AN INTERPOLATION THEOREM FOR H_{E}^{∞}

Knut Øyma

Abstract

We prove a synthesis of Carleson's interpolation theorem, the Rudin-Carleson theorem and an interpolation theorem of S. A. Vinogradov.

Let D be the open unit disc in \mathbf{C} and let T be its boundary. By $A(D)$ we mean the set of functions continuous on \bar{D} analytic on $D . H^{\infty}$ is the set of bounded analytic functions on D, and if E is a subset of T, H_{E}^{∞} is the set of functions continuous on $D \cup E$ bounded and analytic on D.

The Rudin-Carleson theorem states that if K is a closed subset of T of measure zero, then $A(D) \mid K=C(K)$. This was proved independently by W. Rudin and L. Carleson [8], [3].

A sequence $\left\{z_{n}\right\} \subset D$ is said to be uniformly separated if

$$
\inf _{n} \prod_{m \neq n}\left|\frac{z_{n}-z_{m}}{1-\bar{z}_{n} z_{m}}\right|=\delta>0 .
$$

Carleson's interpolation theorem states that $H^{\infty} \mid\left\{z_{n}\right\}=l^{\infty}$ if and only if $\left\{z_{n}\right\}$ is uniformly separated. This was first proved in [2]. Other proofs can be found in [5] and [10].

Let $F \subset \mathbf{N} \cup\{0\}$. A function $f(z)=\Sigma a_{n} z^{n} \in H^{1}$ is said to be an F function if $a_{n}=0$ for $n \notin F$. For a definition and properties of the H^{p} spaces see [4]. F is said to be of type $\Lambda(s)$ if for every $r<s$ there is a constant K depending on F, r and s only such that $\|f\|_{s} \leq K\|f\|_{r}$ for every F function. If $F=\left\{n_{k}\right\}$ satisfies $n_{k+1} / n_{k}>\lambda>1$, then F is of type $\Lambda(s)$ for every $s \in\langle 0, \infty\rangle$. Other sets of type $\Lambda(s)$ exist. See [7]. Let $\left\{n_{k}\right\}$ be of type $\Lambda(2)$ and let R be the operator from $A(D) \rightarrow l^{2}$ defined by $R\left(\sum a_{n} z^{n}\right)$ $=\left\{a_{n_{k}}\right\}$.S. A. Vinogradov proved that R is onto. In fact he proved much more. See [11].

These results do not live their own lives separate from each other. In [6] E. A. Heard and J. H. Wells proved that if E is an open subset of T and S is a relatively closed subset of $D \cup E$ such that $S \cap E$ has measure zero and $S \cap D$ is uniformly separated, then $H_{E}^{\infty} \mid S=C_{b}(S)$, the space of all bounded continuous functions on S. Vinogradov proved in [11] that if K is a closed subset of T of measure zero, $g \in C(K)$ and $\left\{b_{k}\right\} \in l^{2}$, then
there is an $f \in A(D)$ such that $f \mid K=g$ and $R(f)=\left\{b_{k}\right\}$. We intend to prove:

Theorem. Let E be an open subset of T and assume that S is a relatively closed subset of $D \cup E$ such that $S \cap E$ has measure zero, $S \cap D$ is uniformly separated and $0 \notin S$. Assume $F=\left\{n_{k}\right\}$ is an increasing sequence of integers of type $\Lambda(2)$ such that $\lim _{k \rightarrow \infty}\left(n_{k+1}-n_{k}\right)=\infty$. If $\beta(S) \in C_{b}(S)$ and $\left\{b_{k}\right\} \in l^{2}$, there is a function $f(z)=\sum a_{n} z^{n} \in H_{E}^{\infty}$ such that $f \mid S=\beta$ and $a_{n_{k}}=b_{k}$ for all k.

Remark. $0 \notin S$ represents no loss of generality since we may have $0 \in\left\{n_{k}\right\}$.

Before proving the theorem, we are going to develop some background material. Let $S \cap D=\left\{z_{n}\right\}$ and let

$$
\inf _{n} \prod_{m \neq n}\left|\frac{z_{m}-z_{n}}{1-\bar{z}_{m} z_{n}}\right|=\delta>0
$$

Then there exists a real number M with the following property: Given $\left\{w_{n}\right\} \in$ ball l^{∞}, we can find a real number α and a Blaschke product $B(z)$ such that $M e^{i \alpha} B\left(z_{n}\right)=w_{n}$ for all n. The zeros $\left\{\xi_{n}\right\}$ of $B(z)$ can be chosen to satisfy $\psi\left(z_{n}, \xi_{n}\right)<\delta$ where $\psi(a, b)=|(a-b) /(1-\bar{a} b)|$ is the pseudohyperbolic metric on D. This shows that $B(z)$ has analytic continuation across $T \backslash\left\{z_{n}\right\}$. The result is due to J. Earl [5]. We want to prove that the mass of the Taylor coefficients of $B(z)$ regarded as an element of H^{2} is concentrated on the first coefficients.

Lemma 1. Let $B(z)=\sum a_{n} z^{n}$ be as above. If $\varepsilon>0$ then there is an integer $N=N(\varepsilon)$ independent of $\left\{\xi_{n}\right\}$ such that $\sum_{n=N}^{\infty}\left|a_{n}\right|^{2}<\varepsilon$.

Proof. ε is now fixed. Let

$$
B_{K}(z)=\prod_{n=K}^{\infty} \frac{\left|\xi_{n}\right|}{\xi_{n}} \cdot \frac{\xi_{n}-z}{1-\bar{\xi}_{n} z}
$$

Since $\psi\left(\xi_{n}, z_{n}\right)<\delta$, a calculation shows that

$$
1-\left|\xi_{n}\right| \leq(2 /(1-\delta))\left(1-\left|z_{n}\right|\right)
$$

Hence $\lim _{K \rightarrow \infty} \sum_{n=K}^{\infty}\left(1-\left|\xi_{n}\right|\right)=0$ uniformly in $\left\{\xi_{n}\right\}$. This shows that $B_{K}(0) \underset{K \rightarrow \infty}{\rightarrow}$. Since $\left\|B_{K}\right\|_{2}=1, B_{K}(z)=\sum_{n=0}^{\infty} a_{n, K} z^{n}$ satisfies $\sum_{n=N_{K}}^{\infty}\left|a_{n, K}\right|^{2}$ $<\varepsilon / 2$ for $N_{K}=1$ if K is chosen large.

$$
B_{K-1}(z)=B_{K}(z) \cdot \frac{\left|\xi_{K-1}\right|}{\xi_{K-1}} \cdot \frac{\xi_{K-1}-z}{1-\bar{\xi}_{K-1} z}
$$

We have

$$
B_{K}(z)=\sum_{n=0}^{N_{K}} a_{n, K} z^{n}+\sum_{n=N_{K}+1}^{\infty} a_{n, K} z^{n}=p(z)+\varepsilon_{p}(z)
$$

where $\left\|\varepsilon_{p}\right\|_{2}^{2}<\varepsilon / 2$ and $\|p\|_{2} \leq 1$.

$$
\frac{\left|\xi_{K-1}\right|}{\xi_{K-1}} \cdot \frac{\xi_{K-1}-z}{1-\bar{\xi}_{K-1} z}=\sum_{n=0}^{\infty} b_{n}\left(\xi_{K-1}\right) z^{n}
$$

Since $\psi\left(z_{K-1}, \xi_{K-1}\right)<\delta$ this converges uniformly on D independent of ξ_{K-1}. Choose R such that

$$
\sum_{n=0}^{R} b_{n}\left(\xi_{K-1}\right) z^{n}+\sum_{n=R+1}^{\infty} b_{n}\left(\xi_{K-1}\right) z^{n}=q(z)+\varepsilon_{q}(z)
$$

satisfies $\left\|\varepsilon_{q}\right\|_{\infty}<\eta,\|q\|_{\infty}<1+\eta$ where η is to be chosen below. We have

$$
B_{K-1}=\left(p+\varepsilon_{p}\right)\left(q+\varepsilon_{q}\right)=p q+\varepsilon_{p} q+p \varepsilon_{q}+\varepsilon_{p} \varepsilon_{q}
$$

$p q$ is a polynomial of degree $N_{K}+R$. It is not the ($N_{K}+R$)-partial sum of the Taylor series of B_{K-1}, but deleting coefficients decreases the $\left\|\|_{2}\right.$ norm. For $B_{K-1}(z)=\sum C_{n} z^{n}$ we therefore have

$$
\begin{aligned}
\left(\sum_{n=R+N_{K}+1}^{\infty}\left|C_{n}\right|^{2}\right)^{1 / 2} & =\left\|B_{K-1}(z)-\sum_{n=0}^{R+N_{K}} C_{n} z^{n}\right\|_{2} \\
& \leq\left\|\varepsilon_{p} \cdot q\right\|_{2}+\left\|p \varepsilon_{q}\right\|_{2}+\left\|\varepsilon_{p} \varepsilon_{q}\right\|_{2} \\
& \leq\left\|\varepsilon_{p}\right\|_{2} \cdot\|q\|_{\infty}+\|p\|_{2} \cdot\left\|\varepsilon_{q}\right\|_{\infty}+\left\|\varepsilon_{p}\right\|_{2} \cdot\left\|\varepsilon_{q}\right\|_{\infty} \\
& \leq \sqrt{\varepsilon / 2}(1+\eta)+\eta+\sqrt{\varepsilon / 2} \cdot \eta<\sqrt{3 \varepsilon / 4}
\end{aligned}
$$

if η is chosen small. Continuing in the same way, the lemma is proved in a finite number of steps.

We are now going to take a look at Vinogradov's theorem. If $F=\left\{n_{k}\right\}$ is of type $\Lambda(2)$, the mapping $R: A(D) \rightarrow l^{2}: \sum a_{n} z^{n} \rightarrow\left\{a_{n_{1}}\right\}$ is onto. The open mapping theorem gives that $R($ ball $A(D)) \supseteq c$ ball l^{2} for some $c>0$. To obtain an estimate for c we need a result of Smirnov. Let $f(\xi)$ be integrable over the unit circle and let

$$
h(z)=\frac{1}{2 \pi} \int_{T} \frac{f(\xi)}{\xi-z} d \xi
$$

Then $h \in H^{1 / 2}$ and $\|h\|_{1 / 2} \leq K_{1}\|f\|_{1}$. For a proof see p. 35 of [4] or [11]. Since F is of type $\Lambda(2)$, we have $\|f\|_{2} \leq K_{2}\|f\|_{1 / 2}$ for every F function in
H^{2}. Vinogradov proves his theorem by showing that the adjoint mapping $R^{*}:\left(l^{2}\right)^{*}=l^{2} \rightarrow A(D)^{*}$ satisfies

$$
\left\|R^{*}(x)\right\| \geq\left(1 / 2 \pi K_{1} K_{2}\right)\|x\| .
$$

This is proved more generally on the first seven pages of [11]. Using a result of Banach, Lemma 4.13 of [9], we get $R($ ball $A(D)) \supseteq$ $\left(1 / 2 \pi K_{1} K_{2}\right)$ ball l^{2} if by ball we mean open ball. Our balls are open from now on.

If $F=\left\{n_{k}\right\}_{k=1}^{\infty}$, consider the set $F^{\prime}=\left\{n_{k}-n_{K}\right\}_{k=K+1}^{\infty} . F^{\prime}$ is also of type $\Lambda(2)$, and it is not difficult to see that the associated constant $K_{2}^{\prime} \leq K_{2}$. If R^{\prime} is the operator from $A(D)$ to l^{2} associated with F^{\prime} we see that $R^{\prime}($ ball $A(D)) \supseteq\left(1 / 2 \pi K_{1} K_{2}\right)$ ball l^{2}.

The proof of the theorem will also make use of
Lemma 2. Let $T: X \rightarrow Y$ be a continuous linear mapping between Banach spaces. Assume there are constants $\varepsilon<1$ and M such that for all $y \in$ ball B there is $x \in X$ such that $\|x\|<M$ and $\|T x-y\|<\varepsilon$. Then T is onto.

For a proof see [1]. We now prove the theorem. Assume first that $S \cap E=\varnothing$. Choose an integer K such that $f_{K}(z)=B_{K}(z) / B_{K}(0)=1+$ $\varepsilon(z)$ satisfies $\left\|f_{K}\right\|_{\infty}<2$ and $\|\varepsilon\|_{2}<1 / 4 \pi K_{1} K_{2}$. Let $B_{K} \cdot H_{E}^{\infty}$ be the subspace of H_{E}^{∞} consisting of the functions that vanish at z_{n} for $n \geq K$. Given $\left\{b_{k}\right\} \in$ ball l^{2}, choose $g(z)=\sum a_{n} z^{n} \in A(D)$ such that $a_{n_{k}}=b_{k}$ for all k and $\|g(z)\|_{\infty} \leq 2 \pi K_{1} K_{2}$. Let

$$
\begin{aligned}
g_{K}(z)= & g(z) f_{K}(z)=\sum c_{n} z^{n} \in B_{K} H_{E}^{\infty}, \\
& \left\|g_{K}(z)\right\|_{\infty} \leq 4 \pi K_{1} K_{2}
\end{aligned}
$$

and

$$
\left\|\left\{b_{k}-c_{n_{K}}\right\}\right\|_{2} \leq\|\varepsilon(z) g(z)\|_{2} \leq\|\varepsilon(z)\|_{2} \cdot\|g(z)\|_{\infty}<1 / 2 .
$$

Lemma 2 now proves that $R\left(B_{K} H_{E}^{\infty}\right)=l^{2}$. Let $\left\{w_{n}\right\}_{n=K}^{\infty} \in l^{\infty}$ and $\left\{b_{k}\right\} \in$ l^{2} be given. Choose $h(z)=\sum d_{n} z^{n} \in H_{E}^{\infty}$ such that $h\left(z_{n}\right)=w_{n}$ for $n \geq K$ and choose $j(z)=\Sigma l_{n} z^{n} \in B_{K} H_{E}^{\infty}$ such that $l_{n_{k}}=b_{k}-d_{n_{k}}$ for all k. The function $r(z)=h(z)+j(z)=\sum t_{n} z^{n}$ satisfies $r\left(z_{n}\right)=w_{n}$ for $n \geq K$ and $t_{n_{k}}=b_{k}$ for all k. This proves the theorem for $\left\{z_{n}\right\}_{n=1}^{\infty}$ replaced by $\left\{z_{n}\right\}_{n=k}^{\infty}$. The proof will be complete if we can prove that K can be replaced by $K-1$. To obtain this it is enough to find a function $f(z)=\sum a_{n} z^{n} \in B_{K} \cdot H_{E}^{\infty}$ such that $a_{n_{k}}=0$ for all k and $f\left(z_{K-1}\right)=1$.

Such a function is likely to exist because it is easy to prove that there are many functions in $B_{K} H_{E}^{\infty}$ with F coefficients zero. All these functions could, however, vanish at z_{K-1} (a black hole). In that case, then for every $f(z)=\sum a_{n} z^{n} \in B_{K} \cdot H_{E}^{\infty}, f\left(z_{K-1}\right)$ would be a function of $\left\{a_{n_{k}}\right\}$ alone.

Let $f(z)=\Sigma a_{n} z^{n} \in B_{K} H_{E}^{\infty}$. Look at $f\left(z_{K-1}\right) \leftarrow f(z) \xrightarrow{R}\left\{a_{n_{k}}\right\} \in l^{2}$. $\left\{a_{n_{k}}\right\} \rightarrow f\left(z_{K-1}\right)$ is now seen to be a well-defined linear functional on l^{2} since R is onto. This functional is continuous since every $x \in$ ball l^{2} comes from a function of norm $<C$ as an application of the open mapping theorem shows. Therefore there exists a unique $\left\{\lambda_{k}\right\} \in l^{2}$ such that
(*) $\quad f\left(z_{K-1}\right)=\sum_{k} a_{n_{k}} \lambda_{k} \quad$ for every $f(z)=\sum a_{n} z^{n} \in B_{K} \cdot H_{E}^{\infty}$.
Infinitely many $\lambda_{k} \neq 0$. If this were not so, let λ_{M} be the largest. If $f(z) \in B_{K} H_{E}^{\infty}$. Then $z^{n_{M+1}} f(z)$ would vanish at z_{K-1}. This is clearly impossible. Since $\left\{\lambda_{k}\right\}$ is unique, the relation (*) is impossible if we delete some n_{N} from F for which $\lambda_{N} \neq 0$. If we do so, K can be replaced by $K-1$. We may choose n_{N} arbitrary large. Doing so we have pushed the problem from $\left\{z_{n}\right\}$ to F. We now prove that n_{N} can be replaced.

Let $\left\{z_{n}^{*}\right\}=\left\{z_{n}\right\}_{n=K-1}^{\infty} \cup\{0\}$. Every sequence $\left\{w_{n}\right\} \in$ ball l^{∞} can be interpolated at $\left\{z_{n}^{*}\right\}$ by a function of the form $M e^{i \alpha} B(z)=\sum l_{n} z^{n}$ as pointed out above. Choose an integer 0 independent of $\left\{w_{n}\right\}$ such that

$$
\begin{equation*}
\left(\sum_{n=Q}^{\infty}\left|l_{n}\right|^{2}\right)^{1 / 2}<\frac{1}{10 \pi K_{1} K_{2}} \tag{**}
\end{equation*}
$$

This is possible by Lemma 1.
Choose n_{N} such that $\lambda_{N} \neq 0$ and $n_{N+1}-n_{N}>Q$. Let $F^{\prime}=$ $\left\{n_{h}-n_{N}\right\}_{k=N+1}^{\infty}$ and let

$$
\mathscr{B}=\left\{f(z)=\sum a_{n} z^{n} \in H_{E}^{\infty}: a_{n}=0 \text { for } n \in F^{\prime}\right\}
$$

We want to prove that $\mathscr{B} \mid\left\{z_{n}^{*}\right\}=l^{\infty}$. Let $\left\{w_{n}\right\} \in$ ball l^{∞} be given. Choose α and $B(z)$ as above such that $M e^{i \alpha} B\left(z_{n}^{*}\right)=w_{n}$ for all n. Choose $h(z)=$ $\sum b_{n} z^{n} \in A(D)$ such that $b_{n}=l_{n}$ for $n \in F^{\prime}$ and such that $\|h(z)\| \leq \frac{1}{5}$. This is possible by (**) and the remark following Vinogradov's theorem. $f(z)=M e^{i \alpha} B(z)-h(z)$ has the following properties: $f \in \mathscr{B},\|f\| \leq$ $M+\frac{1}{5},\left|f\left(z_{n}^{*}\right)-w_{n}\right|<\frac{1}{5}$. Lemma 2 now proves that $\Re \mid\left\{z_{n}^{*}\right\}=l^{\infty} . n_{N}$ can now be replaced: Let $\left\{w_{n}\right\} \in l^{\infty},\left\{b_{k}\right\} \in l^{2}$. Take $f(z)=\Sigma a_{n} z^{n} \in H_{E}^{\infty}$ such that $f\left(z_{n}\right)=w_{n}$ for $n \geq K-1$ and $a_{n_{k}}=b_{k}$ for $n_{k} \in F \backslash\left\{n_{N}\right\}$.

Choose $g(z) \in \mathscr{B}$ such that $g(0)=1, g\left(z^{*}\right)=0$ for $z_{n}^{*} \neq 0$. Let $r(z)=$ $z^{n_{N}} g(z)=\sum t_{n} z^{n}$. We have: $r\left(z_{n}\right)=0$ for $n \geq K-1, t_{n}=0$ for $n \in$ $F \backslash\left\{n_{N}\right\}, t_{n_{N}}=1$. Our interpolation problem in now solved by the function $f(z)+\lambda r(z)$ for a proper choice of λ.

The proof is now complete except we assumed $S \cap E=\varnothing$. Using the Heard and Wells result, we may assume $\beta \mid S=0$. Let $E^{\prime}=E \backslash S, \mathcal{C}=$ $\left\{f \in H_{E}^{\infty}: f \mid S=0\right\}, \mathcal{C}^{\prime}=\left\{f \in H_{E^{\prime}}^{\infty}: f \mid S=0\right\}$. The proof will be complete if we can prove $R(\mathbb{C})=l^{2}$. By what we have just proved and the open mapping theorem, $R\left(k \cdot\right.$ ball $\left.C^{\prime}\right) \supseteq$ ball l^{2} for some constant k. Now choose $g \in H_{E}^{\infty}$ such that $g=0$ on $S \cap T,\|g\| \leq 1$ and $g(z)=1+\varepsilon(z)$ satisfies $\|\varepsilon(z)\|_{2}<1 / 2 k$. This is possible by Lemma 4 of [6]. Let $\left\{b_{k}\right\} \in$ ball l^{2}. Take $f(z)=\sum a_{n} z^{n} \in \mathcal{C}^{\prime}$ such that $\|f\| \leq k$ and $a_{n_{k}}=b_{k}$ for all k. $h(z)=f(z) g(z)=\sum c_{n} z^{n}$ satisfies: $h \in \mathcal{C},\|h\| \leq k$,

$$
\left\|\left\{c_{n_{k}}-b_{k}\right\}_{k}\right\|_{2} \leq\|\varepsilon(z)\|_{2} \cdot\|f(z)\|_{\infty}<1 / 2
$$

Lemma 2 now proves $R(\mathcal{C})=l^{2}$ and the proof is complete.

References

[1] W. G. Bade and P. C. Curtis, Jr. Embedding theorems for commutative Banach algebras, Pacific J. Math., 18 (1966), 391-409.
[2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930.
[3] , Representations of continuous functions, Math. Z., 66 (1957), 447-451.
[4] P. L. Duren, Theory of H^{p} Spaces, Academic Press.
[5] J. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. Soc., 2 (1970), 544-548.
[6] E. A. Heard and J. H. Wells, An interpolation problem for subalgebras of H^{∞}, Pacific J. Math., 28 No. 3 (1969), 543-553.
[7] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.
[8] , Boundary values of continuous functions, P.A.M.S., 7 (1956).
[9] _ Functional Analysis, McGraw-Hill Book Company.
[10] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math., 83 (1961), 513-532.
[11] S. A. Vinogradov, The Banach-Rudin-Carleson Theorems and Embedding Operators, Seminars in Math. V. A. Steklov Math. Inst. Leningrad, Vol. 19, 1-28. Consultants Bureau New York-London (1972).

Received February 25, 1981.

Agder Distriktshogskole
4600 Kristiansand, Norway

