AN INTERPOLATION THEOREM FOR H_E^{∞}

Knut Øyma

We prove a synthesis of Carleson's interpolation theorem, the Rudin-Carleson theorem and an interpolation theorem of S. A. Vinogradov.

Let *D* be the open unit disc in **C** and let *T* be its boundary. By A(D) we mean the set of functions continuous on \overline{D} analytic on *D*. H^{∞} is the set of bounded analytic functions on *D*, and if *E* is a subset of *T*, H_E^{∞} is the set of functions continuous on $D \cup E$ bounded analytic on *D*.

The Rudin-Carleson theorem states that if K is a closed subset of T of measure zero, then A(D) | K = C(K). This was proved independently by W. Rudin and L. Carleson [8], [3].

A sequence $\{z_n\} \subset D$ is said to be uniformly separated if

$$\inf_{n} \prod_{m\neq n} \left| \frac{z_{n} - z_{m}}{1 - \overline{z}_{n} z_{m}} \right| = \delta > 0.$$

Carleson's interpolation theorem states that $H^{\infty} | \{z_n\} = l^{\infty}$ if and only if $\{z_n\}$ is uniformly separated. This was first proved in [2]. Other proofs can be found in [5] and [10].

Let $F \subset \mathbb{N} \cup \{0\}$. A function $f(z) = \sum a_n z^n \in H^1$ is said to be an F function if $a_n = 0$ for $n \notin F$. For a definition and properties of the H^p spaces see [4]. F is said to be of type $\Lambda(s)$ if for every r < s there is a constant K depending on F, r and s only such that $||f||_s \leq K||f||_r$ for every F function. If $F = \{n_k\}$ satisfies $n_{k+1}/n_k > \lambda > 1$, then F is of type $\Lambda(s)$ for every $s \in \langle 0, \infty \rangle$. Other sets of type $\Lambda(s)$ exist. See [7]. Let $\{n_k\}$ be of type $\Lambda(2)$ and let R be the operator from $A(D) \to l^2$ defined by $R(\sum a_n z^n) = \{a_{n_k}\}$. S. A. Vinogradov proved that R is onto. In fact he proved much more. See [11].

These results do not live their own lives separate from each other. In [6] E. A. Heard and J. H. Wells proved that if E is an open subset of T and S is a relatively closed subset of $D \cup E$ such that $S \cap E$ has measure zero and $S \cap D$ is uniformly separated, then $H_E^{\infty} | S = C_b(S)$, the space of all bounded continuous functions on S. Vinogradov proved in [11] that if K is a closed subset of T of measure zero, $g \in C(K)$ and $\{b_k\} \in l^2$, then

KNUT ØYMA

there is an $f \in A(D)$ such that f | K = g and $R(f) = \{b_k\}$. We intend to prove:

THEOREM. Let E be an open subset of T and assume that S is a relatively closed subset of $D \cup E$ such that $S \cap E$ has measure zero, $S \cap D$ is uniformly separated and $0 \notin S$. Assume $F = \{n_k\}$ is an increasing sequence of integers of type $\Lambda(2)$ such that $\lim_{k\to\infty} (n_{k+1} - n_k) = \infty$. If $\beta(S) \in C_b(S)$ and $\{b_k\} \in l^2$, there is a function $f(z) = \sum a_n z^n \in H_E^\infty$ such that $f|S = \beta$ and $a_{n_k} = b_k$ for all k.

REMARK. $0 \notin S$ represents no loss of generality since we may have $0 \in \{n_k\}$.

Before proving the theorem, we are going to develop some background material. Let $S \cap D = \{z_n\}$ and let

$$\inf_{n} \prod_{m\neq n} \left| \frac{z_{m}-z_{n}}{1-\bar{z}_{m}z_{n}} \right| = \delta > 0.$$

Then there exists a real number M with the following property: Given $\{w_n\} \in \text{ball } l^{\infty}$, we can find a real number α and a Blaschke product B(z) such that $Me^{i\alpha}B(z_n) = w_n$ for all n. The zeros $\{\xi_n\}$ of B(z) can be chosen to satisfy $\psi(z_n, \xi_n) < \delta$ where $\psi(a, b) = |(a - b)/(1 - \overline{a}b)|$ is the pseudo-hyperbolic metric on D. This shows that B(z) has analytic continuation across $T \setminus \{z_n\}$. The result is due to J. Earl [5]. We want to prove that the mass of the Taylor coefficients of B(z) regarded as an element of H^2 is concentrated on the first coefficients.

LEMMA 1. Let $B(z) = \sum a_n z^n$ be as above. If $\varepsilon > 0$ then there is an integer $N = N(\varepsilon)$ independent of $\{\xi_n\}$ such that $\sum_{n=N}^{\infty} |a_n|^2 < \varepsilon$.

Proof. ε is now fixed. Let

$$B_K(z) = \prod_{n=K}^{\infty} \frac{|\xi_n|}{\xi_n} \cdot \frac{\xi_n - z}{1 - \overline{\xi}_n z}.$$

Since $\psi(\xi_n, z_n) < \delta$, a calculation shows that

$$1 - |\xi_n| \le (2/(1 - \delta))(1 - |z_n|).$$

Hence $\lim_{K\to\infty} \sum_{n=K}^{\infty} (1-|\xi_n|) = 0$ uniformly in $\{\xi_n\}$. This shows that $B_K(0) \xrightarrow{\to} 1$. Since $||B_K||_2 = 1$, $B_K(z) = \sum_{n=0}^{\infty} a_{n,K} z^n$ satisfies $\sum_{n=N_K}^{\infty} |a_{n,K}|^2 < \epsilon/2$ for $N_K = 1$ if K is chosen large.

$$B_{K-1}(z) = B_K(z) \cdot \frac{|\xi_{K-1}|}{\xi_{K-1}} \cdot \frac{\xi_{K-1}-z}{1-\overline{\xi}_{K-1}z}.$$

458

We have

$$B_{K}(z) = \sum_{n=0}^{N_{K}} a_{n,K} z^{n} + \sum_{n=N_{K}+1}^{\infty} a_{n,K} z^{n} = p(z) + \varepsilon_{p}(z)$$

where $\|\varepsilon_p\|_2^2 < \varepsilon/2$ and $\|p\|_2 \le 1$.

$$\frac{|\xi_{K-1}|}{\xi_{K-1}} \cdot \frac{\xi_{K-1}-z}{1-\overline{\xi}_{K-1}z} = \sum_{n=0}^{\infty} b_n(\xi_{K-1})z^n.$$

Since $\psi(z_{K-1}, \xi_{K-1}) < \delta$ this converges uniformly on *D* independent of ξ_{K-1} . Choose *R* such that

$$\sum_{n=0}^{R} b_n(\xi_{K-1}) z^n + \sum_{n=R+1}^{\infty} b_n(\xi_{K-1}) z^n = q(z) + \varepsilon_q(z)$$

satisfies $\|\varepsilon_q\|_{\infty} < \eta$, $\|q\|_{\infty} < 1 + \eta$ where η is to be chosen below. We have

$$B_{K-1} = (p + \varepsilon_p)(q + \varepsilon_q) = pq + \varepsilon_p q + p\varepsilon_q + \varepsilon_p \varepsilon_q.$$

pq is a polynomial of degree $N_K + R$. It is not the $(N_K + R)$ -partial sum of the Taylor series of B_{K-1} , but deleting coefficients decreases the $|| ||_2$ norm. For $B_{K-1}(z) = \sum C_n z^n$ we therefore have

$$\left(\sum_{n=R+N_{K}+1}^{\infty}|C_{n}|^{2}\right)^{1/2} = \|B_{K-1}(z) - \sum_{n=0}^{R+N_{K}}C_{n}z^{n}\|_{2}$$

$$\leq \|\varepsilon_{p} \cdot q\|_{2} + \|p\varepsilon_{q}\|_{2} + \|\varepsilon_{p}\varepsilon_{q}\|_{2}$$

$$\leq \|\varepsilon_{p}\|_{2} \cdot \|q\|_{\infty} + \|p\|_{2} \cdot \|\varepsilon_{q}\|_{\infty} + \|\varepsilon_{p}\|_{2} \cdot \|\varepsilon_{q}\|_{\infty}$$

$$\leq \sqrt{\varepsilon/2}(1+\eta) + \eta + \sqrt{\varepsilon/2} \cdot \eta < \sqrt{3\varepsilon/4}$$

if η is chosen small. Continuing in the same way, the lemma is proved in a finite number of steps.

We are now going to take a look at Vinogradov's theorem. If $F = \{n_k\}$ is of type $\Lambda(2)$, the mapping $R: A(D) \to l^2: \sum a_n z^n \to \{a_{n_k}\}$ is onto. The open mapping theorem gives that $R(\text{ball } A(D)) \supseteq c \text{ ball } l^2$ for some c > 0. To obtain an estimate for c we need a result of Smirnov. Let $f(\xi)$ be integrable over the unit circle and let

$$h(z) = \frac{1}{2\pi} \int_T \frac{f(\xi)}{\xi - z} d\xi.$$

Then $h \in H^{1/2}$ and $||h||_{1/2} \leq K_1 ||f||_1$. For a proof see p. 35 of [4] or [11]. Since *F* is of type $\Lambda(2)$, we have $||f||_2 \leq K_2 ||f||_{1/2}$ for every *F* function in

KNUT ØYMA

 H^2 . Vinogradov proves his theorem by showing that the adjoint mapping R^* : $(l^2)^* = l^2 \rightarrow A(D)^*$ satisfies

$$||R^*(x)|| \ge (1/2\pi K_1 K_2)||x||.$$

This is proved more generally on the first seven pages of [11]. Using a result of Banach, Lemma 4.13 of [9], we get $R(\text{ball } A(D)) \supseteq (1/2\pi K_1 K_2)$ ball l^2 if by ball we mean open ball. Our balls are open from now on.

If $F = \{n_k\}_{k=1}^{\infty}$, consider the set $F' = \{n_k - n_K\}_{k=K+1}^{\infty}$. F' is also of type $\Lambda(2)$, and it is not difficult to see that the associated constant $K'_2 \leq K_2$. If R' is the operator from A(D) to l^2 associated with F' we see that $R'(\text{ball } A(D)) \supseteq (1/2\pi K_1 K_2)\text{ball } l^2$.

The proof of the theorem will also make use of

LEMMA 2. Let $T: X \to Y$ be a continuous linear mapping between Banach spaces. Assume there are constants $\varepsilon < 1$ and M such that for all $y \in \text{ball } B$ there is $x \in X$ such that ||x|| < M and $||Tx - y|| < \varepsilon$. Then T is onto.

For a proof see [1]. We now prove the theorem. Assume first that $S \cap E = \emptyset$. Choose an integer K such that $f_K(z) = B_K(z)/B_K(0) = 1 + \varepsilon(z)$ satisfies $||f_K||_{\infty} < 2$ and $||\varepsilon||_2 < 1/4\pi K_1 K_2$. Let $B_K \cdot H_E^{\infty}$ be the subspace of H_E^{∞} consisting of the functions that vanish at z_n for $n \ge K$. Given $\{b_k\} \in \text{ball } l^2$, choose $g(z) = \sum a_n z^n \in A(D)$ such that $a_{n_k} = b_k$ for all k and $||g(z)||_{\infty} \le 2\pi K_1 K_2$. Let

$$g_{K}(z) = g(z)f_{K}(z) = \sum c_{n}z^{n} \in B_{K}H_{E}^{\infty},$$
$$\|g_{K}(z)\|_{\infty} \leq 4\pi K_{1}K_{2}$$

and

$$\|\{b_k - c_{n_k}\}\|_2 \le \|\varepsilon(z)g(z)\|_2 \le \|\varepsilon(z)\|_2 \cdot \|g(z)\|_{\infty} < 1/2.$$

Lemma 2 now proves that $R(B_K H_E^{\infty}) = l^2$. Let $\{w_n\}_{n=K}^{\infty} \in l^{\infty}$ and $\{b_k\} \in l^2$ be given. Choose $h(z) = \sum d_n z^n \in H_E^{\infty}$ such that $h(z_n) = w_n$ for $n \ge K$ and choose $j(z) = \sum l_n z^n \in B_K H_E^{\infty}$ such that $l_{n_k} = b_k - d_{n_k}$ for all k. The function $r(z) = h(z) + j(z) = \sum t_n z^n$ satisfies $r(z_n) = w_n$ for $n \ge K$ and $t_{n_k} = b_k$ for all k. This proves the theorem for $\{z_n\}_{n=1}^{\infty}$ replaced by $\{z_n\}_{n=K}^{\infty}$. The proof will be complete if we can prove that K can be replaced by K - 1. To obtain this it is enough to find a function $f(z) = \sum a_n z^n \in B_K \cdot H_E^{\infty}$ such that $a_{n_k} = 0$ for all k and $f(z_{K-1}) = 1$.

460

Such a function is likely to exist because it is easy to prove that there are many functions in $B_K H_E^{\infty}$ with F coefficients zero. All these functions could, however, vanish at z_{K-1} (a black hole). In that case, then for every $f(z) = \sum a_n z^n \in B_K \cdot H_E^{\infty}$, $f(z_{K-1})$ would be a function of $\{a_{n_k}\}$ alone.

Let $f(z) = \sum a_n z^n \in B_K H_E^{\infty}$. Look at $f(z_{K-1}) \leftarrow f(z) \xrightarrow{K} \{a_{n_k}\} \in l^2$. $\{a_{n_k}\} \rightarrow f(z_{K-1})$ is now seen to be a well-defined linear functional on l^2 since R is onto. This functional is continuous since every $x \in \text{ball } l^2$ comes from a function of norm < C as an application of the open mapping theorem shows. Therefore there exists a unique $\{\lambda_k\} \in l^2$ such that

(*)
$$f(z_{K-1}) = \sum_{k} a_{n_k} \lambda_k$$
 for every $f(z) = \sum a_n z^n \in B_K \cdot H_E^{\infty}$.

Infinitely many $\lambda_k \neq 0$. If this were not so, let λ_M be the largest. If $f(z) \in B_K H_E^{\infty}$. Then $z^{n_{M+1}} f(z)$ would vanish at z_{K-1} . This is clearly impossible. Since $\{\lambda_k\}$ is unique, the relation (*) is impossible if we delete some n_N from F for which $\lambda_N \neq 0$. If we do so, K can be replaced by K-1. We may choose n_N arbitrary large. Doing so we have pushed the problem from $\{z_n\}$ to F. We now prove that n_N can be replaced.

Let $\{z_n^*\} = \{z_n\}_{n=K-1}^{\infty} \cup \{0\}$. Every sequence $\{w_n\} \in \text{ball } l^{\infty}$ can be interpolated at $\{z_n^*\}$ by a function of the form $Me^{i\alpha}B(z) = \sum l_n z^n$ as pointed out above. Choose an integer 0 independent of $\{w_n\}$ such that

(**)
$$\left(\sum_{n=Q}^{\infty} |l_n|^2\right)^{1/2} < \frac{1}{10\pi K_1 K_2}.$$

This is possible by Lemma 1.

Choose n_N such that $\lambda_N \neq 0$ and $n_{N+1} - n_N > Q$. Let $F' = \{n_k - n_N\}_{k=N+1}^{\infty}$ and let

$$\mathfrak{B} = \left\{ f(z) = \sum a_n z^n \in H^\infty_E \colon a_n = 0 \text{ for } n \in F' \right\}.$$

We want to prove that $\mathfrak{B}|\{z_n^*\} = l^\infty$. Let $\{w_n\} \in \text{ball } l^\infty$ be given. Choose α and B(z) as above such that $Me^{i\alpha}B(z_n^*) = w_n$ for all n. Choose $h(z) = \sum b_n z^n \in A(D)$ such that $b_n = l_n$ for $n \in F'$ and such that $||h(z)|| \leq \frac{1}{5}$. This is possible by (**) and the remark following Vinogradov's theorem. $f(z) = Me^{i\alpha}B(z) - h(z)$ has the following properties: $f \in \mathfrak{B}$, $||f|| \leq M + \frac{1}{5}$, $||f(z_n^*) - w_n| < \frac{1}{5}$. Lemma 2 now proves that $\mathfrak{B}|\{z_n^*\} = l^\infty$. n_N can now be replaced: Let $\{w_n\} \in l^\infty$, $\{b_k\} \in l^2$. Take $f(z) = \sum a_n z^n \in H_E^\infty$ such that $f(z_n) = w_n$ for $n \geq K - 1$ and $a_{n_k} = b_k$ for $n_k \in F \setminus \{n_N\}$.

Choose $g(z) \in \mathfrak{B}$ such that g(0) = 1, $g(z^*) = 0$ for $z_n^* \neq 0$. Let $r(z) = z^{n_N}g(z) = \sum t_n z^n$. We have: $r(z_n) = 0$ for $n \ge K - 1$, $t_n = 0$ for $n \in F \setminus \{n_N\}$, $t_{n_N} = 1$. Our interpolation problem is now solved by the function $f(z) + \lambda r(z)$ for a proper choice of λ .

The proof is now complete except we assumed $S \cap E = \emptyset$. Using the Heard and Wells result, we may assume $\beta | S = 0$. Let $E' = E \setminus S$, $\mathcal{C} = \{f \in H_E^{\infty}: f | S = 0\}$, $\mathcal{C}' = \{f \in H_{E'}^{\infty}: f | S = 0\}$. The proof will be complete if we can prove $R(\mathcal{C}) = l^2$. By what we have just proved and the open mapping theorem, $R(k \cdot \text{ball } \mathcal{C}') \supseteq$ ball l^2 for some constant k. Now choose $g \in H_E^{\infty}$ such that g = 0 on $S \cap T$, $||g|| \le 1$ and $g(z) = 1 + \epsilon(z)$ satisfies $||\epsilon(z)||_2 < 1/2k$. This is possible by Lemma 4 of [6]. Let $\{b_k\} \in$ ball l^2 . Take $f(z) = \sum a_n z^n \in \mathcal{C}'$ such that $||f|| \le k$ and $a_{n_k} = b_k$ for all k. $h(z) = f(z)g(z) = \sum c_n z^n$ satisfies: $h \in \mathcal{C}$, $||h|| \le k$,

$$\|\{c_{n_k} - b_k\}_k\|_2 \le \|\epsilon(z)\|_2 \cdot \|f(z)\|_{\infty} < 1/2.$$

Lemma 2 now proves $R(\mathcal{C}) = l^2$ and the proof is complete.

References

- W. G. Bade and P. C. Curtis, Jr. Embedding theorems for commutative Banach algebras, Pacific J. Math., 18 (1966), 391-409.
- [2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921–930.
- [3] _____, Representations of continuous functions, Math. Z., 66 (1957), 447–451.
- [4] P. L. Duren, *Theory of H^p Spaces*, Academic Press.
- [5] J. Earl, On the interpolation of bounded sequences by bounded functions, J. London Math. Soc., 2 (1970), 544–548.
- [6] E. A. Heard and J. H. Wells, An interpolation problem for subalgebras of H[∞], Pacific J. Math., 28 No. 3 (1969), 543–553.
- [7] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.
- [8] _____, Boundary values of continuous functions, P.A.M.S., 7 (1956).
- [9] _____, Functional Analysis, McGraw-Hill Book Company.
- [10] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math., 83 (1961), 513–532.
- [11] S. A. Vinogradov, *The Banach-Rudin-Carleson Theorems and Embedding Operators*, Seminars in Math. V. A. Steklov Math. Inst. Leningrad, Vol. 19, 1–28. Consultants Bureau New York–London (1972).

Received February 25, 1981.

AGDER DISTRIKTSHOGSKOLE 4600 KRISTIANSAND, NORWAY