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COHOMOLOGY OF COMODULES

WALTER RICARDO FERRER SANTOS

The purpose of the present paper is to develop some aspects of a
cohomology theory in the category of C comodules, where C is a
bialgebra. This cohomology theory generalizes the rational cohomology
of affine algebraic groups and also the cohomology of Lie Algebras. We
develop the theory up to the point where we can guarantee the conver-
gence of the analogue of the Hochschild Serre spectral sequence and the
convergence of another spectral sequence, which is a natural generaliza-
tion of the result known as Shapiro's lemma in the cohomology theory of
finite groups.

1. Introduction. The attempts to generalize the Hochschild-Serre

(or Lyndon-Hochschild-Serre) spectral sequence for the rational cohomol-

ogy have a long history. One of the main difficulties was the fact that it is

no longer evident (as it is for finite groups) that if AT is a closed normal

subgroup of G then the algebra P(G) of polynomial functions on G is

injective as a /^-module. A first remark about the need to prove that result

was made by Hochschild in [4]. Recently, Cline, Parshall and Scott in [1]

and Habousch in [3] proved the above injectivity result and established

the validity of the spectral sequence. Here we prove a generalization of the

above result, namely that if C and D are commutative Hopf Algebras over

a field and π: C -» D is a normal surjective Hopf Algebra map, then C is

injective as a D-comodule (Theorem 4.13).

We begin with a brief description of each section:

2. Cohomology of comodules. Here we introduce the cohomology

theory with which we shall be concerned throughout the paper. We

present it axiomatically and also construct an explicit resolution functor

whose homology gives us the cohomology of comodules. The definition of

this comodule cohomology seems to have been known to some specialists

and was communicated to the author by G. Hochschild.

3. Normal maps and actions on the cohomology. This section is of a

technical nature and has the main purpose of establishing the generaliza-

tion to the category of comodules of the conjugation action of a group G

on the cohomology Hι(K, M) where M is a (/-module and K a normal

subgroup of G.
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4. Induced comodules and injective comodules. Some of the con-

structions of this section generalize methods of [1] and [4]. We construct a

functor 7r* that generalizes the induced representation functor, and we

prove that C is injective as £>-comodule iff the functor π* is exact

(Corollary 4.9). We use this criterion for showing that under certain

normality assumptions C is injective as a Z)-comodule (Theorem 4.13).

Finally we prove Theorem 4.15, which is a generalization of the condition

for injectivity given in Proposition 2.2 of [5].

5. Two spectral sequences. We establish the validity of the

Hochschild Serre spectral sequence for the cohomology of comodules as

well as the spectral sequence of Theorem 5.3 that generalizes Shapiro's

lemma on the cohomology of induced representations.

We shall follow the terminological conventions of [6]. Coalgebras,

bialgebras and Hopf Algebras will be considered over a commutative ring

R with identity, or over an arbitrary field k. In the first case, we assume

that they are flat when viewed as /?-modules (we want the comodules to

form an abelian category). If C is a Hopf Algebra then Δ, ε will denote the

comultiplication and counit, μ and u will denote the multiplication and

the unit, η will stand for the antipode map, and l c will stand for the unit

of C. If M is a C-comodule then χ or χM will indicate the comodule

structure on M, and we define Mc — [m G\χM(m) = m ® l c } . If M and

N are Λ-modules then M ®RN will be written as M ® N unless there is a

danger of confusion. Given an /?-coalgebra C (that is flat as an Λ-module)

the C-comodules, together with the C-comodule homomorphisms, form an

abelian category that will be denoted by β(51L(C). The category of

/^-modules will be denoted by 91t(/?). If M and N are R modules then

s\ M ® N -* N ® M stands for the Λ-linear switching map sending each

m ® n onto n ® m. We use similar notation for any switching map, for

example sl23 stands for the i?-linear map sending each xx ® x2 ® x3 onto

χ3 ® χχ ® χ2.

Some of the results of this paper were part of the PhD dissertation of

the author at U.C. Berkeley. That dissertation was written under the

supervision of Professor G. Hochschild, and the author would like to

thank him for his advice and help.

2. Cohomology of comodules. Let C be a bialgebra over a ring /?.

An object / in β9It(C) is said to be relatively injective if it is injective

with respect to the injective C-comodule maps that split when considered

as /?-module maps. The following two results are well known, we include

them due to the lack of an adequate reference.
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LEMMA 2.1. Let X be an arbitrary R-module. Then the map id ® Δ is a

C-comodule structure on I 0 C . Moreover with this structure X ® C is a

relatively injective object in β9IL(C).

Proof. Take a pair of objects ί/ and V in β91t(C) and an injective

C-comodule map a: U -+ K, for which there is an /?-map β: V -> ί/

satisfying βα = id^. Given any C-comodule map /: £/ ̂  A" ® C consider

the map t: V -» X ® C, given by f = y(id ® ε ® id)(/ ® id)(/3 ® id)χ κ ,

where 7 is the map from λ ^ Λ Φ C t o Z Φ C defined by j(x ® r ® c) =

rx ® c. It is easy to check that ta — t, and that t is a C-comodule map. D

LEMMA 2.2. Every object in S9IL(C) αz/7 be relatively embedded in a

relatively injective one.

Proof. Let M be a C-comodule. Then x M : M - * M ® C i s a C-comod-

ule map when we endow M with the structure χ M and M ® C with

structure id ® Δ. As χM is a relative embedding (follow it by id ® ε) our

result follows from Lemma 2.1. D

DEFINITION 2.3. We say that a C-comodule Y is coinduced if it is of

the form X ® C with structure id ̂  ® Δ for some /?-module X.

If we consider the functor M -* M c from β ^ to 91L(/?) we see easily

from the general theory of derived functors in abelian categories that the

following result holds.

THEOREM 2.4. There is one, and {up to equivalence) only one cohomo-

logicalfunctor H"(C, - ) , n > OJrom 691L(C) to 911(7?) such that

(a) i/°(C, Af) = M°for all C-comodules M.

(b) HP(C, Y) — 0 /or euery /? > 1 and every coinduced comodule Y.

Now, we shall describe an explicit resolution functor and express the

cohomology functors in terms of that resolution. Then we will describe

them in terms of another more manageable resolution ("non homoge-

neous cochains").

Given any i?-module V consider V ® Cp, p > 0, with structure

idy®cp-\ ® Δ where Cp stands for the /?-fold tensor power of C, and

C° = R. If V is a C-comodule we endow V ® C° = K with the structure

χ κ and define the maps d as follows:

(b) Given ^ _ , : F ® Cp'λ ^ F ® C^ define ^ as

</, = ^ _ , ® i d c + ( - l ) id K 0 C ,- . ® Δ.
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It is not hard to prove inductively that

(1) dp is a C-comodule map for every/? > 0.

(2) The sequence (V® Cp, dp) is relatively exact, with splitting maps

ξp\ F Θ Cp -> V® Cp~] defined by ξp(x <8> c) = (-l)p+]ε(c)x with

x E V® Cp~] and c G C. In order to verify (2) one has to check that
dp+\dp -

We have

<8> Δ).

Applying the inductive definition of d to the second summand above, we

obtain

id c ® id c + ( - l / i d ^ c - , - . ® Δ ® id c )-, ® id c ® id c

and the terms cancel in pairs. The other statements in (2) can be proven in

a similar fashion.

Let us call β(F) the complex

e{V):V^V®C^ * V® C~ι -* F<8) C ->•••.

This is a relatively injective resolution of V. Consequently, H"(C, V) may

be identified with the homology of the complex ^ ( F ) obtained applying

the first part functor to β ( F ) and deleting the first Λ-module.

2 ) c
(F®c2)

(F®
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If we define yp__x\ V® Cp~x -> V® Cpbyyp_ι(x) = x ® l c , thenγ/7_1 is
a bijective R-map between F® Cp~λ and (K® C7*)*7. A direct computa-
tion shows that the differential dp when restricted to (F ® C / ?) c induces a
map δp = Tp" W/7γ/,_,: V ® C7 7"' -> F ® C , given by

(3) δ, = d0 - γ0 or δ^x) = χv{x) - x ® l o and

(4) βp+i = δ̂  ® id c + ( - l ) ' + 1 ( i < W , ® l c - i d w c , - i ® Δ

+ 1(1^^-1 ® l c ® idΓ).

This shows that the complex Φ(F) is isomorphic to the complex

S(F):0-> F-^K® C-^ •• -> F® C^^1 - ^ K ^ C ^ ->

Thus, we can compute H"(C,V) explicitly as the homology of the
complex above.

Let us write δ, and δ2 explicitly

82(x) = 5, ® idΓ + (id κ ^ c ® l c - id <8> Δ + idκ ® l r <8> id c )

= χv ® id c + i d κ 8 Γ ® l c - id ® Δ.

In other words

82(v ® c) = χ(v) ®c + v®c®lc — v ® Δ ( c ) .

Hence, we have

H\C,V)

i i

where U — {χv(x) - x ® l c | x G F } . In the case where the comodule

structure of F is trivial we have

Hι(C9V) = V® Co where Co= {x G C | Δ ( J C ) = i ® l + l ® x ) .

Recall that the trivial comodule structure on F is the one that maps v into

υ ® 1, for every v in F.

3. Normal maps and actions on the cohomology. Let G be a finite
group and AT a normal subgroup. For every G-module M there is an action
of G on Hι(K, M) having the following properties:
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(a) For every exact sequence 0-^M-^N^S^Ooΐ G-modules, all
the morphisms of the long exact 7^-cohomology sequence

> Hι{K, S) -> Hι+]{K, M) -> Hl+ι{K, N) -> Hι+\K, S)-+

are G-maps.

(b) The action of G on H°(K, M) coincides with the one induced on

Mκ by the action of G on M.

(c) K acts trivially on H\K, M) for every /.

The natural generalization of this situation would be to take a pair of

Hopf Algebras C and D and a normal surjective bialgebra map π: C -» D

and construct a C ̂ -comodule structure on H'(D, M) for every C-comod-

ule M. In order to shorten certain long computations and have a simpler

notation we shall consider the following (nominally) more general situa-

tion.

DEFINITION 3.1. Let C and D be Hopf Algebras over a commutative

ring R (as usual these are supposed to be flat as R modules).An adjoint

C-structure on D is a C-comodule structure θ on D such that the following

diagrams are commutative.

Θ ^ Θ

( 1 ) Z) - > D ® C ( 2 ) D -^ D®C (3) D^D®C

R -> R® R D® D -+ D® D® C R ^ R® R

where # El 0 is the tensor product comodule structure whose properties we

recall below.

For any bialgebra C and for any pair of C-comodules M and Λ̂  with

structures χM and χ^, the map

XM®XN= (id ® id ® μ)(id ® 5 Θ i d ) ( X Λ / ® χN)

is a C comodule structure on M ® N. Recall that s stands for the

switching map. When we consider the Λ-module M ® N with the structure

χM M χN we shall denote it as M 8 TV. It is easy to prove that if

/: M -> M\ g: N -> N' are C-comodule maps, then

/ ® g: M S TV -* M r El 7Vr

is a C-comodule map.

DEFINITION 3.2. Let α be a covariant functor from β91L(C) to

QtyL(D) having the following properties:

(a) For every object (M, χM) in 691l(C), α(M, χ M ) - (M, χ M J for

some Z)-comodule structure x M α on M.
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(b) For any/G Homc(M, N) a(f) = / .
(c) a(M ®N) = a(M) IS a(N) (i.e., (χM El X y v ) α = χ M α Kl X y V α ) .
(d) If uc: R -> i? ® C is the unit of C, viewed as a C-comodule

structure on /?, then wCα: R -> i? ® D coincides with the unit of Zλ

We say the α is compatible with the adjoint structure θ if, moreover, a
satisfies the following condition:

(e) For every object (M, χM) of β9H(C), χM α: M^M® D is a
C-comodule map from ( M , χ w ) t o ( M S D,χM^ θ).

LEMMA 3.3. In the situation above, the following four conditions are

satisfied:

(a) // M is a C-comodule and / E Hom Λ (M, /?), the maps Δ and

(id ® μ)(s ® id)(id ® βα)Δ coincide on every R-submodule of D of the form

f(M) where f:M->D is given by f(x) — Σif(xt)dι where χMa(x) —

Σx, 0 dr (More briefly: f'= (f®idD)χMa.)

(b) If M is a C-comodule with structure χ M , then the following diagram

is commutative:

M X-^ M ® C

M ® D -> M ® C ® Z)

α stands for ΔCα: C -» C ® Z).

( c ) Δ α ( l c ) = 1 0 ® ^ , ^ ^ ) = 1D® V

(d) θa is an adjoint D-structure on D.

Proof, (a) Condition (e) of Definition 3.2 means that (χM Kl θ)χMa =
(XMOL ® i ( 1)χM . Conditions (b) of Definition 3.2, applied tof=χMa,
allows us to deduce that (χM 12 fl^χ^ = (χM f t ® id)χMα. After apply-
ing condition (c) of Definition 3.2 and the definition of Kl , we have

(id 0 id ® μ)(id ® s 0 id)(id ® id ® θa)(χMa ® id)χM α =

from which we deduce

(id 0 id ® μ)(id ® J ® id)(id ® id ® θa)(iά ® Δ)χM f t = (id ® Δ)χM α .

I f x j w i ) = Σml ® ̂ , we have

2 m ( ® (id 0 μ)(j ®

Applying/we deduce our result.
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(b) Next we see immediately from part (b) of Definition 3.2, applied

to the map χM: M -> M ® C, that the diagram

M *-% M ® C

χMid

M ® D -> M® C® D

is commutative. Now, if we endow M with the trivial Z)-comodule struc-

ture χ 0 : M -> Λf ® D given by χ o (m) = ra ® 1D, we have χ 0 C3 Δ =

id M ® Δ, because

(id ® id ® μ)(id ® s ® id)(id ® id ® Δ ) ( χ 0 ® id)(m ® t

= (id ® id ® μ)(id ® J ® id)(m ® 1 ® Δ(</)) = m

Therefore, (idM ® Δ) α = ( χ 0 El Δ)α = χOa B ΔΛ - id M ® Δα, so that

condition (b) is established. Finally, (c) and (d) follow immediately from

the definitions. D

Let M be an arbitrary C-comodule and consider the complex of

Λ-modules, &{M) defined as in §2 as follows:

&(M): M -+ M ® D -+ M ® D' -> -^ M ® Z)77"" -*M ® Z)/7 -̂  ,

1 A Λ/α M D'

Δ - i d M β D , ® 1D - i d M 0 D , . ® 1 D ® id).

We proved in §2 that the homology of this complex is Hι(D, a(M)). Now

consider the maps χ λ : M®Dk-*M®Dk®C defined inductively as

follows, χ ( ) = χM, χk. = χ A ^ j S ^. Using the properties of K mentioned

after Definition 3.1 and induction we see that χA is a C-comodule

structure on M ® /) A .

LEMMA 3.4. 77ẑ  mψ5 δA ^r^ C-comodule maps when M ® Dk is

endowed with the structure χ A .

Proof. The proof will proceed by induction and will use repeatedly the

properties of £3 stated after Definition 3.1. We want to verify that
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For p — 0, this says that

\ΛM /\Λ-M(X M D / V A, Ma. !*-*•(" M D <Γ / A. M

and it suffices to prove that

(XM H #)XM« = (XMa ® i dc)XM

and

The first equality is nothing but condition (e) of Definition 3.2, the second

follows easily from the fact that Θ(\D) — \D® \c. As to the general case,

δ +, is defined as the sum of four maps (see definition above), and we

shall verify that each of the four summands in a C-comodule map. For the

first summand, we have to verify that

(χ El #)(δ ® i d c ) — (δ ® i d ® i d c ) ( χ _x E3 θ).

By induction we have

Using that 6 i d c = ( id c ® id D )β, we deduce after taking tensor products

(see comments after Def. 3.1), that

(χp El 0)(δ, ® i d Γ ) = (δp ® i d c ® i d D ) ( X / , _ , El ί>).

For the other summands of δ ^ , , the proof is based on the same

principles. •

Using a similar inductive argument we prove

LEMMA 3.5. Let f: M -> N be a C-comodule map. Then the maps

f® idDP: M ® Dp -+ N ® Dp are C-comodule maps when we endow M ® Dp

and N ® Dp with the structures χp. D

THEOREM 3.6. Let C, D, θ, a be as before. Then, for every C-module M,

there is a C-comodule structure χk on Hk(D, a(M)) such that

(a) χ 0 coincides with χM.

(b) For every exact sequence of C-comodules 0 -> M -» N -» S -> 0, all

the maps in the long exact sequence

> Hι{D, a(M)) -* ^ '( i) , α(#))

-* //'(/), α(5)) -> Hι+ι(D, a{M))

are C-comodule maps.
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Proof. The existence of χk follows from Lemma 3.4. The fact that χ ( )

coincides with χM follows from the very definition of χ 0 . The fact that the

maps //'(£>, a(M)) - Hι(D, a(N)) and //'(A a(N)) -» H'(D9 a(S)) are
C-comodule maps follow from Lemma 3.5. The only part that still

requires proof is the assertion that the connecting homomorphisms are

C-comodule maps. This will follow from the considerations below.

Let X be an arbitrary bialgebra that is flat when considered as an

jR-module, and let A be a complex of A^-comodules and JΓ-comodule

maps. We define an X-comodule structure on //(A) as follows. Let

r + ί//_1(^l/_2) EH'~\\) t h e n ( d ® id)χ(r) = \dr = χ θ = 0, since X is

Λ-flat this shows that χ(r) E (Kerd) ® X, i.e., there are r} E Ker d and

x} E A" such that χ ( r ) = 5>y ® xy. If r E dι_](Aι_2) we have r = rfr, and

then

χ(r) - χ ( ^ ) = (rf ® idjχίη) E J ^ ^ ^

Thus x induces a map χ from H(A) to //(A) ® X where

Let 0 - > A - * B ^ C - * 0 be a short exact sequence in the category of

complexes of X-comodules. We have the diagram

0 -> A,_2 ->" B,_2 ->" C,._2 -> 0

o - Λ,_, "-1 ί H ^ ' cf_, - o

id, id, id,

0 -> ^ - 5, - C, -» 0

0 - A ι + X "^ Bι+ι

 β'-V C f + I - 0

where all the squares are commutative, all the rows are exact, all the

objects are X-comodules and all the maps are X-comodule maps. Now we

recall the definition of δ: Hι~\C) -> Hι(A). Take an element c E C,_,

such that dtc = 0 and consider a E At such that ata — dfi with b E Bt_x

such that β^fi — c. Then, as aι+xdι+xa — di+ιata = dι+ιdtb = 0, we

have α E Ker J / + 1 . In these terms we have δ(c + dι_](Cι_2)) =

β + t/#_1(^4/_1). Let χ(a) = 2ak® xk with ak E Ker J l + 1 . Then χacι =

(α ® id)χ^ = lak® xk. Thus χJZ> = Σ ααA ® JCA. On the other hand, if
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xb — Σ bj ® yp then χόb - Σ dbj ® yp Thus, we have the equality

(1) ΈdbJ<S>yJ = 2ocak^xk.

Now χ(c) = χ>βZ) = (yδ ® id)χ6 = Σ/J6, <8>jy. Now take /Γ e KerJ and
zr G X such that χ(c) = Σ ίr ® zr. Then

Consequently, we have

Take mrGBi__ι such that βmr- tr and then choose sΓ G Λ, such that
dm,. = «Λ Γ. Now, we have

(δ «> id)χ(c + ̂ . (C,^)) = Σ (sr + rf,K-i)) ® V
On the other hand,

χ(δ(c + ^ . ( C , ^ ) ) ) = χ(α + d^Ai-i)) = Σ(ak + ^ ( ^ - . ) ) ® **•

From Σ )8fey ® y} — χ(c) = Σ tr ® zr, we deduce that

Consequently,

Σ^y ® ̂  ~ Σ"V ® ̂  e Ker(β ® id) = Ker(^) ®X

Thus, there are elements a] in ^ ^ j and vv7 in X such that

Hence, Σ dbj ® ̂ y — Σ dmr ® zr = Σ dα^/ ® w7. Using dmr — asr and (1)
we obtain

As α is injective and Xis flat as an /?-module, we conclude that

Then

i.e., χδ = (δ®id)χ. D

The following results generalize the fact that for finite groups not only
G acts on the cohomology H'(K, M) by conjugation, but that this action
factors through K, giving an action of G/K on H'(K, M).
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THEOREM 3.7. Let X be a Hopf Algebra over a commutative ring R and

let θx be an adjoint X-structure on X. Then //(id ® μ)(s ® id)(id ® ΘX)Δ =

Δ, the identity functor id: 69H( X) -* β9H(X) w compatible with the

structure θx. Moreover, the structure χk defined as in Theorem 3.6 is trivial

(i.e. χk(x) = x® I for every x E Hk(X, Af)).

Proof. Referring to Definition 3.2, conditions (a), (b), (c) and (d) are

trivially verified. As to (e), we have to prove that if χM is an X-comodule

structure on M, then

(id 0 id 0 μ)(id ® s ® id)(id ® id ® 0 x ) ( χ ® id)χ = (χ ® id)χ.

It is clear that (χM ® id)χ M = (id ® Δ ) χ M and our hypothesis, imply the

equality above. As to the triviality of χk we proceed by induction

(dimension shifting). The axioms of the cohomology theory we are looking

at, guarantee, for every M, the existence of an exact sequence 0 -» M ->

XM -> 5 ^ -» 0 in the category S9H(X) such that the maps

are surjective for every i > 0. By Theorem 3.6, χ / + 1 δ =

(δ ® id)χ r Given x E Hι+](X, M) there is a y E H\X, SM) such that

δy = x. Then, χι+λ{x) — χ/+Iδjμ = (δ ® id)x,(j). If χt(y) — y ® 1 we

deduce that χι+ι(x) = x ® 1. As the result is obvious for k — 0, our proof

is finished. •

Now, let us return to the situation of Theorem 3.6. Let Δ be the

comultiplication on C, and let Δα: C -> C ® D be the Z>-structure associ-

ated with Δviaα. Assume that the map U: C -* D given by U(x) —

Σε(cι)dι with Δa(x) — Σ x t ® <i/9 is surjective. Lemma 3.3 part (a)

guarantees that θa verifies (id 0 μ)(s ® id)(id ® ^α)ΔD = ΔD. Conse-

quently, by Theorem 3.7, 0α will be an adjoint Z>-structure on D compati-

ble with the identity functor on &ζU\L(D). Now consider the map

χk-χM K f l S . . . M θ from M ® D^ to M ® 2)A ® C. We have χA,α =

χ M α H flβ^ E3 βα. If (χka) denotes the D-comodule structure in-

duced by χka on Hk(D, a(M)), Theorem 3.7 guarantees that

(XλαMO — t ® \D, for / E Hk(D, a(M)). If χA denotes the C-structure

defined by χk on Hk(Dy M), it is clear from our definitions that (χk)a —

( χ A α ) . The above considerations amount to the fact that, for every

t e Hk(D, a(M)), we have (χk)a(t) = t® \D.
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THEOREM 3.8. Let C and D be Hopf Algebras over a field k, let θ be an

adjoint C-structure on D and let a be a functor compatible with the structure

θ. Assume also that the map U: C -> D defined as above is surjective. Then

a(C)D is a subcoalgebra of C and for every C-comodule M there is a natural

OL(C)D comodule structure χk on Hk{D, a(M)) such that

(a) χ 0 coincides with χM.

(b) For every exact sequence of C-comodules Q-+M-+N->S-*0all

the maps of the sequence

> H\D, a(M)) -> //<(£, a(N)) -» #<(D, a(S))

are a{C)D comodule maps.

Proof. The only assertions requiring a proof (see Theorem 3.6) are

(i) a(C)D is a subcoalgebra of C.

(ii) χ,(#'(Z>, α(M))) C H\D9 a(M)) ® a(C)D.

Clearly (i) is a particular case of (ii) with M—C and i = 0. Now consider

x ε H\D9 a(M)). By Lemma 3.3(b), we have (χk ® id)(χ*)β =

(id<8>Δα)χ*. If χk(x) = Σxi®ci, then, since (χ*) β (*) = x ® 1 (see

comments after Theorem 3.7), we have Σxέ ® ct ® 1 = Σxέ ® Δ α (ς ).

Since we are working over a field, we may conclude that χk(x) E

Hk(D,a(M))®a(C)D. •

LEMMA 3.9. In the situation above, (a(M)D)a(C)D - Mc.

Proof. It is clear that (a(M)D)a(C)D C Mc. Our result will be proved

as soon as we have shown that Mc C <x(M)D. Using Lemma 3.3, part (b),

we deduce that if m G Λfc, then m ® 1 ® 1 = ( χ M ® id)χM α(m). Apply-

ing (id ® ε ® id) we obtain m ® 1 = χMa(m). D

DEFINITION 3.10. Let C be a Hopf Algebra defined over a ring R and

assume that the antipode of C is involutory. The map θ: C -> C ® C,

0 = (η ® μ)(Δη ® id)Δ is called the conjugate comodule structure on C.

As Δη = *s(τj ® η)Δ and η2 = id, we have

θ = (id ® μ)(id ® η ® id)(j ® id)(Δ ® id)Δ.

DEFINITION 3.11. Let C and D be Hopf Algebras defined over a ring

i?, and assume that the antipode of C is involutory. Let π: C -> Z> be a

surjective bialgebra map. We say that 77 is normal if 0(Ker π) C (ker π ®

C) where 0 is the conjugate structure defined above.
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In the situation of Definition 3.11 there is a unique map θ that makes

the diagram that follows commutative.

C i C®C

Ίπ J, TΓ <8> i d

θ

D -» D® C

LEMMA 3.12. Let C, Z>, θ, θ and π as above. Then θ is an adjoint

Cstructure on Z>, in the sense of Definition 3.1.

Proof. Using the fact that TΓ is a bialgebra map it is easy to reduce that

Lemma to the case C = Z>, π = id, θ = θ. In that case, we have to prove

(a) θ is a C-comodule map.

(b) θu = u®u.

(c)(Δ®id)0 = ( 0 H 0)Δ.

(d)(ε®ε)0 = ε.

The verification of (b) and (d) is more or less immediate. As to (a) and (c),

we shall verify (a). The verification of (c) is similar but longer. We leave if

for the patient reader. We check that (id ® Δ)0 = (θ ® id)0. Using the

definition of θ and the equalities Δη = s(η ® η)Δ,

Δμ = (μ ® μ)(id ® 5 ® id)(Δ ® Δ),

we have

(id ® Δ)β - (id ® Δ)(id ® μ)(id ® η ® id)(j ® id)(Δ ® id)Δ

= (id ® μ ® μ)(id ® id ® s ® id)(id ® Δ ® Δ)

(id ® ij ® id)(s ® id)(Δ ® id)Δ

= (id ® μ ® μ)(id ® id ® s ® id)(id ® s ® id ® id)

(id ® η ® TJ ® id ® id)(sl23 ® id ® id)(Δ ® id ® Δ)(Δ ® id)Δ.

Similarly

(θ ® id)β = (id ® μ ® μ)(id ® η ® id ® id ® id)

(j ® id ® id ® id) (id ® id ® id ® η ® id)

(Δ ® id ® id ® id)(Δ ® id ® id)(s ® id)(Δ ® id)Δ.
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A direct computation with (Δ ® id ® id ® id)(Δ ® id ® id)(s ® id) gives

(θ <8> id)0 = (id ® μ ® μ)(id ® η ® id ® id ® id)

(5 ® id ® id ® id) (id ® id ® id ® η ® id)

(̂ 1,234 ® i d ) ( i d ® Δ Θ id ® id)(id ® Δ ® id)(Δ 0 id)Δ.

By coassociativity,

(Δ <8> id ® Δ)(Δ ® id)Δ = (id ® Δ ® id ® id)(id ® Δ ® id)(Δ ® id)Δ.

Therefore, in order to prove that (θ ® id)0 = (id ® Δ)0, all we have to

verify is that

(id ® μ ® μ)(id ® rj ® id 0 id ® id)(5 ® id ® id ® id)

(id ® id ® id ® 7] 0 id)(^ 2 3 4 ® id)

= (id ® μ ® μ)(id ® id ® s ® id)(id ® s ® id ® id)

(id ® η ® TJ ® id ® id)(s1 2 3 ® id ® id).

This equality can be verified directly. G

Now for arbitrary coalgebras, we can make the following definition.

DEFINITION 3.13. Let C and D be coalgebras defined over R, a

commutative ring with identity, and assume that C and D are flat as

Λ-modules. Let π be a surjective coalgebra map from C onto D. The map

π induces a functor TΓ*: β9t l(C) -̂  β9H(D) as follows:

(a) If (Λf, χM) is an object in β9ΓC(C),

(b) If/: Λf -* N is a C-comodule map π*(f) = f.

There are a few things to verify in the definition above, all of which

are immediate.

LEMMA 3.14. Let C, Z>, TΓ, θ, and θ be as in Lemma 3.12. Then, the

functor 77̂  is compatible with the adjoint structure θ.

Proof. Referring to definition 3.2, the only condition not immediately

clear is condition (e). Again an easy argument reduces our verification to

the case C = 2), π — id, θ — θ, in which case condition (e) of Definition

3.2 reads: (χM H θ)χM = (χM ® id)χ M . Actually, we have

= (id ® id ® μ)(id ® s ® id)(id ® id ® θ)(χM 0 id)χ M

= (id 0 id ® μ)(id 0 5® id)(id ® id ® θ)(ϊd
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As (χM ® id)χM = (id ® Δ)χM, it is enough to prove that

If we write down the definition of θ in the formula above we obtain

= (id ® μ)(s ® id)(id ® id ® /x)(id ® s ® id)(id ® TJ ® id ® id)

(id®Δ®id)(id®Δ)Δ

= (id ® μ)(s ® id)(μ(id ® η)Δ ® id ® id)(id ® Δ)Δ.

As

μ(id ® τj)Δ = uε and (id ® μ)(s ® id)(wε ® id ® id)(id ® Δ) = id,

we deduce our result. D

In the case of Lemma 3.14, Δ^ = (id ® ττ)Δ. Then the map U
considered in Theorem 3.8 coincides with π and consequently is surjective.
Therefore, Theorem 3.8 yields the following result:

THEOREM 3.15. Let C and D be Hopf Algebras over a field, that have
inυolutory antipodes, and let π be a surjective normal bialgebra map from C
to D. Then, given any C-comodule M there is a natural π*(C)D comodule
structure χk on Hk(D, π*(M)) such that:

(a) χ 0 coincides with χM.
(b) // 0 -> M -» N -> S -» 0 is an exact sequence of C-comodules, the

maps in the sequence

• - Hk(D, ΊT^M)) -* Hk{D, π*(N)) -* Hk{D, v

are ττ^{C)D comodule maps,

4. Induced comodules and injective comodules. In this section we
shall study cetain injective comodules in order to be able to prove that the
spectral sequences of §5 converge. We shall generalize results on injective
comodules from [4, 5] [1] and [3].

LEMMA 4.1. Let C be a Hopf Algebra over a field, let M be an arbitrary
C-comodule and let V be a finite dimensional C-comodule. If we endow V*
(dual space of V) with its dual C-comodule structure then (M 13 V*)c =
Homc( V,M).
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Proof. Let us choose a basis of V9 (vt) i = 1,...,«, and let (/.) be the

dual basis of V*. If χv(Vj) ~Σkυk® cjk the dual C-comodule structure

on K* is given by χ ^ T ) — Σkfk® v(cki). Consider the /c-linear isomor-

phism Φ: M ® F* -> Hom^F, M) given by Φ(Σ, m, ® %)(!;) =

Σ, %•(!?)/«,.. We shall prove that Φ ( ( M S F*) c) = Homc(K, M). The

condition for an element Σ, m{ ®/ to be in (M El F*) c can be expressed

as follows, where χ M (m / ) = Σ, mti ® cf

ti.

Thus, Σm ®/ E (M El F*) c if and only if the following condition is

satisfied:

(*) mk® l c = Σ™n®c'tMcki) foτk=l,...,n.
k

it

The condition Φ(Σ mi ® / ) G Hom c (F, Af) means that the maps

χ M (Φ(Σ mi ® /)) and (Φ(Σ ra, ® /•) ® id)χκ from V to M ® C coincide.

This happens if and only if they coincide at v for j — 1,...,«. As

Φ(Σmi®fi)(υJ) = rrij, the maps coincide if and only if χM{mj)~

2kmk® cJk. Thus Φ(Σ wf. ®/•) ^ Hom c (F, M) if and only if the follow-

ing condition is satisfied:

(**) Σ™,y®<, = Σ»i*®'y*
t k

As cjk are the matrix coefficients of a comodule structure, they satisfy

Δ(Cβ) = Σ ^ / ® Cy^ a n d ε ( C y Λ ) = δyΛ
A:/

Hence,

Σ^i j (c 7 .J = μ(id ® η)Δ(cJt) - u(ε(cJt)) = 5y7,
A:

and

A:

If we tensor (**) with crj9 apply id ® id ® η and multiply, we obtain
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This is exactly condition (*). In a similar way we can go from (*) to

(**). D

THEOREM 4.2. Let C be a Hopf Algebra over a field with inυolutory

antipode. Let M be an arbitrary C-comodule, and let FM denote the functor

from β9ϊ t(C) to 91t(fc) given by FM(V) = (Af B V)c. Then M is ίnjectίυe

as a C-comodule if and only if the functor FM is exact. (Note that the functor

FM is always left exact.)

Proof. It is easy to see (using a Zorn's Lemma type of argument) that

M is injective as a C-comodule if and only if for every pair (Vl9V2) of

finite dimensional C-comodules, for every injective C-comodule map

a: Vλ -» V2 and for every C-comodule map /: Vλ -* M, there exists a

C-comodule map/: V2 -> M such that/α = /.

In a similar fashion we can reduce the proof that FM is right exact to

the finite dimensional case. Denote β9Hγ(M) the category of finite

dimensional C-comodules, and let us call i the functor from β9Ry(C) to

itself that sends V to K*. We have proved that, on Q?ltf(C)9 FM i is

naturally equivalent to Hom c ( —, M). The C-comodule M is injective if

and only if the functor H o m c ( - , M) from Q<Utf(C) to 91t(&) is left

exact. Thus, it is clear that, on β9H / (C), FM right exact implies that

H o m c ( —, M) is left exact. Conversely, as η2 = id, Fm\ i is naturally

equivalent to FM on β91ty(C). Consequently, on β9Hγ(C), FM is equiva-

lent to Hom c ( —, M) i. Thus our conclusion follows. D

COROLLARY 4.3. In the situation of Theorem 4.2, M is an infective

C-comodule if and only if H\C, M S V) — 0 for every C-comodule V. D

Now consider the following situation. Let C and D be coalgebras over

a field /c, and let π: C -» D be a surjective coalgebra map. In §3, we

constructed the functor π*: β^iC) ^ β^iD). We shall see that π* has

a right adjoint 77* that is closely related to the functor FM constructed

above, for M = π*(C).

Let F be a Z)-comodule with structure χ κ . We define a map

Φ κ : V® C -> V® D® C by Φ κ = ( χ κ ® id Γ ) - i d κ 0 (77 ® id)Δ c . It is

immediate that, with respect to the C-comodule structure id ® Δ on

V® C, the kernel of Φ κ is a subcomodule. Using the notations of [8],

Ker Φ v is the cotensor product of the right D-comodule V with structure

Xy and the left Z)-comodule C with structure (π ® id)Δ c . Another inter-

pretation of the C-comodule Ker Φ v with structure id ® Δ is the follow-

ing. The coalgebra structure of C induces an algebra structure on C* (dual
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space of C). If V is a C-comodule, we can associate to it a C*-module in
the usual fashion. (The base space is the same Vand if v E Vand/ E C*,
f Ό — Σ7/(c,)υ/? where χv(v) = Σc, ® υ r) If 77: C -* D is a surjective
coalgebra map, it induces an injective algebra map from D* into C*. In
that case if V is a Z>-comodule, Ker Φ κ is a C-comodule that, with the
associated C*-module structure, is isomoφhic with H o m ^ C * , V). Here,
we are considering V as a D*-module as above and C* as a D*-module via
the injection from D* into C*, and HomD*(C*, V) is endowed with a
C*-module structure in the usual fashion.

If C = P(G) and D = P(K), with K a closed subgroup of the affine
algebraic group G, and m is the restriction map, the space Ker Φv with the
structure (id ® Δ) is the induced representation functor studied in [1].

It is easy to see that if/: V -> Wis a moφhism of Z>-comodules, then
(/®id)(KerΦκ) C K e r < V

DEFINITION 4.4. In the situation above, we define the functor π* from
e<Ut(D) to e9H(C) as follows. If V is a /)-comodule then π*(V) =
Ker Φ κ , endowed with the structure idκ ® Δ; if / is a Z>-comodule map
from V to W then π*(f) is the restriction of /® id to τ

LEMMA 4.5. In the situation above, π*(D) is isomorphic with C, as a
C-comodule.

Proof. Consider the map γ: C -> D ® C, where γ = (π ® id)Δ. We

have

ΦDγ = ((Δ ® id) - id 0 (77 ® id)Δ)(τr ® id)Δ

= (Δ77 ® id)Δ - (77 ® m ® id)(id ® Δ)Δ

= (ΔTΓ ® id)Δ - ((π ® τr)Δ ® id)Δ = 0.

Thus, γ(C) C π*(D). Consider now 8: D ® C -^ C, where δ(d ® c) =

e(d)c. The restriction of δ to π*(D) is the inverse of γ, because if x E C

and Δ(x) = Σx f ® * ; then (δγ)(x) = Σf ε(τr(*,)).*; = Σ K ^ K = x.

Conversely, if Σ dt ® ς G π*(D), then

Applying ε ® id ® id we get

Σ d, ® c, = Σ ε(<O(τr ® i d ) Δ ( ς ) - ( γ δ ) ( Σ dι ® c f ) .



198 WALTER RICARDO FERRER SANTOS

Finally, γ is a C-map because

(id ® Δ)γ = (id ® Δ)(ττ ® id)Δ = (π ® id ® id)(id ® Δ)Δ

= (π ® id ® id)(Δ ® id)Δ = (γ ® id)Δ. D

If V is a Z)-comodule, we consider the map Ev: 7Γ*(F) -» F given by

LEMMA 4.6. (a) // V is a D-comodule then Ev is a morphism of

D-comodules from π*(π*(V)) to V.

(b) If W is a C-comodule, V a D-comodule and f: TΓJJV) -* V a

D-comodule map, there is one and only one morphism of C-comodules

/: W ^ τ r * ( F ) such that Evπ*(f)=f.

Proof, (a) If Σ vέ ® ct verifies Sx^t?,-) ® c,- = Σ ϋf ® (IT
when we apply id ® id ® ε, we have

Now, if Δ(c7) = Σ cιk ® c'ιk9 we have

H d ®

Using equality (*) we deduce that

(Ev ® id)(id ® id

(b) Consider/: W-> V ® C defined b y / = ( / ® id)X ( < /. We have

id ® id)(id ® 77

As/is a moφhism of Z>-comodules, we have χvf=(f® id)(id ® π)χw.

Hence, ΦF(/<8> id)χ^ = 0 and/(tF) C -n*(V).

It is almost immediate that Ev(f ® id)χw/ = /. The verification that/

is a C-comodule map goes along similar lines as the proof of Lemma 4.5.
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It only remains to be proven that if h: W -> 77*(F) is a C-comodule map
such that Evπ*(h) = 0, then h = 0. We have (h ® id)χ^ = (id ® Δ)Λ.
Applying (id ® ε ® id), we obtain

((id ® ε)h ® id)χ^ = (id ® (ε ® id)Δ)Λ.

If A(x) = Σ ϋ, ® c, we deduce from the last equality that

((id ® ε)h ®

As Evmji — 0 we deduce that the left hand side is zero when we identify
V ® R with V and (id ® έ)h with Evπ*(h). In these terms, the right hand
side becomes Σ Όi ® c r Thus we have h(x) — 0. G

COROLLARY 4.7. π* w α πg/tf adjoint of π*.

In the situation of Definition 4.4, we can consider the functor
K*(C) f r o m β?fk(D) to 9Il(fc). Now, FπΛC){V) = (TΓ^C) H F ) ^ and
π*(C) ® F has a natural right C-comodule structure given by

V^ C®<ττ*(C) ® F.

We shall verify that, when ^^(C) ® Fis endowed with this right C-com-
odule structure, then ( π ^ C ) 13 V)D is a right C-subcomodule of π*(C) ®
F. Consider (Δ ® id ® id)((id ®ττ)Δ 13 χ κ ) . By direct computation one
finds that

ττ)ΔK χv)

= (id ® (id ® τr)Δ H χ κ )(Δ ® id).

It is clear then that if

((id®ττ)Δ El χv)(x) = x® 1,

then

(Δ ® id)(jc) ® 1 = (id ® (id ® π)Δ H X κ ) ( Δ ® id)(jc).

Consequently, (π*(C) ^ V)D has a natural structure of right C-comod-
ule.

Now assume that C is a Hopf Algebra. We know that, using the
antipode of C, we can transform any right C-comodule structure χMonM
into a left C-comodule structure χM: M -* M ® C, where

χ M = (id ® ii)jχA#.

In that fashion, when C is a Hopf Algebra, (*τ*(C) 13 F ) ^ has a natural
left C-comodule structure given by (id ® id ® η)(slf23(Δ ® id κ ).
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LEMMA 4.8. Let C and D be Hopf Algebras over a field, each having

inυolutory antipode, and let π: C -» D be a surjectiυe bialgebra map. Then

the functors 77*: 6911(2)) -> β91t(C) and F^(C): 6911(2)) -* β 9 L ( C ) are

naturally equivalent.

Proof. Given an arbitrary 2)-comodule M, consider the map

(id ® η)s: C ® M -* M® C. Clearly (id ® η)s is bijective. We want to

verify:

(a) (id ® rι)s((π*(C) H M ) D ) = Ker Φ ^ = ττ*(M).

(b) (id ® η)5 is a C-comodule map when we endow (ττ^(C) 13 M ) D

with the structure (id ® id ® TJ)J, ) 2 3 (Δ ® id M ) and π*(M) with the struc-

ture i d M ® Δ. In order to verify (a), let x - Σ ci ® m;. G (77*(C) El Λf )Z),

write χ ( m j = Σy m/y ® J / y and Δ(c7) = Σ^ cik ® c^. Then we have

x E (77*(C) El M ) D i f and only if the following condition is satisfied:

. .

Analogously, we have (id ® η)(x) E ττ*(M) if and only if either one of

the following two mutually equivalent equalities hold:

(**)

From (**), applying id ® id ® ^(id ® τr)Δ, we deduce

Σmιj®dιj®π(c'ik)®cik

Ijk

ik

Changing the order and multiplying on the left hand side, we deduce that
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By direct computation with the switching operators we get

j j

ijk

ττ)Δ

(id<8>id<S>τj)(id<8>Δ)Δ(c,)

μ(id ® η)Δ)Δ(c,)

This is exactly the equality (*). In a similar way we can go from (*) to
(**). Establishing (b) amounts to verifying that

(id ® Δ)(id ® η)s = (id ® η ® id)(.y ® id)(id ® id ® η)sU23(Δ ® id).

Now

(id ® η ® id)(j ® id)(id ® id ® iί)jIf23(Δ ® id)

= (id ® η ® id)(id ® id ® η)(j ® id)j,ί23(Δ ® id)

= (id ® ij

The last equality follows from an elementary manipulation with switching
maps

(id®s)(id® Δ)s(x®y) = (id ® s)(id ® Δ)(^ ® JC)

= 2 ( i d ®

and

(5 ® id)sU 3(Δ ® id)(x ® y) =

Thus,

(id ® η ® id)(5 ® id)(id ® id ® η)sU23(Δ ® id)

= (id ® η ® τj)(id ® j)(id ® Δ ) J = (id ® Δη)j. D
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COROLLARY 4.9. In the situation above, π*(C) is injective in

// and only if π* is an exact functor or, equivalently\ if and only if

H\D, π*(C) 12 V) = 0 for every D-comodule V.

We apply this criterion of injectivity in order to prove that, if the map

77 is normal and C and D are commutative, then π*(C) is injective. We

shall use the following two results from [7].

THEOREM 4. A ([7] page 6). Let C be a commutative Hopf Algebra over

a field k and let X be a sub Hopf Algebra of C. Then the inclusion X ^ C is

faithfully flat.

THEOREM 4.B ([7] page 17). Let π be a surjective normal Hopf Algebra

map between a pair of commutative Hopf Algebras C and D defined over a

field. Then KerTΓ = (Kerε Π π*(C)D)C.

Suppose now that C and D are commutative Hopf Algebras over a

field k (this implies that the antipode is involutory) and let π be a normal

surjective Hopf Algebra map between C and D. We shall write Dπ*(C) or
DC for the set

{x e C|(τ7®id)Δ(;c) = 1 ® x).

It is easy to see that CD =DC for symmetry reasons. Using the natural

structure of C as a DC module, we endow C ® C and D ® C, as well as

V ® C for any ^-spaces F, with a DC-module structure by multiplication

in the second tensor factor. It is elementary to verify that, with respect to

the structures mentioned above, the map (TΓ ® id)Δ: C -> D ® C is a
DC-module map. Given the multiplication μ: C ® C -> C, it is clear that if

we indicate by /: C ® C -> C ®z>cC the canonical surjection, there is a

map μ: C ®^ C C -> C such that μi — μ. We shall denote this new map /I

again by μ because there will be no danger of confusion. Recall that ®

always indicates tensor product over k. Consider the maps

Δ D ® i d : D® C -» D® D® C

and

(TΓ ® id)Δ c ®DCiά: C®DCC-> D® C ®DCC.
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It is easy to prove that these are right C-comodule structures. Next, look

at the maps

ψ = (id ® μ)((ττ ® id)Δ ®* c id):

φ, = /(id ® μ)(id ® η ® id)(Δ ® id):

Δ<8>id __ ., __ __ ,_

C®C-*C®C®C -> C® C® C -* C® C-*C®DCC

where, as before, / stands for the canonical map C ® C ->C ®^CC.

LEMMA 4.10. In the situation above, there is a unique k-linear map φ0

that makes the following diagram commutative.

CΘC 4 C®DCC

177 ® id /* φ0

D ® C

Proof. All we have to verify is that if t E Ker m ® C then ή>λ{t) — 0.

Theorem 4.B says that Ker π = (Ker ε ΠDC)C. Take an element

Σxk ®yk E C ® C such that ^ E (Kerε ΠDC). We shall verify that

Φι(Σxk®yk) = 0. Let us write Δ(JCΛ) = ltxkl ® Λ ̂  . Then we have

Φi(Σ xk ® yk) — Σkιxki ®Dc y(χki)yk- Since π is normal xkι E:DC

(because Δ(DC)C DC ®DC). Consequently,

hi k

THEOREM 4.11. The map ψ w an isomorphism of right D-comodules from

C ®DCC to D ® C, vv/zô e inverse is the map φ0 defined above.

Proof. First, we show that ψ is a morphism of right Z>-comodules. This

amounts to proving that the diagram below is commutative.

C Z> ® C

> i d ) Δ <S>ocid si Δ ® id
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If we add to the above diagram the map

Δ ® id ®/>cid: D ® C ®D

CC -> D ® D ® C ®»CC,

we need only check the commutativity of the two subdiagrams. The

resulting square on the left is commutative because π is a coalgebra map,

and the resulting square on the right is obviously commutative. Next, we

show that ψ and φ0 are inverses to each other. Look at

ψφo(ττ ® id) = (id X μ)((ττ ® id)Δ ®^cid)φ0(ττ ® id)

= (id ® μ)((π ® id)Δ ®j>cid)z(id ® μ)(id ® η ® id)(Δ ® id).

From the very definition of i and ®DC we have that

ψφo(ττ ® id) = (id ® μ)((π ® id)Δ ® id)(id ® μ)(id ® η ® id)(Δ ® id)

— (π ® id)(id ® μ)(id ® μ ® id)(id ® id ® η ® id)

(id ® Δ ® id)(Δ ® id) = π ® id.

The last equality follows from the fact that μ(id ® η)Δ = uε. Since π ® id

is surjective, we conclude that ψφ0 = id. Now, we observe, that:

φoψz = Φ0(id ® μ)((π ® id)Δ ®ocid)i = φ o(π ® id)(id ® μ)(Δ ® id).

If we replace φo(π ® id) with φj and write out φλ explicitly, we find from

an argument similar to one above (relying on the fact that η is an

antipode) that:

φo(π ® id)(id ® μ)(Δ ® id) = /.

This shows that φo\pi — i. Since the map /: C ® C -> <8>DCC is surjective,

we deduce that φoψ = id. D

Let V be a D-comodule. Then τr*(F) is a D C submodule of V ® C

when we endow V ® C with the structure of DC module given by multi-

plication on C

THEOREM 4.12. Let C and D be as before, and let V be a D-comodule,

then the k-lϊnear maps

id® μ: V® C®DCC -* V® C and a = (id ® φ o )(χ ® id),

the composite

V® CX^άV®D ® C
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have the following properties:
(a)α(F® C) Cπ*(V)®DCC.
(b) a is the inverse of the restriction of id ® μ to τr*(F) ®DCC.

Proof, Let us verify first that if / E ττ*(F) ®DC C, then

a(idv<8> μ)(t) - t,

\ίt = Σ , ^ ® c, ®/>cc/9 then

Hence,

α(id ® μ)(t) = (id ® φ
o
)(χ

ϋ
/ ® (id® μ))((τr® id)Δ

Φo(
id
 ® i

u
 )((

7Γ
 ®

 i d
)

Δ
 ®

D
cid)(c

f
.

The equality before the last comes from the fact that φ0 and ψ are
mutually inverse maps.

Next, we check that

(id ® μ)α = id, (id ® μ)a = (id ® μ)(id ® φo)(χ ® id).

Now observe that

μφo(τr ® id) = μ/(id ® μ)(id ® η ® id)(Δ ® id)

= μ(μ ® id)(id ® η ® id)(Δ ® id) = μ(uε ® id).

We have μφo(π ® id)(cx ® c2) = ε(cι)c2=j(εD® id)(π ® id)(cx ® c2),
where j stands for the map j : k® C -» C, given byy'(λ ® c) = λc. Conse-
quently we have μφ0 —j(εD ® id). Hence,

(id ® μ)α = (id ®j) (id ® ε ® id)(χ ® id) = id
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It remains only to verify (a). We have (recall Definition 4.4)

= ((x ® id ®* cid) - (id ® (π ® id)Δ ®i>cid))(id ® Φ0)(χ

= (x ® id ®/>cid)(id ® φ o )(χ ® id)

- (id ® (π ® id)Δ ®*cid)(id ® φ o )(χ ® id).

By Theorem 4.11 φ0 is a right Z)-comodule map. Therefore,

((π ® id) <8>/>cid)φ0 = (id ® φ o)(Δ ® id)

Hence,

= (x ® id ®z>cid)(id ® φ o )(χ ® id)

- (id ® id ® φo)(id ® Δ ® id)(χ ® id) = 0,

because (id ® Δ)χ = (χ ® id)χ.

Thus, (φv ®DCΊά)a{V ® C) = 0, whence

a(V® C) C Ker(φκ<8>/,cid) = Ker(φ κ ) ®* C C,

because C is flat as a ^C-comodule. •

THEOREM 4.13. Let C and D be commutative Hopf Algebras over a field

k, and let π be a surjectiυe normal Hopf Algebra map from C to D. Then

is injectiυe as a D-comodule.

Proof. By Corollary 4.9, it is enough to prove that if F, and V2 are

D-comodules and a a surjective D-comodule map from F, to F 2, then the

map induced by a from π*(Vx) to π*(V2) is surjective. As the inclusion
DC <=+ C is faithfully flat (Theorem 4.A), the map a ® id is surjective if

and only if a ® id ®DC ® id: ττ*(F,) ®z>cC -> 7r*(F2) ®^CC, is surjective.

The maps i d κ ® μ: ττ*(J^) ®DCC -» Fj ® C are isomorphisms and com-

mute with α in the sense that

(a ® W)(idKi ® μ) = (idK2 ® μ)(α ® id ®ocid).

Consequently (a ® id)(τ7*(F,)) = ττ*(F2) if and only if

a® id: Vλ ® C-^ F2 ® C

is surjective. Since α is surjective our conclusion follows. D
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Now we have the injectivity results for comodules that we need in

order to establish the spectral sequences of §5. Before proceeding to do

that, we establish one other result that is sometimes useful as a criterion

for injectivity, and is a generalization of [5], Proposition 2.2.

Lemma 4.14 is contained in [6], our proof is not different from

Sweedler's but is more compatible with our notation. For the next two

results our coalgebras need not be flat as i?-modules.

LEMMA 4.14 Let C and D be Hopf Algebras defined over a ring R, and

let π: C -> D be a bialgebra map. Suppose moreover that there exists a

D-comodule map σ: D -» ΊT^{C). Then the map Q — μ(id ® στ7?j)Δ: C -> C

sends C into τ

Proof. In convolution notation, we have Q — id * σπη.

(id ® 77)Δβ = (id ® 7r)ΔjLi(id ® στ7T))Δ

= (μ ® μ)(id ® id ® 77 ® ττ)(id 0 5® id)(Δ ® Δ)(id

For the last equality we used that Δμ = (μ ® μ)(id 0 5® id)(Δ ® Δ) and

the fact that TΓ is an algebra map.

Thus,

(id ® π)ΔQ = (μ ® μ)(id ® s ® W)((id ® ττ)Δ ® (id ® 7r)Δστr7])Δ.

As σ is a i)-comodule map, we have

(id ® ττ)Δσ = (σ ® id)Δ

and

(id ® τr)Δρ = (μ ® μ)(id ® s ® id)((id ® ττ)Δ ® (σ ® id)Δτrτ))Δ.

Using that Δ-77 = (77 ® 77)Δ and Δη = s(η ® η)Δ, we get

(id ® ττ)Δβ = (μ ® μ)(id ® s ® id)(id ® id ® 5)

(id ® 77 ® TΓ ® στ7)(id ® id ® η ® η)(Δ ® Δ)Δ.

Using associativity of μ, coassociativity of Δ and the fact that 77 is an

algebra map, we get

(id ® 77)

= (μ ® id)(id ® s)(id ® 77 ® στ7)(id ® μ(id ® η)Δ ® η)(id ® Δ)Δ

= (μ ® id)(id ® s)(id ® 77 ® στ7)(id ® uε ® r/)(id ® Δ)Δ.
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Now if A(x) = Σx{® x'i9 we have

(id ® π)AQ(x) = 2 (μ ® id)(id ® .*)(*,. ® 1

But, by the very definition of Q, we have Qx — Σx^σπηx'r Thus,

Q(x)Gπ*(CD). •

THEOREM 4.15. Let C and D be Hopf Algebras over a ring R and let π

be a bialgebra map from C to D. Let σ: D -> π*(C) be an algebra map that

is at the same time a D-comodule homomorphism. Then π#(C) is a relatively

injective D-comodule.

Proof. Let us consider C ® D with structure id ® Δ. We shall prove

that π*(C) is a direct 2)-comodule summand of C®D. Consider the

maps a = (id ® ττ)Δ: C -> C® D and β = μ(Q ® σ): C® D -> C. We

have

βa — μ(Q ® σ)(id ® τr)Δ = g * σπ = (id * σTΓη) * σπ

= id * (σπη * σπ).

As στ7 is an algebra homomorphism, σπη * σπ = μ(σπ ® σπ)(η ® id)Δ =

σπμ(η ® id)Δ — σπuε — uε. Consequently, βα = id * wε = id. Now, α is

obviously a Z)-map, therefore, the only thing that still requires a proof is

that β is a D-comodule map, i.e. that

(id ® π)Aμ(Q ® σ) = (μ(Q ® σ) ® id)(id ® Δ).

We have,

(id ® ττ)Δμ(ρ ® σ)

= (μ ® μ)(id ® s ® id)(id ® 77 ® id ® w)(Δ ® Δ ) ( β ® σ)

= (μ ® μ)(id ® J ® id)((id ® τr)Δβ ® (id ® ττ)Δσ).

Using that σ is a Z)-comodule map, we obtain

(id ®π)Δμ{Q® σ)

= (μ ® μ)(id ® 5 ® id)((id ® ττ )Δβ ® σ ® id)(id ® Δ).

To finish the proof that 8̂ is a i)-comodule map, all that needs to be

verified is that

(μ ® μ)(id ® s ® id)((id ® π)AQ ® σ ® id) = μ ( β ® σ) ® id.
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We have

(μ ® μ)(id ® s ® id)((id ® π)Δρ ® ^ id)(;t β ^ z )

= (μ ® μ)(id ® 5 ® id)(g(jc) ® 1 ® σj ® z)

= β(x)σ>> ® z.

As (μ(<2 ® σ) ® id)(x ® j ® z) = β(x)σ(^) ® z, our proof is finished. D

5. Two spectral sequences. First, we establish the validity of the

Hochschild-Serre spectral sequence for the cohomology of comodules.

THEOREM 5.1. Let C and D be commutative Hopf Algebras over a field

/c, and let π: C -> D be a surjective normal bialgebra map from C to D. For

every object M in β91L(C), there is a third quadrant spectral sequence

{Ef'q}, natural in M, such that

EP« = HP(TΓ*(C)D\H«(D9π*(M))), Eξ>« =*P H
P+«(C, M).

Here we regard Hq(D, π*(M)) as a π^(C)D-comoduley with the structure

established in §3.

Proof. Consider the functors

D) G .

defined (in the object part) as follows:

(a) If M E e<$L{C) then F(M) = ττ*(M)D.

(b) If X E e<>flL{ττJtC)D) then G(X) = Xπ*(C)°.

We proved before (Theorem 3.15 and Lemma 3.9) that F(M) G

e^iπ^C)0) and that (G o F)(M) = Mc. The general theory of

Grothendieck spectral sequences (see [2]) will give the theorem as soon as

we prove

(i) / injective in 691t(C) implies F(I) G-acyclic.

(ii) The derived functors of F are π* composed with the 2)-cohomol-

ogy functors.

It is enough to check (i) for / = C. In that case F(I) =

7r^(C)D and our conclusion follows from Lemma 2.1.

As to (ii), since π is normal, π*(C) is injective in β?Jlt(Z>). Conse-

quently, the canonical resolution for M a s a C-comodule that we con-

structed in §2, gives us (after applying π*) an injective resolution π*(M)

by injective Z)-comodules. Consequently the z'th derived functors of F are

functors i/'(25, π*()). •
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In particular we can establish as corollaries the exactness of the

Inflation Restriction sequence, as well as the exactness of the seven term

sequence:

0 - Hl(v,(C)D,^(M)D) - H\C, M)

wherepM: H2{C, M) ̂  H2(D,π*(M) *{C)D

is the so called restriction map.

It may be useful for some calculations to have a direct proof of the

exactness of the sequence above. We shall sketch here such a proof.

Let M be a C-comodule and consider an exact sequence in β<Dll(C)

(1) O^M -» * - > L ^ O

with X coinduced. Taking the D cohomology sequence of (1) we obtain an

exact sequence and an isomorphism

(2) 0 - MD -* XD -> LD -> H\D, M) - 0,

(2') H\D,L)^H2{D

We have used here that X, when considered as a Z)-comodule, is injective.

We split the sequence (2) into a pair of short exact sequences in the

category β 9 L ( C D ) as follows:

(3) 0 -» MD -» XD -» Y -» 0,

(4) 0 -» Y-* LD ̂  H](D,M) -*0.

The long exact CD cohomology sequence that we obtain from (4) will give,

after we identify all the terms, the seven term sequence.

(5) 0 -» Yc° - (LD)cD - H\D, M)c° -» H\CD, Y)

- Hι(CD, LD) -* Hι{CD, H\D, M)) - H2(CD, Y).
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Taking the CD cohomology sequence from (3) and the C cohomology
sequence from (1) we obtain:

(6) 0 -> Mc -> Xc -> Yc° -> Hι(CD

9 MD) -> 0,

(60 H\CD

9 Y) s H2(CD

9 MD), H2(CD, Y) = H3(CD, MD),

(7) 0 -> M c -> X c -> Lc -> H](C, M) -> 0,

(r) H](C,L)=H2(C,M).

It is easy to see that the map from Yc° to L c in sequence (5) defines a
map from H\CD

9 MD) to H\C9 M) that is injective (see sequences (6)
and (7)) and when substituted into (5) gives the seven term sequence

(50 0 - H\CD, MD) -> Hι(C9 M) -> Hι(D, M)C° -* H2(CD, MD)

- Hι(CD, LD) -> Hι{CD, Hι(D9 M)) - H3(CD, MD).

Note that we also substituted the 4th and 7th term of (5) using the
isomorphisms of (6') The only term in (5') that still needs identification is
the 5th. When we apply the first three terms of the sequence (5') to L we
obtain the sequence:

0 -> H\CD, LD) - Hι(C, L) -> H\D9 L).

Using (2') and (70 we have that H\CD

9 LD) = Ker pM, with

Now consider Hopf Algebras C and D defined over a ring R, and let
π: C -» D be a surjective bialgebra map. Given any D-comodule M we
consider the D-comodule π#(C) El M and the complex

la Aί ® Z)̂  -̂  •

where the maps δ/ are defined inductively by formulas (3) and (4) of §2.
We endow every object on the complex with a right C-comodule structure
ηk = Δ ® idM ® id^.

It is obvious that, with respect to these structures, the differentials of
the complex are C-comodule maps. Let ηk denote the left C-comodule
structure constructed from ηk in the same fashion as in the considerations
before Lemma 4.8. The maps δ^ are now left C-comodule maps, and from
the general considerations at the end of the proof of Theorem 3.6
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we deduce the existence of left C-comodule structures ηk on

Hk(D, π^(C) 13 M) that are compatible with the connecting homomor-

phisms and, at zero, coincide with the structure

(id® id®τj)j I i 2 3(Δ® id^).

Now let us look at the functor

F^(C): β<Ul(D) - egiL(C), where F^{C)(M) = (ττ,(C) H MY.

(We endow (π*(C) 13 M)D with the structure (id ® id ® η)sl23(Δ ® id M )

as we did in Lemma 4.8.) Consider L: β9H(C) -> 9It(Λ), where L( Af) =

Mc.

Recall that in Lemma 4.8 we proved that Fm ( C ) is naturally equivalent

with the induced representation functor π* (see Definition 4.4).

LEMMA 5.2. The functor LFm (C) is naturally equivalent with the functor

from e^L(D) to 911(7?) that sends M to MD.

Proof. We have noticed before that Fπ ( C ) is nothing else but 77*.

Thus, our statement can be expressed in the following terms:

Let M be a Z>-comodule and let φM: M ® C -> M ® D ® C be the
m a P XM^i^c — i^A/^ί 7 7 ® id)Δ. If we endow Af ® C with the struc-

ture id (8) Δ, then (Ker φM)c = MD. Consider the maps E: M ® C -^ M,

jE(m ® c) = ε(c)m and γ: M -> Af ® C, γ(m) = m ® 1. Then we have

(a) γ(MZ )) C (Ker φM)c. This is because γ(Af) C (Af ® C)c (this is

nothing but the assertion that Δ(1) = 1®1) and if m G AfD then χm~

m 0 1 and φMm = m ® l ® l - r a ® ( τ r ® id)Δ(l) = m ® 1 ® 1 - m ®

1 0 1 = 0 .

(b) If x <Ξ (Af® C ) c then x = E(x) ® 1. This is because if

x = Σ mι ® ς and Σ m ; ® Δc, = Σ m, ® c, ® 1, then applying id 0 ε ® id

yields Σ wf ® cf = Σ ε(c/)m/ ® 1.

(c) If JC E Kerφ M then χ(Ex) — (id ® τr)(x). This is because if x —

Σ m/ ® cz and Σ χm,- ® cf = Σ m/ ® (π ® id)Δς, then applying id ® id ® e

yields Σχ(m /ε(c /)) = Σm, ® ττcr

(d) EΎ = idM.

Condition (b) tells us that if x E (Kerφ M ) c then x — yEx. This,

together with (d), guarantees that E restricted to (KeτφM)c and γ re-

stricted to MD are inverses to each other. Now from (b) and (c) we deduce

that if x E ( K e r φ ^ ) ^ Ker φM Π ( M O C ) c t h e n χ ( £ x ) = (id ® π)x =

(id 0 ττ)(Ex ® 1) = Ex ® 1. Thus £((Ker ψ M ) c ) C AfD. D
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THEOREM 5.3. Let C and D be arbitrary Hopf Algebras defined over a

ring R that are flat as R-modules. Let π be a surjective bialgebra map

π: C -> D. Then, for every object M in Q(U\L{D), there is a third quadrant

spectral sequence, natural in M, {Ep'q} such that

Eξ« = Hp(c, Hq(ϋ, τr*(C) H Af)) =>Hp+q{D, M).

We regard Hq(D,π*(C) Kl M) as a C-comodule with the structure fjq

defined above.

Proof. The only part that still needs to be verified is that if / is a

relatively injective Z)-comodule, then τr*(/) is L-acylic. It is enough to

look at coinduced Z>-comodules of the form X ® D with structure ϊάx ® Δ.

In that case τr*(X <8> D) = X ® C, as is seen from Lemma 4.5. By the very

definition of our cohomology theory, X ® C is L-acyclic. D

In the case where C is injective as a Z)-comodule, the spectral

sequence collapses and gives us isomorphisms between HP(C, π*(M)) and

HP(D, M). The spectral sequence of Theorem 5.3 is the form that

Shapiro's lemma takes in our cohomology theory.
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