.

For (2). Since R is noetherian \mathfrak{U} is of finite type. It is known [B, Cor. 2, p. 248] that $\mu(\mathfrak{U})=\operatorname{dim}_{R_{0}} \mathfrak{H} / \mathrm{m} \mathfrak{U}$. As

$$
\begin{aligned}
\mathfrak{H} R_{\mathrm{m}} / \mathfrak{H} \cdot \mathfrak{m} R_{\mathrm{m}} & \cong \mathfrak{H} \cdot R_{\mathrm{m}} \otimes_{R_{\mathrm{m}}} R_{\mathrm{m}} / \mathrm{m} R_{\mathrm{m}} \cong\left(\mathfrak{H} \otimes_{R} R_{\mathrm{m}}\right) \otimes_{R_{\mathrm{m}}} R_{0} \\
& \cong \mathfrak{U} \otimes_{R}\left(R_{\mathrm{m}} \otimes_{R_{\mathrm{m}}} R_{0}\right) \cong \mathfrak{U} \otimes_{R} R_{0} \cong \mathfrak{U} / \mathrm{m} \mathfrak{U}
\end{aligned}
$$

it follows that

$$
\mu\left(\mathfrak{A l} R_{\mathfrak{m}}\right)=\operatorname{dim}_{R_{0}}\left(\mathfrak{H} R_{\mathfrak{m}} / \mathfrak{H} \cdot \mathfrak{m} R_{\mathfrak{m}}\right)=\operatorname{dim}_{R_{0}}\left(\mathfrak{H} / \mathscr{X _ { \mathfrak { m } }}\right)=\mu(\mathfrak{H})
$$

For (3). \mathfrak{A} is homogeneous. Therefore \mathfrak{A} has a set of generators consisting of homogeneous elements. Let $\left\{h_{1}, \ldots, h_{r}\right\}$ be a minimal set of homogeneous generators. Then $r \geq \mu(\mathfrak{U})$. Let $\bar{h}_{1}, \ldots, \bar{h}_{r}$ be the residue classes of h_{1}, \ldots, h_{r} in the $\mu(\mathfrak{A})$-dimensional vector space $\mathfrak{H} / \mathfrak{m} \cdot \mathfrak{A}$ over
R_{0}. We select a vector basis, say $\left\{\bar{h}, \ldots, \bar{h}_{\mu(2)}\right\}$. Then, by [B, Cor. 2, p. 248], $\left\{h_{1}, \ldots, h_{\mu(\mathscr{A})}\right\}$ form a minimal set of generators of \mathfrak{A}. Therefore $\mu(\mathfrak{A})=r$.

Lemma 2. Let $A=\oplus_{i \geq 0} A_{i}$ be a noetherian graded domain and let $I \subset A$ be a graded ideal. Let p be a graded prime ideal of A contained in $\oplus_{i>0} A_{i}$ such that there is $r_{1} \in A_{1}-p$. Then (1) $\mu\left(I_{(p)}\right)=\mu\left(I_{p}\right)$; (2) depth $A_{(p)}=\operatorname{depth} A_{p} ;$ and (3) $\operatorname{dim} A_{p}=\operatorname{dim} A_{(p)}$;

Proof. It follows from [K1, Theorem 2, p.456] and [DE, Theorem 1] that $A_{p}=A_{(p)}\left[r_{q}\right]_{\mathfrak{m}\left[r_{1}\right]}$ and r_{1} is transcendental over $A_{(p)}$, where \mathfrak{m} is the maximal ideal of $A_{(p)}$, and a similar argument yields $I_{p}=I_{(p)}\left[r_{1}\right]_{\mathrm{m}\left[r_{1}\right]}$.

$$
\begin{gathered}
\mu\left(I_{p}\right)=\operatorname{dim}_{A_{p / / A_{p}}}\left(I_{p} / I_{p} \cdot p A_{p}\right), \\
\mu\left(I_{(p)}\right)=\operatorname{dim}_{A_{(p)} / \operatorname{mA}_{(p)}}\left(I_{(p)} / I_{(p)} \cdot \mathfrak{m} A_{(p)}\right) .
\end{gathered}
$$

Since $A_{p} / p A_{p}=k\left(r_{1}\right)$, a transcendental field extension over $k=$ $A_{(p)} / \mathfrak{m} A_{(p)}$, and

$$
\begin{aligned}
I_{p} / I_{p} \cdot p A_{p} & \cong I_{p} \otimes_{A_{p}} A_{p} / p A_{p}=\left(I_{(p)} \otimes_{A_{(p)}} A_{(p)}\left[r_{i}\right]_{\mathfrak{m}\left[r_{1}\right]}\right) \otimes_{A_{p}} A_{p} / p A_{p} \\
& \cong I_{(p)} \otimes_{A_{(p)}}\left(A_{p} \otimes_{A_{p}} A_{p} / p A_{p}\right) \cong I_{(p)} \otimes_{A_{(p)}} k\left(r_{1}\right) \\
& \cong\left(I_{(p)} \otimes_{A_{(p)}} k\right) \otimes_{k} k\left(r_{1}\right) \cong I_{(p)} / I_{(p)} \mathfrak{m} A_{(p)} \otimes_{k} k\left(r_{1}\right) .
\end{aligned}
$$

Therefore (1) $\mu\left(I_{p}\right)=\mu\left(I_{(p)}\right)$. For (2),

$$
\begin{aligned}
A_{p} \otimes_{A_{(p)}} k & \cong A_{p} \otimes_{A_{(p)}} A_{(p)} / \mathfrak{m} A_{(p)} \\
& =A_{(p)}\left[r_{1}\right]_{m\left[r_{1}\right]} / \mathfrak{m} A_{(p)}\left[r_{1}\right]_{\mathfrak{m}\left[r_{1}\right]} \cong k\left(r_{1}\right),
\end{aligned}
$$

which is of depth 0. $A_{(p)} \rightarrow A_{p}$ is a local flat homomorphism. It follows from [M, Cor. 1, p. 154] that depth $A_{(p)}=\operatorname{depth} A_{p}$. (3) [DE, Corollary to Theorem 1].

Proposition. Let $A=\oplus_{i \geq 0} A_{i}$ be a noetherian graded domain with A_{0} a regular ring and let p be a graded prime ideal of A such that there is $r_{1} \in A_{1}-p$.
(1) $A_{(p)}$ is a complete intersection if and only if A_{p} is a complete intersection.
(2) $A_{(p)}$ is an almost complete intersection if and only if A_{p} is an almost complete intersection.

Proof. Since A is Noetherian, A is finitely generated A_{0}-algebra. Let S be a polynomial ring over A_{0}, say $S=A_{0}\left[x_{0}, \ldots, x_{n}\right]$ and let $I \subset$ $\left(x_{0}, \ldots, x_{n}\right)$ be the homogeneous prime ideal of S such that $A=S / I$. Let $P \subset S$ be the inverse image of p. Then $A_{P}=(S / I)_{P / I}=S_{p} / I \cdot S_{P}$. Let L_{1} be an element of S of homogeneous degree 1 such that r_{1} is the image of L_{1} in A_{1}. Then

$$
A_{(p)}=\left(S_{\left(L_{1}\right)}\right)_{P_{\left(L_{1}\right)}} /\left(I_{\left(L_{1}\right)}\right) \cdot\left(S_{\left(L_{1}\right)}\right)=S_{(P)} / I_{(P)} \cdot S_{(P)}
$$

where $S_{\left(L_{1}\right)}, P_{\left(L_{1}\right)}, I_{\left(L_{1}\right)}$ are dehomogenized S, P and I with respect to L_{1}, respectively. That A_{0} is regular implies $S=A_{0}\left[x_{1}, \ldots, x_{n}\right]$ is regular. Thus S_{p} is regular and so is $S_{(P)}$ by [K1, Theorem 2e, p. 457]. A_{p} and $A_{(p)}$ are thus quotient rings of regular local rings. $\operatorname{ht}\left(I_{(P)}\right)=\operatorname{ht}\left(I_{P}\right)$ because dim S_{P} $=\operatorname{dim} S_{(P)}$ and $\operatorname{dim} A_{p}=\operatorname{dim} A_{(p)}$. (1) If A_{p} is a complete intersection then, by Lemma 2, $\mu\left(I_{P}\right)=\operatorname{ht}\left(I_{P}\right)=\operatorname{ht}\left(I_{(P)}\right)=\mu\left(I_{(P)}\right)$. Therefore $A_{(p)}$ is a complete intersection, and conversely.
(2) If A_{p} is an almost complete intersection then $\mu\left(I_{P}\right)=\operatorname{ht}\left(I_{P}\right)+1$ $=\operatorname{ht}\left(I_{(P)}\right)+1=\mu\left(I_{(P)}\right)$. Therefore $A_{(p)}$ is also an almost complete intersection, and conversely.

Note. (1) Also follows from a more general result [A, Theorem 2, p. 1413]: Let $f:(B, \mathfrak{Y}) \rightarrow(A, \mathfrak{m})$ be a flat local homomorphism of noetherian local rings. Then A is a complete intersection if and only if the same is true of B and of $A \otimes_{B} B / \mathrm{m}$. But our proofs is simple and direct for the case involved.

Theorem. Let $B=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k in the indeterminates x_{0}, \ldots, x_{n}. Let $P \subset B$ be a homogeneous prime ideal such that P is an almost complete intersection. Let $A=B / P$. Then the following are equivalent:
(1) P^{2} is P-primary.
(2) For all $p \in \operatorname{proj}(A)$ with $\operatorname{ht}(p)=1$, the local ring $A_{(p)}$ is a complete intersection.
(3) P^{i} is P primary for all integers $i>0$.

Proof. For (1) $\leftrightarrow(2)$. Let $\operatorname{ht}(P)=r$. Let $M=\left(x_{0}, \ldots, x_{n}\right) \cdot B$. Then by Lemma $1, \mu(P)=\mu\left(P B_{M}\right)=r+1$. Since for each $Q \in \operatorname{Spec}(B)$ and $Q \supset P, \mu\left(P B_{Q}\right) \leq r+1$ and $\operatorname{ht}\left(P B_{Q}\right)=\operatorname{ht}(P)=r$. Thus in the regular local ring $B_{M}, P \cdot B_{M}$ is locally a complete intersection or an almost complete intersection.
P^{2} is P-primary if and only if $P^{2} \cdot B_{M}$ is $P \cdot B_{M}$-primary. By [$\mathbf{K} \mathbf{2}$, Theorem 1, p. 15] $P^{2} B_{M}$ is primary if and only if for each $q \in \operatorname{Spec}\left(A_{\mathrm{m}}\right)$ with $\operatorname{ht}(q)=1$, the local ring A_{q} is a complete intersection, where $\mathfrak{m}=$ M / P. Since A is a noetherian graded domain and m is the irrelevant maximal ideal, and suppose q above is homogeneous, then by the above proposition $A_{(q)}$ is a complete intersection. Conversely, if $A_{(q)}$ is a complete intersection for all homogeneous ideals q of height 1 in $\operatorname{proj}(A)$, then A_{q} is a complete intersection by the proposition. Let $q^{\prime} \in \operatorname{Spec}(A)$ and $q^{\prime} \notin \operatorname{proj}(A)$ and $\operatorname{ht}\left(q^{\prime}\right)=1$. Then by [\mathbf{S}, Lemma 1, p. 618] A_{q} is a normal local domain. Since $\operatorname{dim} A_{q^{\prime}}=1$, then $A_{q^{\prime}}$ is a regular local ring, in particular a complete intersection. Thus A_{q} is a complete intersection for all $q \in \operatorname{Spec} A$ and $\operatorname{ht}(q)=1$. Since Lemma $1(2)$ implies P_{M} is an almost complete intersection and [K2, Theorem 1; p. 15] implies P_{M}^{2} is P-primary, P^{2} is P-primary.

For (1) $\leftrightarrow(3)$. As B is a polynomial ring, B is Cohen-Macauley and B_{P} is regular. It follows from [H, Theorem 3.1] as quoted in the introduction, that $P^{2}=P^{(2)}$ if and only if $P^{i}=P^{(i)}$ for all integers $i>0$. Since $P^{(i)}=P^{i}$ if and only if P^{i} is primary, (1) is equivalent to (3).

Corollary 1. Let P, S be the same as in the theorem. Let V be the projective variety in the projective n space P_{k}^{n} defined by P. If V is free of singularities of codimension 1, in particular V is locally normal, then P^{n} is P-primary for $n>0$.

Proof. V is locally normal implies V is free of singularities of codimension 1. Let A be the homogeneous coordinate ring of V. Then $A_{(p)}$ is a regular local ring for each homogeneous prime ideal p of height 1 . Thus by the theorem, P^{n} is P-primary for all integers $n>0$.

Corollary 2. Let $P \subset k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be the homogeneous prime ideal of a nonsingular irreducible projective curve which is also an almost complete intersection. Then P^{n} is primary for all integers $n>0$.

Proof. This follows from Corollary 1.

References

[A] L. L. Avramov, Flat morphisms of complete intersections, Soviet Math. Dokl., 16 (1975), No. 6.
[B] Bourbaki, Algèbra, Chapitre 2-Algébra Linéaire, Linéaire, Hermann, Paris (1962).
[DE] U. Daepp and A. Evans, A note on Buchsbaum rings and localizations of graded domains, to appear in Canad. J. Math.
[H] C. Huneke, Symbolic powers of primes and special graded algebra, Preprint.
[K1] W. Kuan, Some results on normality of a graded ring, Pacific J. Math., 64, no. 2 (1976), 455-463.
[K2] E. Kunz, The conormal module of an almost complete intersection, Proc. Amer. Math. Soc., 73, no. 1 (1979), 15-21.
[RV1] L. Robbiano and G. Valla, Primary powers of a prime ideal, Pacific J. Math., 63, no. 2 (1976), 491-498.
[RV2] L. Robbiano and G. Valla, On normal flatness and normal torsion-freeness, J. Algebra, 43 (1977), 552-560.
[S] A. Seidenberg, The hyperplane sections of arithmatically normal varieties, Amer. J. Math., 94 (1972), 609-630.
[Sz] L. Szpiro, Varietes de codimension 2 Dans P^{n}, Colloque D'Algebre Commutative, Rennes, (1972), (15-1)-(15-7).
[ZS] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, Van Nostrand, New York (1960).

Received September 9, 1980

Michigan State University
East Lansing, MI 48824

