THE DETERMINANTAL IDEALS OF LINK MODULES. II

Lorenzo Traldi

Let H be the multiplicative free abelian group of rank $m \geq 1$. Suppose $0 \rightarrow B \rightarrow A \rightarrow I H \rightarrow 0$ is a short exact sequence of $\mathbf{Z} H$-modules, and the module A is finitely generated. Then B is also a finitely generated $\mathbf{Z} H$-module, and for any $k \in \mathbf{Z}$ the determinantal ideals of A and B satisfy the equality

$$
E_{k}(A):(I H)^{p}=E_{k-1}(B):(I H)^{q}
$$

for all sufficiently large values of p and q. Furthermore, if this exact sequence is the link module sequence of a tame link of m components in S^{3}, then

$$
E_{k}(A)=E_{k-1}(B):(I H)^{\left(\frac{m-1}{2}\right)}
$$

whenever $k \geq m$.

1. Introduction. Let H be the multiplicative free abelian group of rank $m \geq 1$, and $\mathbf{Z} H$ its integral group ring; if $\varepsilon: \mathbf{Z} H \rightarrow \mathbf{Z}$ is the augmentation map then its kernel is the augmentation ideal $I H$ of $\mathbf{Z} H$. Following [6], we will call a short exact sequence

$$
\begin{equation*}
0 \rightarrow B \xrightarrow{\phi} A \xrightarrow{\psi} I H \rightarrow 0 \tag{1}
\end{equation*}
$$

of $\mathbf{Z} H$-modules and homomorphisms an augmentation sequence, provided that the $\mathbf{Z} H$-module A is finitely generated. The module B is then also finitely generated, and so for any $k \in \mathbf{Z}$ there are well-defined determinantal ideals $E_{k}(A), E_{k}(B) \subseteq \mathbf{Z} H$.

In [6] we discussed the relationship between the product ideals $E_{k}(A) \cdot(I H)^{p}$ and $E_{k-1}(B) \cdot(I H)^{q}$ for various values of k, p, and q. In the present paper, instead, we will consider the relationship between the various quotient ideals $E_{k}(A):(I H)^{p}$ and $E_{k-1}(B):(I H)^{q}$. (We recall the definition: if $U, V \subseteq \mathbf{Z} H$ are ideals then the quotient ideal $U: V$ is $\{x \in \mathbf{Z} H \mid x V \subseteq U\}$.)

At first glance, it may seem that if $U \subseteq \mathbf{Z} H$ is an ideal the quotient ideals $U:(I H)^{p}$ and the various product ideals $U \cdot(I H)^{q}$ are, in some
sense, "duals" of each other, but this is not so. For the descending sequence

$$
U=U \cdot(I H)^{0} \supseteq U \cdot(I H)^{1} \supseteq U \cdot(I H)^{2} \supseteq \cdots
$$

of ideals of $\mathbf{Z} H$ need not terminate, in general, while since $\mathbf{Z} H$ is noetherian the ascending sequence

$$
U=U:(I H)^{0} \subseteq U:(I H)^{1} \subseteq U:(I H)^{2} \subseteq \cdots
$$

must, that is, there is a (unique least) $\rho(U)$ such that

$$
U:(I H)^{\rho(U)}=U:(I H)^{r} \quad \forall r \geq \rho(U)
$$

We will devote most of our attention to this terminal quotient ideal.
Theorem (1.1). If (1) is an augmentation sequence then for any $k \in \mathbf{Z}$

$$
E_{k}(A):(I H)^{\rho\left(E_{k}(A)\right)}=E_{k-1}(B):(I H)^{\rho\left(E_{k-1}(B)\right)}
$$

It is of interest, then, to determine the integers $\rho\left(E_{k}(A)\right)$ and $\rho\left(E_{k-1}(B)\right)$. Though this seems impracticable in general, we will prove

Theorem (1.2). If (1) is an augmentation sequence, $n \in \mathbf{Z}$, and $\varepsilon E_{n}(A)$ $=\mathbf{Z}$, then $\rho\left(E_{k}(A)\right)=0$ whenever $k \geq n$. Furthermore, $\rho\left(E_{k-1}(B)\right)=0$ whenever $k \geq n+\binom{m-1}{2}$, and $\rho\left(E_{k-1}(B)\right) \leq n+\binom{m-1}{2}-k$ whenever $n \leq$ $k \leq n+\binom{m-1}{2}$. Consequently, $\rho\left(E_{k-1}(B)\right) \leq\binom{ m-1}{2}$ whenever $k \geq n$.
($\operatorname{Here}\binom{m-1}{2}$ is the binomial coefficient, and in particular $\binom{0}{2}=\binom{1}{2}=0$.)
If (1) is the module sequence of a tame link $L \subseteq S^{3}$ of m components (described, e.g., in [1]) then it is known [5] that $\varepsilon E_{m}(A)=\mathbf{Z}$. (Note: in [5] the notation $E_{k}(A)=E_{k}(L)$ is used in this case.) Combining this with Theorems (1.1) and (1.2), we obtain

Corollary (1.3). If (1) is the module sequence of a tame link $L \subseteq S^{3}$, then

$$
E_{k}(A)=E_{k-1}(B)
$$

whenever $k>\binom{m}{2}$, and

$$
E_{k}(A)=E_{k-1}(B):(I H)^{m+\binom{m-1}{2}-k}
$$

whenever $m \leq k \leq\binom{ m}{2}$. Consequently,

$$
\left.E_{k}(A)=E_{k-1}(B):(I H)_{(}^{(m-1}\right)
$$

whenever $k \geq m$.

A special case of this is particularly pleasant: if (1) is the module sequence of a tame two-component link $L \subseteq S^{3}$ then $E_{k}(A)=E_{k-1}(B)$ whenever $k \geq 2$. Since $E_{1}(A)=E_{0}(B) \cdot I H$, and $E_{k}(A)=E_{k-1}(B)=0$ whenever $k \leq 0$, it follows that for any $k \in \mathbf{Z} E_{k}(A)$ and $E_{k-1}(B)$ are equivalent as invariants of L, that is, each ideal determines the other. In this respect, the behavior of these invariants for two-component links is analogous to their behavior for knots. (Recall that if $m=1$ and (1) is any augmentation sequence then $[6] E_{k}(A)=E_{k-1}(B)$ for every value of k.)

For links of three or more components in S^{3}, the relationship between the determinantal ideals of the modules A and B appearing in the link module sequence is more complex; we will discuss this further in $\S 3$.

Another result, analogous to Theorem (1.2) (though seemingly of less use in the application to the module sequences of tame links), is

Theorem (1.4). If (1) is an augmentation sequence, $n \in \mathbf{Z}$, and $\varepsilon E_{n-1}(B)=\mathbf{Z}$, then $\rho\left(E_{k-1}(B)\right)=0$ whenever $k \geq n$. Furthermore, $\rho\left(E_{k}(A)\right)=0$ whenever $k \geq n+m-1$, and $\rho\left(E_{k}(A)\right) \leq n+m-1-k$ whenever $n \leq k \leq n+m-1$. Consequently, $\rho\left(E_{k}(A)\right) \leq m-1$ whenever $k \geq n$.

The author would like to express his gratitude to William S. Massey, for his stimulating correspondence, and to Sharon Richter, for her drawing.

2. Proofs.

Proposition (2.1). Let U and V be ideals of $\mathbf{Z} H$. Then $U:(I H)^{\rho(U)}=$ $V:(I H)^{\rho(V)}$ if, and only if, there are integers $p, q \geq 0$ such that $U \cdot(I H)^{p}$ $\subseteq V$ and $V \cdot(I H)^{q} \subseteq U$.

Proof. First, suppose that $U:(I H)^{\rho(U)}=V:(I H)^{\rho(V)}$. Then $U \cdot(I H)^{\rho(V)} \subseteq\left(U:(I H)^{\rho(U)}\right) \cdot(I H)^{\rho(V)}=\left(V:(I H)^{\rho(V)}\right) \cdot(I H)^{\rho(V)} \subseteq V$, and similarly $V \cdot(I H)^{\rho(U)} \subseteq U$.

Suppose, instead, that there are non-negative integers p and q as described. Then $\left(U:(I H)^{\rho(U)}\right) \cdot(I H)^{p+\rho(U)} \subseteq U \cdot(I H)^{p} \subseteq V$, and hence $U:(I H)^{\rho(U)} \subseteq V:(I H)^{p+\rho(U)} \subseteq V:(I H)^{\rho(V)}$. Similarly, $V:(I H)^{\rho(V)} \subseteq$ $U:(I H)^{\rho(U)}$, so these two ideals coincide.

Theorem (1.1) follows immediately from Proposition (2.1) and Theorem (1.1) of [6].

Lemma (2.2). Let U and V be ideals of $\mathbf{Z} H$, and suppose that $\varepsilon(U)=\mathbf{Z}$. Then $U+V=U+V \cdot(I H)^{k}$ for any $k \geq 0$.

Proof. Since $(I H)^{0}=\mathbf{Z} H$, certainly $U+V=U+V \cdot(I H)^{0}$.
Since $\varepsilon(U)=\mathbf{Z}, \quad U+I H=\mathbf{Z} H$, and hence $U+V=(U+V)$. $(U+I H) \subseteq U+V \cdot I H \subseteq U+V$. Thus $U+V=U+V \cdot I H$.

Proceeding inductively, suppose $k \geq 1$ and $U+V=U+V \cdot(I H)^{k}$. Then $U+V=U+V \cdot(I H)^{k}=\left(U+V \cdot(I H)^{k}\right) \cdot(U+I H) \subseteq U+$ $V \cdot(I H)^{k+1} \subseteq U+V$, and hence $U+V=U+V \cdot(I H)^{k+1}$.

Corollary (2.3). Let $U \subseteq \mathbf{Z} H$ be an ideal with $\varepsilon(U)=\mathbf{Z}$. Then $\rho(U)=0$.

Proof. By definition, $\left(U:(I H)^{\rho(U)}\right) \cdot(I H)^{\rho(U)} \subseteq U$, and hence $U=U$ $+\left(U:(I H)^{\rho(U)}\right) \cdot(I H)^{\rho(U)}$. By the preceding lemma, then, $U=U+$ $\left(U:(I H)^{\rho(U)}\right)$, that is, $U \supseteq U:(I H)^{\rho(U)}$. Since $U \subseteq U:(I H)^{\rho(U)}$, it follows that $U=U:(I H)^{\rho(U)}$, and hence $\rho(U)=0$.

We may now proceed to the proof of Theorem (1.2); suppose (1) is an augmentation sequence and $\varepsilon E_{n}(A)=\mathbf{Z}$.

If $m=1$, then by Theorem (1.1) of [6] $E_{k}(A)=E_{k-1}(B)$ for any value of k. Also, if $k \geq n$ then $E_{k}(A) \supseteq E_{n}(A)$, so $\varepsilon E_{k}(A)=\mathbf{Z}$, so by Corollary (2.3) $\rho\left(E_{k}(A)\right)=0$.

If $m=2$, then by Theorem $(1.1)_{2}$ of [6] $E_{k-1}(B) \cdot I H \subseteq E_{k}(A) \subseteq$ $E_{k-1}(B)$ for any value of $k \in \mathbf{Z}$. If $k \geq n$ then $E_{k}(A) \supseteq E_{n}(A)$, so by Corollary (2.3) $\rho\left(E_{k}(A)\right)=0$. Furthermore, since $E_{k-1}(B) \cdot I H \subseteq E_{k}(A)$, $E_{k}(A)=E_{k}(A)+E_{k-1}(B) \cdot I H$, so by Lemma (2.2) $E_{k}(A)=E_{k}(A)+$ $E_{k-1}(B)$, that is, $E_{k}(A) \supseteq E_{k-1}(B)$; since $E_{k}(A) \subseteq E_{k-1}(B)$, it follows that $E_{k}(A)=E_{k-1}(B)$.

If $m \geq 3$ and $k \geq n$ then $\mathbf{Z}=\varepsilon E_{n}(A)=\varepsilon E_{k}(A)$, so by Corollary (2.3) $\rho\left(E_{k}(A)\right)=0$. As shown in $\S 3$ of [6],

$$
E_{k-1}(B) \supseteq \sum_{i} E_{i+m}(X) E_{k-i-1}(A)
$$

where X is a $\mathbf{Z} H$-module with $E_{m-2}(X)=0, E_{j}(X)=(I H)^{\left(\frac{m}{2}\right)-j}$ for $m-1 \leq j<\binom{m}{2}$, and $E_{\binom{m}{2}}(X)=\mathbf{Z} H$.

In particular, if $k \geq n+\binom{m-1}{2}$ then $E_{k-1}(B) \supseteq E_{\left(c_{2}^{m}\right)}(X) E_{k-\left(m_{2}^{-1}\right)}(A)$ $=E_{k-\left(m_{2}^{-1}\right)}(A) \supseteq E_{n}(A)$, so $\varepsilon E_{k-1}(B)=\varepsilon E_{n}(A)=\mathbf{Z}$, so by Corollary (2.3) $\rho\left(E_{k-1}(B)\right)=0$.

If $n \leq k<n+\binom{m-1}{2}$, then

$$
\begin{aligned}
E_{k-1}(B) & \supseteq E_{k-n-1+m}(X) E_{n}(A)+E_{m-1}(X) E_{k}(A) \\
& =(I H)_{\left(c_{2}^{m-1}\right)+n-k} \cdot E_{n}(A)+(I H)^{\left(\frac{m-1}{2}\right)} \cdot E_{k}(A) \\
& =(I H)^{\left(c_{2}^{m-1}\right)+n-k} \cdot\left(E_{n}(A)+(I H)^{k-n} \cdot E_{k}(A)\right)
\end{aligned}
$$

Since $\varepsilon E_{n}(A)=\mathbf{Z}$, it follows from Lemma (2.2) that $E_{n}(A)+$ $(I H)^{k-n} \cdot E_{k}(A)=E_{n}(A)+E_{k}(A)$, so since $E_{n}(A) \subseteq E_{k}(A)$ (and hence $\left.E_{n}(A)=E_{n}(A)+E_{k}(A)\right)$ we conclude that

$$
E_{k-1}(B) \supseteq(I H)^{\left(m_{2}^{m-1}\right)+n-k} \cdot E_{k}(A)
$$

Since $\rho\left(E_{k}(A)\right)=0$ (as noted earlier), it follows from this and Theorem (1.1) that

$$
E_{k-1}(B) \supseteq(I H)^{\binom{m-1}{2}+n-k} \cdot\left(E_{k-1}(B):(I H)^{\rho\left(E_{k-1}(B)\right)}\right)
$$

and hence

$$
E_{k-1}(B):(I H)^{\rho\left(E_{k-1}(B)\right)} \subseteq E_{k-1}(B):(I H)^{\left.()_{2}^{m-1}\right)+n-k}
$$

That $\rho\left(E_{k-1}(B)\right) \leq\binom{ m-1}{2}+n-k$ follows immediately.
This completes the proof of Theorem (1.2).
Turning to Theorem (1.4), suppose (1) is an augmentation sequence and $\varepsilon E_{n-1}(B)=\mathbf{Z}$.

If $m=1$, then by Theorem (1.1) of [6] $E_{k}(A)=E_{k-1}(B)$ for any value of k. If $k \geq n$ then $E_{k-1}(B) \supseteq E_{n-1}(B)$, and so $\varepsilon E_{k-1}(B)=\mathbf{Z}$; by Corollary (2.3), then, $\rho\left(E_{k-1}(B)\right)=0$.

If $m \geq 2$ and $k \geq n$ then $\mathbf{Z}=\varepsilon E_{n-1}(B)=\varepsilon E_{k-1}(B)$, so by Corollary (2.3) $\rho\left(E_{k-1}(B)\right)=0$. Also, by Lemma (2.1) of [6]

$$
E_{k}(A) \supseteq \sum_{i} E_{k-i}(B) E_{i}(I H)
$$

In [2] it is shown that $E_{0}(I H)=E_{0}\left(N_{2}(m)\right)=0, E_{j}(I H)=E_{j}\left(N_{2}(m)\right)=$ $(I H)^{m-j}$ for $1 \leq j<m$, and $E_{m}(I H)=E_{m}\left(N_{2}(m)\right)=\mathbf{Z} H .\left(N_{2}(m)\right.$ is a presentation matrix for $I H$, studied in [2].)

In particular, if $k \geq n+m-1$ then $E_{k}(A) \supseteq E_{k-m}(B) E_{m}(I H)=$ $E_{k-m}(B) \supseteq E_{n-1}(B)$, so $\varepsilon E_{k}(A)=\mathbf{Z}$, and hence by Corollary (2.3) $\rho\left(E_{k}(A)\right)=0$.

If $n \leq k<n+m-1$, then

$$
\begin{aligned}
E_{k}(A) & \supseteq E_{n-1}(B) E_{k-n+1}(I H)+E_{k-1}(B) E_{1}(I H) \\
& =(I H)^{m-k+n-1} \cdot E_{n-1}(B)+(I H)^{m-1} \cdot E_{k-1}(B) \\
& =(I H)^{m-k+n-1} \cdot\left(E_{n-1}(B)+(I H)^{k-n} \cdot E_{k-1}(B)\right)
\end{aligned}
$$

Since $\varepsilon E_{n-1}(B)=\mathbf{Z}$, it follows from Lemma (2.2) that

$$
E_{n-1}(B)+(I H)^{k-n} \cdot E_{k-1}(B)=E_{n-1}(B)+E_{k-1}(B)=E_{k-1}(B)
$$

hence

$$
E_{k}(A) \supseteq(I H)^{n+m-1-k} \cdot E_{k-1}(B)
$$

Since $\rho\left(E_{k-1}(B)\right)=0$, it follows from this and Theorem (1.1) that

$$
E_{k}(A) \supseteq(I H)^{n+m-1-k} \cdot\left(E_{k}(A):(I H)^{\rho\left(E_{k}(A)\right)}\right)
$$

We may conclude from this that $\rho\left(E_{k}(A)\right) \leq n+m-1-k$.
This completes the proof of Theorem (1.4).
We may note here, without going into detail, that Theorems (1.1), (1.2), and (1.4) hold in a broader context, with $\mathbf{Z} H$ replaced by an arbitrary noetherian commutative ring with unity R, and $I H$ replaced by the ideal of R generated by the elements of some R-sequence $\left\{r_{1}, \ldots, r_{m}\right\}$. (The hypotheses $\varepsilon E_{n}(A)=\mathbf{Z}$ and $\varepsilon E_{n-1}(B)=\mathbf{Z}$ of Theorems (1.2) and (1.4) should be replaced by the equivalent hypotheses $\mathbf{Z} H=E_{n}(A)+I H$ and $\mathbf{Z} H=E_{n-1}(B)+I H$, respectively, prior to any such generalization.) An analogous generalization is discussed, in greater depth, in §5 of [6].
3. Links of three or more components. A simple consequence of Corollary (1.3) is: if (1) is the module sequence of a tame link of m components in S^{3}, then for $k \geq m$ the ideal $E_{k}(A)$ is determined by $E_{k-1}(B)$. A natural question to ask, especially in view of the cases $m=1$ and $m=2$ (discussed in $\S 1$) is: does $E_{k}(A)$, in turn, determine $E_{k-1}(B)$, for $k \geq m$? That the answer to this question is "no" may be seen by considering the three-component links 6_{2}^{3} and 8_{5}^{3} (as they are named in Appendix C of [4]). As W. S. Massey has shown, if (1) is the link module sequence of the former then $E_{3}(A)=\mathbf{Z} H$ and $E_{2}(B)=I H$ [3, Example 1], while if (1) is the link module sequence of the latter then $E_{3}(A)=\mathbf{Z} H$ $=E_{2}(B)$ [3, Example 2].

Another natural question is: can the result of Theorem (1.1) be made more definitive for $1<k<m$, as it can for $k \geq m$ (Corollary (1.3)) and
$k=1$ [2]? Though we shall not answer this question, we will consider an example of a three-component link for which the relationship between $E_{2}(A)$ and $E_{1}(B)$ is particularly complex.

Figure 1

Pictured in Figure 1 is the link 8_{10}^{3} [4, Appendix C]. The Wirtinger presentation [4, p. 56] of the fundamental group G of the complement of this link in S^{3} is

$$
\begin{aligned}
& \left\langle x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, z_{1}, z_{2} ; x_{1} z_{1}=z_{1} x_{2}, y_{2} x_{2}=x_{3} y_{2},\right. \\
& x_{3} z_{2}=z_{2} x_{4}, y_{1} x_{4}=x_{1} y_{1}, x_{2} y_{1}=y_{2} x_{2}, \\
& \left.x_{4} y_{2}=y_{1} x_{4}, z_{1} x_{4}=x_{4} z_{2}, z_{2} x_{2}=x_{2} z_{1}\right\rangle .
\end{aligned}
$$

Since any one of the relations in this presentation is redundant, we may simply delete the seventh. Also, we may remove the fourth relation and the generator x_{1}, replacing any occurrence of x_{1} in another relation by an occurrence of $y_{1} x_{4} y_{1}^{-1}$; similarly, we may remove the third relation and
the generator x_{3}, replacing x_{3} by $z_{2} x_{4} z_{2}^{-1}$ in the remaining relations. What results, after some simple rewriting of relations, is the presentation

$$
\begin{aligned}
\left\langle x_{2}, x_{4},\right. & y_{1}, y_{2}, z_{1}, z_{2} ; x_{4}=y_{1}^{-1} z_{1} x_{2} z_{1}^{-1} y_{1}, y_{1}=x_{2}^{-1} y_{2} x_{2} \\
x_{2}^{-1} y_{2}^{-1} z_{2} x_{4} z_{2}^{-1} y_{2} & \left.=1, x_{4} y_{2} x_{4}^{-1} y_{1}^{-1}=1, z_{1}=x_{2}^{-1} z_{2} x_{2}\right\rangle
\end{aligned}
$$

After deleting the first relation and the generator x_{4}, and replacing x_{4} by $y_{1}^{-1} z_{1} x_{2} z_{1}^{-1} y_{1}$ in the remaining relations, we may delete the second and fifth relations and the generators y_{1} and z_{1}, substituting $x_{2}^{-1} y_{2} x_{2}$ for y_{1} and $x_{2}^{-1} z_{2} x_{2}$ for z_{1}, and obtain the presentation

$$
\begin{aligned}
\left\langle x_{2}, y_{2}, z_{2} ; x_{2}^{-1} y_{2}^{-1} z_{2} x_{2}^{-1} y_{2}^{-1} z_{2} x_{2} z_{2}^{-1} y_{2} x_{2} z_{2}^{-1} y_{2}=1\right. \\
\left.y_{2}^{-1} z_{2} x_{2} z_{2}^{-1} y_{2} x_{2} y_{2} x_{2}^{-1} y_{2}^{-1} z_{2} x_{2}^{-1} z_{2}^{-1}=1\right\rangle
\end{aligned}
$$

The Alexander matrix M of this presentation [1, §3] is the transpose of the matrix

$$
\left(\begin{array}{cc}
\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right)\left(t_{1}^{-1} t_{2}^{-1} t_{3}-t_{1}^{-1}\right) & \left(1-t_{2}\right)\left(t_{1}+t_{2}^{-1} t_{3}\right) \\
\left(1-t_{1}^{-1}\right)\left(t_{2}^{-1}+t_{1}^{-1} t_{2}^{-2} t_{3}\right) & \left(t_{1}-1\right)\left(t_{1}+t_{2}^{-1}\right) \\
\left(t_{1}^{-1}-1\right)\left(t_{2}^{-1}+t_{1}^{-1} t_{2}^{-2} t_{3}\right) & \left(t_{1}-1\right)\left(1-t_{2}^{-1}\right)
\end{array}\right)
$$

(Here t_{1}, t_{2}, and t_{3} are the elements of $G / G^{\prime}=H$ determined by the elements of G represented by x_{2}, y_{2}, and z_{2}, respectively.) If (1) is the module sequence of the link 8_{10}^{3}, then M is a presentation matrix for the $\mathbf{Z} H$-module $A[1, \S 3]$, and hence, in particular, the ideal of $\mathbf{Z} H$ generated by the entries of M is

$$
E_{2}(A)=\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right) \cdot I H+\left(t_{1}+1, t_{2}-1\right) \cdot\left(t_{1}-1\right)
$$

The matrix M can be factored as a product $M=M^{\prime} \cdot N_{2}(3)$, where

$$
N_{2}(3)=\left(\begin{array}{ccc}
1-t_{2} & t_{1}-1 & 0 \\
1-t_{3} & 0 & t_{1}-1 \\
0 & 1-t_{3} & t_{2}-1
\end{array}\right)
$$

and

$$
M^{\prime}=\left(\begin{array}{ccc}
t_{1}^{-1} t_{2}^{-1}\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right) & -t_{1}^{-1} t_{2}^{-1}\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right) & 0 \\
t_{1}+t_{2}^{-1} t_{3} & 0 & t_{2}^{-1}\left(t_{1}-1\right)
\end{array}\right)
$$

(Here $N_{2}(3)$ is a matrix discussed by Crowell and Strauss [2], with columns corresponding to the integers 1,2 , and 3 (in order), and rows corresponding to the pairs 12,13 , and 23 (in order).) It follows [2, p. 106] that the module B of the link module sequence of 8_{10}^{3} has the presentation matrix

$$
\begin{aligned}
P & =\binom{M^{\prime}}{N_{3}(3)} \\
& =\left(\begin{array}{ccc}
t_{1}^{-1} t_{2}^{-1}\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right) & -t_{1}^{-1} t_{2}^{-1}\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right) & 0 \\
t_{1}+t_{2}^{-1} t_{3} & 0 & t_{2}^{-1}\left(t_{1}-1\right) \\
t_{3}-1 & 1-t_{2} & t_{1}-1
\end{array}\right)
\end{aligned}
$$

($N_{3}(3)$ is another matrix discussed in [2]; its columns correspond to the pairs 12, 13, and 23 (in order).) Thus the ideal of $\mathbf{Z H}$ generated by the determinants of the two-by-two submatrices of P is

$$
E_{1}(B)=E_{2}(A)+\left(1+t_{1}^{-1} t_{2}^{-1} t_{3}\right)^{2}
$$

In particular, the $\mathbf{Z} H$-modules A and B of the link module sequence of 8_{10}^{3} have the property that

$$
\begin{aligned}
\left(E_{2}(A): I H\right) \cdot I H & =\left(E_{1}(B): I H\right) \cdot I H \\
& \subset E_{2}(A) \subset E_{1}(B) \subset E_{2}(A): I H=E_{1}(B): I H
\end{aligned}
$$

in which all three indicated inclusions are strict. The relationship between $E_{2}(A)$ and $E_{1}(B)$ does not, then, seem to fall into the pattern of the simple relationships between $E_{k}(A)$ and $E_{k-1}(B)$ for $k \neq 2$ (namely, $E_{k}(A)=E_{k-1}(B) \cdot I H$ for $k<2$, and $E_{k}(A)=E_{k-1}(B): I H$ for $\left.k>2\right)$.

References

1. R. H. Crowell, The derived module of a homomorphism, Advances in Math., 6 (1971), 210-238.
2. R. H. Crowell and D. Strauss, On the elementary ideals of link modules, Trans. Amer. Math. Soc., 142 (1969), 93-109.
3. W. S. Massey, Completion of link modules, Duke Math. J., 47 (1980), 399-420.
4. D. Rolfsen, Knots and Links, Publish or Perish, Inc., Berkeley, California, 1976.
5. L. Traldi, A generalization of Torres' second relation, Trans. Amer. Math. Soc., 269 (1982), 593-610.
6. _, The determinantal ideals of link modules, I, Pacific J. Math., 101 (1982), 215-222.

Received January 27, 1982.

Lafayette College
Easton, PA 18042

