THE REGULAR REPRESENTATION OF LOCAL AFFINE MOTION GROUPS

Bruce E. Blackadar

Abstract

Let F be a nondiscrete locally compact topological field. Then the regular representation of the group of invertible affine motions of F^{n}, the semidirect product of F^{n} by $G L_{n}(F)$, is a type I_{∞} factor. An explicit transformation formula is obtained.

1. Introduction. It is of some interest [4] to examine the regular representation of the group of affine motions of F^{n} for a nondiscrete locally compact field F. We show that the regular representation of such a group is a type I_{∞} factor, i.e. is a multiple of an irreducible representation on an infinite-dimensional Hilbert space.

The results of this paper were part of the author's doctoral dissertation at the University of California, Berkeley, June 1975, under the direction of Calvin C. Moore.
2. Preliminaries. Let F be a nondiscrete locally compact field. It is known (see, for example, [3, Theorem 9.21]) that F is either \mathbf{R}, \mathbf{C}, a finite extension of the field \mathbf{Q}_{p} of p-adic numbers, or the field of formal Laurent series in one variable over a finite field. In particular, if F is not \mathbf{R} or \mathbf{C} it has the following properties:
(i) F is the quotient field of a compact open subring R.
(ii) R has a unique maximal ideal M, which is principal; let $M=(\pi)$.
(iii) R / M is a finite field with (say) q elements.
(iv) There is a character χ on the additive group of F with $R \subseteq \operatorname{ker} \chi$, $\pi^{-1} \notin \operatorname{ker} \chi$; any other character on F is of the form $\chi_{u}(x)=\chi(u x)$ for some $u \in F$.
(v) R has a nonarchimedean absolute value $|\cdot|$ with $|\pi|=1 / q$.
(vi) If μ (usually denoted $d x$) is additive Haar measure on F, normalized so that $\mu(R)=1$, then $\mu(M)=1 / q$ and $d x /|x|$ is multiplicative Haar measure μ^{*} on F^{*}, with the measure of R^{*} equal to $1-1 / q$.

If F is \mathbf{R} or \mathbf{C}, let $d x$ denote Lebesgue measure normalized to make the Fourier inversion formula valid, $|\cdot|$ the ordinary absolute value (squared if $F=\mathbf{C}$), and $\chi(x)=e^{2 \pi i \operatorname{Re} x}$.

We now let G_{n} be the group of invertible affine motions of F^{n} (the n-dimensional " $a x+b$ " group), i.e. $G_{n}=F^{n} \cdot G L_{n}$, the semidirect product of F^{n} by $G L_{n}=G L_{n}(F)$. It will frequently be useful to consider G_{n} as a subgroup of $G L_{n+1}$ by the identification

$$
(b, A) \leftrightarrow\left[\begin{array}{llll}
1 & 0 & \cdots & 0 \\
b & & A &
\end{array}\right] .
$$

Using this identification, we will think of $G_{1} \subseteq G L_{2} \subseteq \cdots \subseteq G L_{n} \subseteq G_{n}$ $\subseteq G L_{n+1}$.

3. The results.

Theorem 3.1. The right regular representation $\rho_{G_{n}}$ of G_{n} is a type I_{∞} factor.

Proof. By induction on n. The case $n=1$ was done in [2, §3]; we briefly outline the argument for completeness. $G_{1} \cong F \times F^{*}$ topologically, and $\mu \times \mu^{*}$ is right Haar measure. If $f \in L^{2}\left(G_{1}\right)$, set $\hat{f}_{u}(y, x)=$ $\chi(u y) \int_{F} f(z, x) \chi(-u z) d z$; then $\left[\rho_{G_{1}}(b, a) f\right]_{u}^{\hat{u}}(y, x)=\chi(u b x) \hat{f_{u}}(y, a x)$. If $\rho_{u}=\operatorname{ind}_{F_{\uparrow} G_{1}} \chi_{-u}$, then $\rho_{u} \cong \rho_{v}$ for $u, v \neq 0$; since $f(y, x)=\int_{F} \hat{f}_{u}(y, x) d u$, we have $\rho=\int_{F} \rho_{u} d u$.

Now assume $\rho_{G_{n-1}}$ is a factor. Regard F^{n} as a subgroup of G_{n} by identifying b with $(b, \mathbf{1}) . \rho_{G_{n}}=\operatorname{ind}_{F^{n} G_{n}} \rho_{F^{n}} . \rho_{F^{n}}=\int_{F^{n}} \chi_{u} d u$, where χ_{u} ($u \in F^{n}$) is the character given by $\chi_{u}(v)=\chi(u \cdot v)$. By moving the direct integral past the induction, we get $\rho_{G_{n}}=\int_{F^{n}}\left(\operatorname{ind}_{F^{n} \uparrow G_{n}} \chi_{u}\right) d u$. If u and v are nonzero vectors in F^{n}, ind $\chi_{u} \simeq$ ind χ_{v}, since u and v are conjugate under the action of $G L_{n}$ on F^{n}. Set $e_{1}=(1,0, \ldots, 0)$. We then have $\rho_{G_{n}} \simeq$ $\int_{F^{n}}\left(\operatorname{ind}_{F^{n} \uparrow G_{n}} \chi_{e_{1}}\right) d u . G_{n}=F^{n} \cdot G L_{n}$, so, regarding $G_{n-1} \subseteq G L_{n}$, let $H_{n}=$ $F^{n} \cdot G_{n-1}$. Since the action of G_{n-1} on F^{n} leaves the first coordinate fixed, we have $H_{n}=F \times\left(F^{n-1} \cdot G_{n-1}\right)$.

We split the induction into two steps,

$$
\rho_{G_{n}} \simeq \int_{F^{n}} \operatorname{ind}_{H_{n} \uparrow G_{n}}\left(\operatorname{ind}_{F^{n} \uparrow H_{n}} \chi_{e_{1}}\right) d u .
$$

Let us examine $\pi=\operatorname{ind}_{F^{n} \uparrow H_{n}} \chi_{e_{1}} \cdot \chi_{e_{1}}=\chi \otimes \mathbf{1}$ on $F^{n}=F \times F^{n-1}$, and $H_{n}=F \times\left(F^{n-1} \cdot G_{n-1}\right)$, so $\pi \simeq \chi \otimes\left(\operatorname{ind}_{F^{n-1} \uparrow\left(F^{n-1} \cdot G_{n-1}\right)} \mathbf{1}\right) \simeq \chi \otimes \rho_{G_{n-1}}$ (where $\rho_{G_{n-1}}$ is considered as a representation of $F^{n-1} \cdot G_{n-1}$ with kernel F^{n-1}). By the induction hypothesis, $\rho_{G_{n-1}}$ is a I_{∞} factor representation of G_{n-1}, so π is a I_{∞} factor representation of H_{n}. We now use Mackey's theorem ([1], Theorem 6, p. 58) to show that $\operatorname{ind}_{H_{n} \uparrow G_{n}} \pi$ is a I_{∞} factor representation of G_{n}, since H_{n} is precisely the stability group of $\chi_{e_{1}}$ under the action of G_{n} on F^{n}.

We now get an explicit formula for this transformation. Throughout, we will always consider $G L_{k} \subseteq G_{k} \subseteq G L_{k+1} \subseteq G_{k+1}$, so that all groups will be thought of as being embedded in $G L_{n+1}$. Let $f \in L^{2}\left(G_{n}\right)$. We first take the Fourier transform along F^{n} : define

$$
\hat{f}_{u}(y, X)=\chi(u \cdot y) \int_{F^{n}} f(z, X) \chi(-u \cdot z) d z
$$

Then

$$
\begin{aligned}
\hat{f}_{u} \in \mathcal{H}_{u}^{n}=\left\{f: G_{n} \rightarrow \mathbf{C}: f(y, X)=\right. & \chi(u \cdot y) f(0, X) \\
& \left.\int_{G L_{n}}|f(0, X)|^{2} d X<\infty\right\}
\end{aligned}
$$

where $d X$ is Haar measure on $G L_{n}$.
By the Fourier inversion formula, $f(y, X)=\int_{F^{n}} \hat{f}_{u}(y, X) d u$.

$$
\begin{aligned}
{[\rho(b, A) f]_{u}^{\hat{u}}(y, X) } & =\chi(u \cdot y) \int_{F^{n}}[\rho(b, A) f](z, X) \chi(-u \cdot z) d z \\
& =\chi(u \cdot y) \int_{F^{n}} f(z+X b, X A) \chi(-u \cdot z) d z
\end{aligned}
$$

Set $t=z-X b$.

$$
\begin{aligned}
& =\chi(u \cdot y) \int_{F^{n}} f(t, X A) \chi(-u \cdot t) \chi(u \cdot X b) d t \\
& =\chi(u \cdot X b) \hat{f}_{u}(y, X A)
\end{aligned}
$$

This is precisely the representation $\operatorname{ind}_{F^{n} \uparrow G_{n}} \chi_{u}$ on $\mathscr{H}_{u}^{n}\left[\chi_{u}(v)=\chi(u \cdot v)\right]$. So we have written

$$
L^{2}\left(G_{n}\right) \simeq \int_{F^{n}} \mathcal{H}_{u}^{n} d u, \quad \rho_{G_{n}} \simeq \int_{F^{n}}\left(\operatorname{ind}_{F^{n} \uparrow G_{n}} \chi_{u}\right) d u
$$

Let $e_{1}^{n}=(1,0, \ldots, 0) \in F^{n}$. We now take an equivalence in each piece, $\mathcal{H}_{u}^{n} \rightarrow \mathcal{H}_{e_{1}^{n}}^{n}$, ind $\chi_{u} \rightarrow$ ind $\chi_{e_{1}^{n}}$ by setting $\tilde{f}_{u}(y, X)=\hat{f}_{u}\left(B_{u}(y, X)\right)$ where

$$
B_{u}=\left[\begin{array}{cccc}
1 / u_{1} & -u_{2} / u_{1} & \cdots & -u_{n} / u_{1} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right] \text { for } u=\left(u_{1}, \ldots, u_{n}\right), u_{1} \neq 0
$$

We interchangeably think of B_{u} as an element of $G L_{n}, G_{n}$, and $G L_{n+1}$ to simplify notation. The reason for choosing this B_{u} is that $u \cdot B_{u} v=$ $B_{u}^{t} u \cdot v=e_{1}^{n} \cdot v$ for all v.
$\hat{f}_{u} \rightarrow \tilde{f}_{u}$ is an isometry of \mathscr{K}_{u}^{n} onto $\mathscr{F}_{e^{n}}^{n}$: this can be seen most easily by identifying \mathscr{H}_{u}^{n} with $L^{2}\left(G L_{n}\right)$ by $\hat{f}_{n} \leftrightarrow \hat{f}_{u}(0, \cdot)$ and noting that $G L_{n}$ is unimodular (we have assumed right Haar measure). By associating f with $\int_{F^{n}} \tilde{f}_{u} d u$, we get

$$
L^{2}\left(G_{n}\right) \simeq \int_{F^{n}} \mathcal{H}_{e_{1}^{n}}^{n} d u, \quad \rho_{G_{n}} \simeq \int_{F^{n}}\left(\operatorname{ind}_{F^{n} \uparrow G_{n}} \chi_{e^{n}}\right) d u .
$$

$\tilde{f}_{u}(y, X)=\chi\left(e_{1}^{n} \cdot y\right) \int_{F^{n}} f\left(v, B_{u} X\right) \chi(-u \cdot v) d v$. We now change variables, setting $v=B_{u} t, d v=1 /\left|u_{1}\right| d t$.

$$
\begin{aligned}
\tilde{f}_{u}(y, X) & =\chi\left(e_{1}^{n} \cdot y\right) \int_{F^{n}} f\left(B_{u}(t, X)\right) \chi\left(-u \cdot B_{u} t\right) \frac{1}{\left|u_{1}\right|} d t \\
& =\chi\left(e_{1}^{n} \cdot y\right) \int_{F^{n}} f\left(B_{u}(t, X)\right) \chi\left(e_{1}^{n} \cdot t\right) d t .
\end{aligned}
$$

Now we split the induction into two steps,

$$
\operatorname{ind}_{F^{n} \rightarrow G_{n}} \chi_{e_{1}^{n}}=\operatorname{ind}_{H_{n} \backslash G_{n}}\left(\operatorname{ind}_{F^{n} \backslash H_{n}} \chi_{e_{1}^{n}}\right) .
$$

Set

$$
\begin{gathered}
\bar{f}_{u}(y, X)(Z)=\tilde{f}_{u}(y, Z X) \quad \text { for } y \in F^{n}, X \in G L_{n}, Z \in G_{n-1} \subseteq G L_{n} . \\
\bar{f}_{u} \in\left\{f: G_{n} \rightarrow L^{2}\left(G_{n-1}\right): f([(b, C)(y, X)])(Z)=\chi\left(e_{1}^{n} \cdot b\right) f(y, X)(Z C)\right. \\
\left.\quad \text { for } X \in G L_{n}, Z, C \in G_{n-1}, b, y \in F^{n} ; \int_{G L_{n}}|f(X)(\mathbf{1})|^{2} d X<\infty\right\} .
\end{gathered}
$$

If we look at the representation σ^{n} of H_{n} on $L^{2}\left(G_{n-1}\right)$ given by $\left[\sigma^{n}(b, C) g\right](Z)=\chi\left(e_{1}^{n} \cdot b\right) g(Z C)$ for $b \in F^{n}, C \in G_{n-1}$, we see that

$$
\sigma^{n} \simeq \operatorname{ind}_{F^{n} \uparrow H_{n}} \chi_{e_{1}^{n}}, \quad \text { and } \operatorname{ind}_{F^{n} \uparrow G_{n}} \chi_{e_{1}^{n}} \simeq \operatorname{ind}_{H_{n} \uparrow G_{n}} \sigma^{n} .
$$

Also, $\sigma^{n} \simeq \chi_{e_{1}^{n}} \otimes \rho_{G_{n-1}}$ as an inner tensor product.
We now decompose $\rho_{G_{n-1}}$ in the same manner as before. Let

$$
\begin{aligned}
& \hat{f}_{u, r}(y, X)(t, S)=\chi(r \cdot t) \int_{F^{n-1}} \bar{f}_{u}(y, X)(w, S) \chi(-r \cdot w) d w \\
& \quad\left(t \in F^{n-1}, S \in G L_{n-1}\right) .
\end{aligned}
$$

Then

$$
\bar{f}_{u}(y, X)(t, S)=\int_{F^{n-1}} \hat{f}_{u, r}(y, X)(t, S) d r ; \quad \hat{f}_{u, r}(y, X) \in \mathcal{K}_{r}^{n-1} .
$$

Let

$$
\begin{aligned}
& B_{r}=\left[\begin{array}{cccc}
1 / r_{1} & -r_{2} / r_{1} & \cdots & -r_{n-1} / r_{1} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right] \in G L_{n-1} \\
& \\
&\left(\text { for } r \in F^{n-1}, r_{1} \neq 0\right)
\end{aligned}
$$

$\operatorname{Set} \tilde{f}_{u, r}(y, X)(t, S)=\hat{f}_{u, r}(y, X)\left(B_{r}(t, S)\right)$.

$$
\begin{aligned}
& {\left[\sigma^{n}(b,(d, C)) f\right]_{u, r}(y, X)(t, S)} \\
& \quad=\chi(r \cdot t) \int_{F^{n-1}}\left[\sigma^{n}(b,(d, C)) f\right]_{u}(y, X)(w, S) \chi(-r \cdot w) d w \\
& \quad=\chi(r \cdot t) \int_{F^{n-1}} \chi\left(e_{1} \cdot b\right) \tilde{f}_{u}(y, X)(w+S d, S C) \chi(-r \cdot w) d w
\end{aligned}
$$

Set $v=w+S d$.

$$
\begin{aligned}
& =\chi\left(e_{1} \cdot b\right) \chi(r \cdot t) \int_{F^{n-1}} \tilde{f}_{u}(y, X)(v, S C) \chi(-r \cdot v) \chi(r \cdot S d) d v \\
& =\chi\left(e_{1} \cdot b\right) \chi(r \cdot S d) \hat{f}_{u, r}(y, X)(t, S C) \\
& \quad \begin{array}{c}
\left.\sigma^{n}(b,(d, C)) f\right]_{u, r}^{\sim}(y, X)(t, S) \\
\quad=\chi\left(e_{1} \cdot b\right) \chi\left(r \cdot B_{r} S d\right) \hat{f}_{u, r}(y, X)\left(B_{r}(t, S C)\right) \\
\quad=\chi\left(e_{1} \cdot b\right) \chi\left(e_{1} \cdot S d\right) \tilde{f}_{u, r}(y, X)(t, S C) .
\end{array}
\end{aligned}
$$

Thus by associating $\tilde{f_{u}}$ with

$$
\begin{gathered}
\int_{F^{n-1}} \tilde{f}_{u, r} d r, \quad \sigma^{n} \simeq \int_{F^{n-1}} \chi_{e_{1}^{n}} \otimes\left(\underset{F^{n-1} \uparrow G_{n-1}}{\operatorname{ind}} \chi_{e_{1}^{n-1}}\right) \\
\tilde{f}_{u, r}(y, X)(t, S)=\chi\left(e_{1} \cdot t\right) \int_{F^{n-1}} \tilde{f}_{u}(y, X)\left(w, B_{r} S\right) \chi(-r \cdot w) d w .
\end{gathered}
$$

We want to pull the B_{r} past the w, so we change variables as before. Set $w=B_{r} v, d w=1 /\left|r_{1}\right| d v$. Then

$$
\begin{aligned}
& \tilde{f}_{u, r}(y, X)(t, S)=\chi\left(e_{1} \cdot t\right) \int_{F^{n-1}} \tilde{f}_{u}(y, X)\left(B_{r}(v, S)\right) \chi\left(-r \cdot B_{r} v\right) \frac{1}{\left|r_{1}\right|} d v \\
&= \chi\left(e_{1} \cdot t\right) \int_{F^{n-1}} \tilde{f}_{u}(y, X)\left(B_{r}(v, S)\right) \chi\left(e_{1} \cdot v\right) \frac{1}{\left|r_{1}\right|} d v \\
&= \chi\left(e_{1}^{n} \cdot y\right) \chi\left(e_{1}^{n-1} \cdot t\right) \\
& \cdot \int_{F^{n-1}}\left[\int_{F^{n}} f\left(B_{u}\left(w, B_{r}(v, S) X\right)\right) \chi\left(-w_{1}\right) \frac{1}{\left|u_{1}\right|} d w\right] \chi\left(-v_{1}\right) \frac{1}{\left|r_{1}\right|} d v .
\end{aligned}
$$

We now pull the B_{r} past the w, by letting $w=B_{r} z, d w=1 /\left|r_{1}\right| d z$. Note that $z_{1}=w_{1}$ since B_{r} does not affect the first column.

$$
\begin{aligned}
& \tilde{f}_{u, r}(y, X)(t, S) \\
& \quad=\int_{F^{n-1}}\left[\int_{F^{n}} f\left(B_{u} B_{r}(z,(v, S) X)\right) \chi\left(-z_{1}\right) \frac{1}{\left|u_{1} r_{1}\right|} d z\right] \chi\left(-v_{1}\right) \frac{1}{\left|r_{1}\right|} d v .
\end{aligned}
$$

We now repeat the process until we get down to F^{1}. We end up with
$\tilde{f}_{u, r, \ldots s}(y, X)(t, S) \cdots(q, T)$

$$
\begin{gathered}
\left((y, X) \in G_{n},(t, S) \in G_{n-1}, \ldots,(q, T) \in G_{1}\right) \\
=\chi\left(e_{1}^{n} \cdot y\right) \chi\left(e_{1}^{n-1} \cdot t\right) \cdots \chi(q) \\
\cdot \int_{F^{2}} \int_{F^{2}} \cdots \int_{F^{n}} f\left(B_{u} B_{r} \cdots B_{s}(w,(v, \ldots(z, T) \ldots, S) X)\right) \\
\cdot \chi\left(-w_{1}-v_{1}-\cdots-z_{1}\right) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d w d v \cdots d z . \\
\tilde{f}_{u, r, \ldots, s} \in \mathscr{G}^{n}=\left\{f: G_{n} \rightarrow \mathscr{H}^{n-1}: f([(b, C)(y, X)])(Z)\right. \\
=\chi\left(e_{1}^{n} \cdot b\right) f(y, X)(Z C) \text { for } X \in G L_{n}, Z, C \in G_{n}, \\
\left.b, y \in F^{n} ; \int_{G_{n-1} \backslash G_{n}}|f(y, X)|^{2}<\infty\right\} .
\end{gathered}
$$

[$\left.\mathscr{H}^{0}=\mathbf{C}\right]$.
Set $\tilde{f}_{u, r, \ldots, s}(y, X)=\tilde{f}_{u, r, \ldots, s}(y, X)(0, \mathbf{1}) \cdots(0, \mathbf{1})$.
$\bar{f}_{u, r, \ldots, s} \in \mathscr{H}=\left\{f: G_{n} \rightarrow \mathbf{C}: f(C(y, X))=\phi(C) f(y, X)\right.$

$$
\text { for } \left.C \in \Gamma_{n}, \int_{\Gamma_{n} \backslash G_{n}}|f(y, X)|^{2}<\infty\right\}
$$

where

$$
\Gamma_{n}=\left\{\left[\begin{array}{cccc}
1 & & & 0 \\
& 1 & \ddots & \\
& & \ddots & 1 \\
* & & & 1
\end{array}\right]\right\}, \quad \phi\left(\left[\begin{array}{ccccc}
1 & & & 0 & \\
a_{11} & 1 & & 0 & \\
\vdots & & \ddots & & \\
a_{n 1} & \cdots & & a_{n n} & 1
\end{array}\right]\right)=\Sigma a_{i i}
$$

$\bar{f}_{u, \ldots, \ldots s}(y, X)$

$$
\begin{aligned}
& =\int_{F} \cdots \int_{F^{n}} f\left(B_{u} B_{r} \cdots B_{s}\left[\begin{array}{cccc}
1 & & & \\
w_{1} & 1 & & 0 \\
\vdots & & \ddots & \\
w_{n} & 0 & \cdots & 1
\end{array}\right]\right. \\
& \cdot\left[\begin{array}{cccc}
1 & & & \\
0 & 1 & & \\
\vdots & v_{1} & \ddots & \\
0 & v_{n-1} & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \\
0 & & & \\
\vdots & & & \\
0 & \cdots & z_{1} & 1
\end{array}\right](y, X) \\
& \cdot \chi\left(-w_{1}-v_{1}-\cdots-z_{1}\right) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d w d v \cdots d z . \\
& \int_{F} \cdots \int_{F^{n}} f\left(\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & u_{1} & & \cdots & u_{n} \\
0 & 0 & r_{1} & \cdots & r_{n-1} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & & \cdots & s_{1}
\end{array}\right]-1\right. \\
& \left.\cdot\left[\begin{array}{ccccc}
1 & & & & \\
w_{1} & 1 & & & \\
w_{2} & v_{1} & 1 & & \\
\vdots & \vdots & & \ddots & \\
w_{n} & v_{n-1} & \cdots & z_{1} & 1
\end{array}\right](y, X)\right] \\
& \cdot \chi\left(-w_{1}-v_{1}-\cdots-z_{1}\right) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d w d v \cdots d z \\
& =\int_{\Gamma_{n}} f\left[\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & u_{1} & & \cdots & u_{n} \\
0 & 0 & r_{1} & \cdots & r_{n-1} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & & \cdots & s_{1}
\end{array}\right]-1 \quad \gamma(y, X)\right] \phi(-\gamma) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d \gamma
\end{aligned}
$$

since Haar measure on Γ_{n} is $d w d v \cdots d z$.
$[\rho(b, A) f]_{u, r, \ldots, s}^{-}(y, X)$

$$
=\int_{\Gamma_{n}}[\rho(b, A) f]\left(\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & u_{1} & & \cdots & u_{n} \\
0 & 0 & r_{1} & \cdots & r_{n-1} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & & \cdots & s_{1}
\end{array}\right] \gamma(y, X)\right]
$$

$\phi(-\gamma) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d \gamma$

$$
\begin{aligned}
= & \int_{\Gamma_{n}} f\left(\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & u_{1} & & \cdots & u_{n} \\
0 & 0 & r_{1} & \cdots & r_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & & \cdots & s_{1}
\end{array}\right] \gamma(X b, \mathbf{1})(y, X A)\right] \\
& \cdot \phi(-\gamma) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d \gamma
\end{aligned}
$$

$[\operatorname{Set} \beta=\gamma(X b, \mathbf{1})$.]

$$
\begin{aligned}
= & \int_{\Gamma_{n}} f\left(\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & u_{1} & \cdots & u_{n} \\
0 & 0 & r_{1} & \cdots \\
r_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_{1}
\end{array}\right] \beta(y, X A)\right. \\
& \cdot \chi\left(e_{1} \cdot X b\right) \phi(-\beta) \frac{1}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} d \beta \\
= & \chi\left(e_{1} \cdot X b\right) \bar{f}_{u, r, \ldots, s}(y, X A)
\end{aligned}
$$

This is precisely $\operatorname{ind}_{\Gamma_{n} \uparrow G_{n}} \phi$ on \mathscr{H}. So we have

$$
\begin{aligned}
L^{2}\left(G_{n}\right) & \simeq \int_{F} \cdots \int_{F^{n}} \mathcal{H} d u d r \cdots d s, \\
\rho_{C_{n}} & \simeq \int_{F} \cdots \int_{F^{n}}\left(\operatorname{ind}_{\Gamma_{n} \uparrow G_{n}} \phi\right) d u d r \cdots d s
\end{aligned}
$$

Let

$$
\Delta_{n}=\left\{\left[\begin{array}{cccc}
u_{1} & & \cdots & u_{n} \\
0 & r_{1} & \cdots & r_{n-1} \\
\vdots & & \ddots & \vdots \\
0 & & \cdots & s_{1}
\end{array}\right]: u_{1} \neq 0, \ldots, s_{1} \neq 0\right\}
$$

$=$ group of upper triangular invertible $n \times n$ matrices.
Right Haar measure on Δ_{n} is

$$
\frac{d u_{1} \cdots d u_{n} d r_{1} \cdots d r_{n-1} \cdots d s_{1}}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} .
$$

We may identify Δ_{n} with $\Gamma_{n} \backslash G_{n}$ as a measure space, and hence we may regard $\operatorname{ind}_{\Gamma_{n} \uparrow G_{n}} \phi$ as a representation σ on $L^{2}\left(\Delta_{n}\right)$.

We now renormalize $\bar{f}_{u, r, \ldots, s}$ so that we can recapture f as an integral over Δ_{n}.

We have

$$
f=\int_{F} \cdots \int_{F^{n}} \bar{f}_{u, r, \ldots, s} d u d r \cdots d s
$$

Set $f_{u, r, \ldots, s}=\sqrt{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|} \bar{f}_{u, r, \ldots, s}$; then

$$
\begin{aligned}
f & =\int_{F} \cdots \int_{F^{n}} f_{u, r, \ldots, s} \frac{d u d r \cdots d s}{\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|}=\int_{\Delta_{n}} f_{\alpha} d \alpha \\
f_{\alpha}(y, X) & =\left(\left|u_{1} r_{1}^{2} \cdots s_{1}^{n}\right|\right)^{-1 / 2} \int_{\Gamma_{n}} f\left(\alpha^{-1} \gamma(y, X)\right) \phi(-\gamma) d \gamma
\end{aligned}
$$

where

$$
\alpha=\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & u_{1} & & \cdots & u_{n} \\
0 & 0 & r_{1} & \cdots & r_{n-1} \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & & \cdots & s_{1}
\end{array}\right]
$$

We thus have $L^{2}\left(G_{n}\right) \simeq \int_{\Delta_{n}} L^{2}\left(\Delta_{n}\right) d \alpha, \rho_{G_{n}} \simeq \int_{\Delta_{n}} \sigma d \alpha$. We may identify $\int_{\Delta_{n}} L^{2}\left(\Delta_{n}\right) d \alpha$ with $L^{2}\left(\Delta_{n}\right) \otimes L^{2}\left(\Delta_{n}\right), \rho_{G_{n}} \simeq \sigma \otimes \mathbb{1}$.

References

[1] L. Auslander and C. Moore, Unitary representations of solvable Lie groups, Amer. Math. Soc. Memoir no. 62, 1966.
[2] B. Blackadar, The regular representation of restricted direct product groups, J. Funct. Anal., 25 (1977), 267-274.
[3] N. Jacobson, Basic Algebra II, W. H. Freeman, San Francisco, 1980.
[4] H. Jacquet, Generic Representations, Lecture Notes in Mathematics v. 587, SpringerVerlag, 1977, 91-101.

Received March 21, 1981.

University of Nevada, Reno
Reno, NV 89557

